/* * Copyright 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "isl.h" #include "isl_gen4.h" #include "isl_gen6.h" #include "isl_gen7.h" #include "isl_gen8.h" #include "isl_gen9.h" #include "isl_priv.h" void PRINTFLIKE(3, 4) UNUSED __isl_finishme(const char *file, int line, const char *fmt, ...) { va_list ap; char buf[512]; va_start(ap, fmt); vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf); } void isl_device_init(struct isl_device *dev, const struct brw_device_info *info) { dev->info = info; dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6; /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some * device properties at buildtime. Verify that the macros with the device * properties chosen during runtime. */ assert(ISL_DEV_GEN(dev) == dev->info->gen); assert(ISL_DEV_USE_SEPARATE_STENCIL(dev) == dev->use_separate_stencil); /* Did we break hiz or stencil? */ if (ISL_DEV_USE_SEPARATE_STENCIL(dev)) assert(info->has_hiz_and_separate_stencil); if (info->must_use_separate_stencil) assert(ISL_DEV_USE_SEPARATE_STENCIL(dev)); } /** * @param[out] info is written only on success */ bool isl_tiling_get_info(const struct isl_device *dev, enum isl_tiling tiling, uint32_t format_block_size, struct isl_tile_info *tile_info) { const uint32_t bs = format_block_size; uint32_t width, height; assert(bs > 0); switch (tiling) { case ISL_TILING_LINEAR: width = 1; height = 1; break; case ISL_TILING_X: width = 1 << 9; height = 1 << 3; break; case ISL_TILING_Y0: width = 1 << 7; height = 1 << 5; break; case ISL_TILING_W: /* XXX: Should W tile be same as Y? */ width = 1 << 6; height = 1 << 6; break; case ISL_TILING_Yf: case ISL_TILING_Ys: { if (ISL_DEV_GEN(dev) < 9) return false; if (!isl_is_pow2(bs)) return false; bool is_Ys = tiling == ISL_TILING_Ys; width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys)); height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys)); break; } } /* end switch */ *tile_info = (struct isl_tile_info) { .tiling = tiling, .width = width, .height = height, .size = width * height, }; return true; } void isl_tiling_get_extent(const struct isl_device *dev, enum isl_tiling tiling, uint32_t format_block_size, struct isl_extent2d *e) { struct isl_tile_info tile_info; isl_tiling_get_info(dev, tiling, format_block_size, &tile_info); *e = isl_extent2d(tile_info.width, tile_info.height); } /** * @param[out] tiling is set only on success */ bool isl_surf_choose_tiling(const struct isl_device *dev, const struct isl_surf_init_info *restrict info, enum isl_tiling *tiling) { isl_tiling_flags_t tiling_flags = info->tiling_flags; if (ISL_DEV_GEN(dev) >= 7) { gen7_filter_tiling(dev, info, &tiling_flags); } else { isl_finishme("%s: gen%u", __func__, ISL_DEV_GEN(dev)); gen7_filter_tiling(dev, info, &tiling_flags); } #define CHOOSE(__tiling) \ do { \ if (tiling_flags & (1u << (__tiling))) { \ *tiling = (__tiling); \ return true; \ } \ } while (0) /* Of the tiling modes remaining, choose the one that offers the best * performance. */ CHOOSE(ISL_TILING_Ys); CHOOSE(ISL_TILING_Yf); CHOOSE(ISL_TILING_Y0); CHOOSE(ISL_TILING_X); CHOOSE(ISL_TILING_W); CHOOSE(ISL_TILING_LINEAR); #undef CHOOSE /* No tiling mode accomodates the inputs. */ return false; } static bool isl_choose_msaa_layout(const struct isl_device *dev, const struct isl_surf_init_info *info, enum isl_tiling tiling, enum isl_msaa_layout *msaa_layout) { if (ISL_DEV_GEN(dev) >= 8) { return gen8_choose_msaa_layout(dev, info, tiling, msaa_layout); } else if (ISL_DEV_GEN(dev) >= 7) { return gen7_choose_msaa_layout(dev, info, tiling, msaa_layout); } else if (ISL_DEV_GEN(dev) >= 6) { return gen6_choose_msaa_layout(dev, info, tiling, msaa_layout); } else { return gen4_choose_msaa_layout(dev, info, tiling, msaa_layout); } } static void isl_msaa_interleaved_scale_px_to_sa(uint32_t samples, uint32_t *width, uint32_t *height) { assert(isl_is_pow2(samples)); /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level * Sizes (p133): * * If the surface is multisampled and it is a depth or stencil surface * or Multisampled Surface StorageFormat in SURFACE_STATE is * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before * proceeding: [...] */ if (width) *width = isl_align(*width, 2) << ((ffs(samples) - 0) / 2); if (height) *height = isl_align(*height, 2) << ((ffs(samples) - 1) / 2); } static enum isl_array_pitch_span isl_choose_array_pitch_span(const struct isl_device *dev, const struct isl_surf_init_info *restrict info, enum isl_dim_layout dim_layout, const struct isl_extent4d *phys_level0_sa) { switch (dim_layout) { case ISL_DIM_LAYOUT_GEN9_1D: if (ISL_DEV_GEN(dev) >= 9) isl_finishme("%s:%s: [SKL+] 1d surface layout", __FILE__, __func__); /* fallthrough */ case ISL_DIM_LAYOUT_GEN4_2D: if (ISL_DEV_GEN(dev) >= 8) { /* QPitch becomes programmable in Broadwell. So choose the * most compact QPitch possible in order to conserve memory. * * From the Broadwell PRM >> Volume 2d: Command Reference: Structures * >> RENDER_SURFACE_STATE Surface QPitch (p325): * * - Software must ensure that this field is set to a value * sufficiently large such that the array slices in the surface * do not overlap. Refer to the Memory Data Formats section for * information on how surfaces are stored in memory. * * - This field specifies the distance in rows between array * slices. It is used only in the following cases: * * - Surface Array is enabled OR * - Number of Mulitsamples is not NUMSAMPLES_1 and * Multisampled Surface Storage Format set to MSFMT_MSS OR * - Surface Type is SURFTYPE_CUBE */ return ISL_ARRAY_PITCH_SPAN_COMPACT; } else if (ISL_DEV_GEN(dev) >= 7) { /* Note that Ivybridge introduces * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the * driver more control over the QPitch. */ if (phys_level0_sa->array_len == 1) { /* The hardware will never use the QPitch. So choose the most * compact QPitch possible in order to conserve memory. */ return ISL_ARRAY_PITCH_SPAN_COMPACT; } if (isl_surf_usage_is_depth_or_stencil(info->usage)) { /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >> * Section 6.18.4.7: Surface Arrays (p112): * * If Surface Array Spacing is set to ARYSPC_FULL (note that * the depth buffer and stencil buffer have an implied value of * ARYSPC_FULL): */ return ISL_ARRAY_PITCH_SPAN_COMPACT; } if (info->levels == 1) { /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing * to ARYSPC_LOD0. */ return ISL_ARRAY_PITCH_SPAN_COMPACT; } return ISL_ARRAY_PITCH_SPAN_FULL; } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) && ISL_DEV_USE_SEPARATE_STENCIL(dev) && isl_surf_usage_is_stencil(info->usage)) { /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: * Graphics Core >> Section 7.18.3.7: Surface Arrays: * * The separate stencil buffer does not support mip mapping, thus * the storage for LODs other than LOD 0 is not needed. */ assert(info->levels == 1); assert(phys_level0_sa->array_len == 1); return ISL_ARRAY_PITCH_SPAN_COMPACT; } else { if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) && ISL_DEV_USE_SEPARATE_STENCIL(dev) && isl_surf_usage_is_stencil(info->usage)) { /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: * Graphics Core >> Section 7.18.3.7: Surface Arrays: * * The separate stencil buffer does not support mip mapping, * thus the storage for LODs other than LOD 0 is not needed. */ assert(info->levels == 1); assert(phys_level0_sa->array_len == 1); return ISL_ARRAY_PITCH_SPAN_COMPACT; } if (phys_level0_sa->array_len == 1) { /* The hardware will never use the QPitch. So choose the most * compact QPitch possible in order to conserve memory. */ return ISL_ARRAY_PITCH_SPAN_COMPACT; } return ISL_ARRAY_PITCH_SPAN_FULL; } case ISL_DIM_LAYOUT_GEN4_3D: /* The hardware will never use the QPitch. So choose the most * compact QPitch possible in order to conserve memory. */ return ISL_ARRAY_PITCH_SPAN_COMPACT; } unreachable("bad isl_dim_layout"); return ISL_ARRAY_PITCH_SPAN_FULL; } static void isl_choose_image_alignment_el(const struct isl_device *dev, const struct isl_surf_init_info *restrict info, enum isl_tiling tiling, enum isl_msaa_layout msaa_layout, struct isl_extent3d *image_align_el) { if (ISL_DEV_GEN(dev) >= 9) { gen9_choose_image_alignment_el(dev, info, tiling, msaa_layout, image_align_el); } else if (ISL_DEV_GEN(dev) >= 8) { gen8_choose_image_alignment_el(dev, info, tiling, msaa_layout, image_align_el); } else if (ISL_DEV_GEN(dev) >= 7) { gen7_choose_image_alignment_el(dev, info, tiling, msaa_layout, image_align_el); } else if (ISL_DEV_GEN(dev) >= 6) { gen6_choose_image_alignment_el(dev, info, tiling, msaa_layout, image_align_el); } else { gen4_choose_image_alignment_el(dev, info, tiling, msaa_layout, image_align_el); } } static enum isl_dim_layout isl_surf_choose_dim_layout(const struct isl_device *dev, enum isl_surf_dim logical_dim) { if (ISL_DEV_GEN(dev) >= 9) { switch (logical_dim) { case ISL_SURF_DIM_1D: return ISL_DIM_LAYOUT_GEN9_1D; case ISL_SURF_DIM_2D: case ISL_SURF_DIM_3D: return ISL_DIM_LAYOUT_GEN4_2D; } } else { switch (logical_dim) { case ISL_SURF_DIM_1D: case ISL_SURF_DIM_2D: return ISL_DIM_LAYOUT_GEN4_2D; case ISL_SURF_DIM_3D: return ISL_DIM_LAYOUT_GEN4_3D; } } unreachable("bad isl_surf_dim"); return ISL_DIM_LAYOUT_GEN4_2D; } /** * Calculate the physical extent of the surface's first level, in units of * surface samples. */ static void isl_calc_phys_level0_extent_sa(const struct isl_device *dev, const struct isl_surf_init_info *restrict info, enum isl_dim_layout dim_layout, enum isl_tiling tiling, enum isl_msaa_layout msaa_layout, struct isl_extent4d *phys_level0_sa) { if (isl_format_is_yuv(info->format)) isl_finishme("%s:%s: YUV format", __FILE__, __func__); switch (info->dim) { case ISL_SURF_DIM_1D: assert(info->height == 1); assert(info->depth == 1); assert(info->samples == 1); switch (dim_layout) { case ISL_DIM_LAYOUT_GEN4_3D: unreachable("bad isl_dim_layout"); case ISL_DIM_LAYOUT_GEN9_1D: if (ISL_DEV_GEN(dev) >= 9) isl_finishme("%s:%s: [SKL+] 1d surface layout", __FILE__, __func__); /* fallthrough */ case ISL_DIM_LAYOUT_GEN4_2D: *phys_level0_sa = (struct isl_extent4d) { .w = info->width, .h = 1, .d = 1, .a = info->array_len, }; break; } break; case ISL_SURF_DIM_2D: assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D); if (tiling == ISL_TILING_Ys && info->samples > 1) isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__); switch (msaa_layout) { case ISL_MSAA_LAYOUT_NONE: assert(info->depth == 1); assert(info->samples == 1); *phys_level0_sa = (struct isl_extent4d) { .w = info->width, .h = info->height, .d = 1, .a = info->array_len, }; break; case ISL_MSAA_LAYOUT_ARRAY: assert(info->depth == 1); assert(info->array_len == 1); assert(!isl_format_is_compressed(info->format)); *phys_level0_sa = (struct isl_extent4d) { .w = info->width, .h = info->height, .d = 1, .a = info->samples, }; break; case ISL_MSAA_LAYOUT_INTERLEAVED: assert(info->depth == 1); assert(info->array_len == 1); assert(!isl_format_is_compressed(info->format)); *phys_level0_sa = (struct isl_extent4d) { .w = info->width, .h = info->height, .d = 1, .a = 1, }; isl_msaa_interleaved_scale_px_to_sa(info->samples, &phys_level0_sa->w, &phys_level0_sa->h); break; } break; case ISL_SURF_DIM_3D: assert(info->array_len == 1); assert(info->samples == 1); switch (dim_layout) { case ISL_DIM_LAYOUT_GEN9_1D: unreachable("bad isl_dim_layout"); case ISL_DIM_LAYOUT_GEN4_2D: assert(ISL_DEV_GEN(dev) >= 9); *phys_level0_sa = (struct isl_extent4d) { .w = info->width, .h = info->height, .d = 1, .a = info->depth, }; break; case ISL_DIM_LAYOUT_GEN4_3D: assert(ISL_DEV_GEN(dev) < 9); *phys_level0_sa = (struct isl_extent4d) { .w = info->width, .h = info->height, .d = info->depth, .a = 1, }; break; } break; } } /** * A variant of isl_calc_phys_slice0_extent_sa() specific to * ISL_DIM_LAYOUT_GEN4_2D. */ static void isl_calc_phys_slice0_extent_sa_gen4_2d( const struct isl_device *dev, const struct isl_surf_init_info *restrict info, enum isl_msaa_layout msaa_layout, const struct isl_extent3d *image_align_sa, const struct isl_extent4d *phys_level0_sa, struct isl_extent2d *phys_slice0_sa) { const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); assert(phys_level0_sa->depth == 1); if (info->levels == 1 && msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED) { /* Do not pad the surface to the image alignment. Instead, pad it only * to the pixel format's block alignment. * * For tiled surfaces, using a reduced alignment here avoids wasting CPU * cycles on the below mipmap layout caluclations. Reducing the * alignment here is safe because we later align the row pitch and array * pitch to the tile boundary. It is safe even for * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled * to accomodate the interleaved samples. * * For linear surfaces, reducing the alignment here permits us to later * choose an arbitrary, non-aligned row pitch. If the surface backs * a VkBuffer, then an arbitrary pitch may be needed to accomodate * VkBufferImageCopy::bufferRowLength. */ *phys_slice0_sa = (struct isl_extent2d) { .w = isl_align_npot(phys_level0_sa->w, fmtl->bw), .h = isl_align_npot(phys_level0_sa->h, fmtl->bh), }; return; } uint32_t slice_top_w = 0; uint32_t slice_bottom_w = 0; uint32_t slice_left_h = 0; uint32_t slice_right_h = 0; uint32_t W0 = phys_level0_sa->w; uint32_t H0 = phys_level0_sa->h; for (uint32_t l = 0; l < info->levels; ++l) { uint32_t W = isl_minify(W0, l); uint32_t H = isl_minify(H0, l); if (msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) { /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level * Sizes (p133): * * If the surface is multisampled and it is a depth or stencil * surface or Multisampled Surface StorageFormat in * SURFACE_STATE is MSFMT_DEPTH_STENCIL, W_L and H_L must be * adjusted as follows before proceeding: [...] */ isl_msaa_interleaved_scale_px_to_sa(info->samples, &W, &H); } uint32_t w = isl_align_npot(W, image_align_sa->w); uint32_t h = isl_align_npot(H, image_align_sa->h); if (l == 0) { slice_top_w = w; slice_left_h = h; slice_right_h = h; } else if (l == 1) { slice_bottom_w = w; slice_left_h += h; } else if (l == 2) { slice_bottom_w += w; slice_right_h += h; } else { slice_right_h += h; } } *phys_slice0_sa = (struct isl_extent2d) { .w = MAX(slice_top_w, slice_bottom_w), .h = MAX(slice_left_h, slice_right_h), }; } /** * A variant of isl_calc_phys_slice0_extent_sa() specific to * ISL_DIM_LAYOUT_GEN4_3D. */ static void isl_calc_phys_slice0_extent_sa_gen4_3d( const struct isl_device *dev, const struct isl_surf_init_info *restrict info, const struct isl_extent3d *image_align_sa, const struct isl_extent4d *phys_level0_sa, struct isl_extent2d *phys_slice0_sa) { assert(info->samples == 1); assert(phys_level0_sa->array_len == 1); uint32_t slice_w = 0; uint32_t slice_h = 0; uint32_t W0 = phys_level0_sa->w; uint32_t H0 = phys_level0_sa->h; uint32_t D0 = phys_level0_sa->d; for (uint32_t l = 0; l < info->levels; ++l) { uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w); uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h); uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa->d); uint32_t max_layers_horiz = MIN(level_d, 1u << l); uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l); slice_w = MAX(slice_w, level_w * max_layers_horiz); slice_h += level_h * max_layers_vert; } *phys_slice0_sa = (struct isl_extent2d) { .w = slice_w, .h = slice_h, }; } /** * Calculate the physical extent of the surface's first array slice, in units * of surface samples. If the surface is multi-leveled, then the result will * be aligned to \a image_align_sa. */ static void isl_calc_phys_slice0_extent_sa(const struct isl_device *dev, const struct isl_surf_init_info *restrict info, enum isl_dim_layout dim_layout, enum isl_msaa_layout msaa_layout, const struct isl_extent3d *image_align_sa, const struct isl_extent4d *phys_level0_sa, struct isl_extent2d *phys_slice0_sa) { switch (dim_layout) { case ISL_DIM_LAYOUT_GEN9_1D: if (ISL_DEV_GEN(dev) >= 9) isl_finishme("%s:%s: [SKL+] physical layout of 1d surfaces", __FILE__, __func__); /*fallthrough*/ case ISL_DIM_LAYOUT_GEN4_2D: isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout, image_align_sa, phys_level0_sa, phys_slice0_sa); return; case ISL_DIM_LAYOUT_GEN4_3D: isl_calc_phys_slice0_extent_sa_gen4_3d(dev, info, image_align_sa, phys_level0_sa, phys_slice0_sa); return; } } /** * Calculate the pitch between physical array slices, in units of rows of * surface samples. The result is aligned to \a image_align_sa. */ static uint32_t isl_calc_array_pitch_sa_rows(const struct isl_device *dev, const struct isl_surf_init_info *restrict info, enum isl_dim_layout dim_layout, enum isl_array_pitch_span array_pitch_span, const struct isl_extent3d *image_align_sa, const struct isl_extent4d *phys_level0_sa, const struct isl_extent2d *phys_slice0_sa) { const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); switch (dim_layout) { case ISL_DIM_LAYOUT_GEN9_1D: if (ISL_DEV_GEN(dev) >= 9) isl_finishme("%s:%s: [SKL+] physical layout of 1d surfaces", __FILE__, __func__); /*fallthrough*/ case ISL_DIM_LAYOUT_GEN4_2D: switch (array_pitch_span) { case ISL_ARRAY_PITCH_SPAN_COMPACT: return isl_align_npot(phys_slice0_sa->h, image_align_sa->h); case ISL_ARRAY_PITCH_SPAN_FULL: { /* The QPitch equation is found in the Broadwell PRM >> Volume 5: * Memory Views >> Common Surface Formats >> Surface Layout >> 2D * Surfaces >> Surface Arrays. */ uint32_t H0_sa = phys_level0_sa->h; uint32_t H1_sa = isl_minify(H0_sa, 1); uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h); uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h); uint32_t m; if (ISL_DEV_GEN(dev) >= 7) { /* The QPitch equation changed slightly in Ivybridge. */ m = 12; } else { m = 11; } uint32_t pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h); if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 && (info->height % 4 == 1)) { /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1: * Graphics Core >> Section 7.18.3.7: Surface Arrays: * * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than * the value calculated in the equation above , for every * other odd Surface Height starting from 1 i.e. 1,5,9,13. * * XXX(chadv): Is the errata natural corollary of the physical * layout of interleaved samples? */ pitch_sa_rows += 4; } pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh); return pitch_sa_rows; } /* end case */ break; } break; case ISL_DIM_LAYOUT_GEN4_3D: assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT); return isl_align_npot(phys_slice0_sa->h, image_align_sa->h); } unreachable("bad isl_dim_layout"); return 0; } /** * Calculate the pitch of each surface row, in bytes. */ static uint32_t isl_calc_row_pitch(const struct isl_device *dev, const struct isl_surf_init_info *restrict info, const struct isl_tile_info *tile_info, const struct isl_extent3d *image_align_sa, const struct isl_extent2d *phys_slice0_sa) { const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); uint32_t row_pitch = info->min_pitch; /* First, align the surface to a cache line boundary, as the PRM explains * below. * * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface * Formats >> Surface Padding Requirements >> Render Target and Media * Surfaces: * * The data port accesses data (pixels) outside of the surface if they * are contained in the same cache request as pixels that are within the * surface. These pixels will not be returned by the requesting message, * however if these pixels lie outside of defined pages in the GTT, * a GTT error will result when the cache request is processed. In order * to avoid these GTT errors, “padding” at the bottom of the surface is * sometimes necessary. * * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces: * * The sampling engine accesses texels outside of the surface if they * are contained in the same cache line as texels that are within the * surface. These texels will not participate in any calculation * performed by the sampling engine and will not affect the result of * any sampling engine operation, however if these texels lie outside of * defined pages in the GTT, a GTT error will result when the cache line * is accessed. In order to avoid these GTT errors, “padding” at the * bottom and right side of a sampling engine surface is sometimes * necessary. * * It is possible that a cache line will straddle a page boundary if the * base address or pitch is not aligned. All pages included in the cache * lines that are part of the surface must map to valid GTT entries to * avoid errors. To determine the necessary padding on the bottom and * right side of the surface, refer to the table in Alignment Unit Size * section for the i and j parameters for the surface format in use. The * surface must then be extended to the next multiple of the alignment * unit size in each dimension, and all texels contained in this * extended surface must have valid GTT entries. * * For example, suppose the surface size is 15 texels by 10 texels and * the alignment parameters are i=4 and j=2. In this case, the extended * surface would be 16 by 10. Note that these calculations are done in * texels, and must be converted to bytes based on the surface format * being used to determine whether additional pages need to be defined. */ row_pitch = MAX(row_pitch, fmtl->bs * isl_align_div_npot(phys_slice0_sa->w, fmtl->bw)); switch (tile_info->tiling) { case ISL_TILING_LINEAR: /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >> * RENDER_SURFACE_STATE Surface Pitch (p349): * * - For linear render target surfaces and surfaces accessed with the * typed data port messages, the pitch must be a multiple of the * element size for non-YUV surface formats. Pitch must be * a multiple of 2 * element size for YUV surface formats. * * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we * ignore because isl doesn't do buffers.] * * - For other linear surfaces, the pitch can be any multiple of * bytes. */ if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) { if (isl_format_is_yuv(info->format)) { row_pitch = isl_align_npot(row_pitch, 2 * fmtl->bs); } else { row_pitch = isl_align_npot(row_pitch, fmtl->bs); } } break; default: /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >> * RENDER_SURFACE_STATE Surface Pitch (p349): * * - For tiled surfaces, the pitch must be a multiple of the tile * width. */ row_pitch = isl_align(row_pitch, tile_info->width); break; } return row_pitch; } /** * Calculate the surface's total height, including padding, in units of * surface elements. */ static uint32_t isl_calc_total_height_el(const struct isl_device *dev, const struct isl_surf_init_info *restrict info, const struct isl_tile_info *tile_info, uint32_t phys_array_len, uint32_t row_pitch, uint32_t array_pitch_el_rows) { const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); uint32_t total_h_el = phys_array_len * array_pitch_el_rows; uint32_t pad_bytes = 0; /* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface * Formats >> Surface Padding Requirements >> Render Target and Media * Surfaces: * * The data port accesses data (pixels) outside of the surface if they * are contained in the same cache request as pixels that are within the * surface. These pixels will not be returned by the requesting message, * however if these pixels lie outside of defined pages in the GTT, * a GTT error will result when the cache request is processed. In * order to avoid these GTT errors, “padding” at the bottom of the * surface is sometimes necessary. * * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces: * * ... Lots of padding requirements, all listed separately below. */ /* We can safely ignore the first padding requirement, quoted below, * because isl doesn't do buffers. * * - [pre-BDW] For buffers, which have no inherent “height,” padding * requirements are different. A buffer must be padded to the next * multiple of 256 array elements, with an additional 16 bytes added * beyond that to account for the L1 cache line. */ /* * - For compressed textures [...], padding at the bottom of the surface * is to an even compressed row. */ if (isl_format_is_compressed(info->format)) total_h_el = isl_align(total_h_el, 2); /* * - For cube surfaces, an additional two rows of padding are required * at the bottom of the surface. */ if (info->usage & ISL_SURF_USAGE_CUBE_BIT) total_h_el += 2; /* * - For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats, * additional padding is required. These surfaces require an extra row * plus 16 bytes of padding at the bottom in addition to the general * padding requirements. */ if (isl_format_is_yuv(info->format) && (fmtl->bs == 96 || fmtl->bs == 48|| fmtl->bs == 24)) { total_h_el += 1; pad_bytes += 16; } /* * - For linear surfaces, additional padding of 64 bytes is required at * the bottom of the surface. This is in addition to the padding * required above. */ if (tile_info->tiling == ISL_TILING_LINEAR) pad_bytes += 64; /* The below text weakens, not strengthens, the padding requirements for * linear surfaces. Therefore we can safely ignore it. * * - [BDW+] For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array, * non-MSAA, non-mip-mapped surfaces in linear memory, the only * padding requirement is to the next aligned 64-byte boundary beyond * the end of the surface. The rest of the padding requirements * documented above do not apply to these surfaces. */ /* * - [SKL+] For SURFTYPE_2D and SURFTYPE_3D with linear mode and * height % 4 != 0, the surface must be padded with * 4-(height % 4)*Surface Pitch # of bytes. */ if (ISL_DEV_GEN(dev) >= 9 && tile_info->tiling == ISL_TILING_LINEAR && (info->dim == ISL_SURF_DIM_2D || info->dim == ISL_SURF_DIM_3D)) { total_h_el = isl_align(total_h_el, 4); } /* * - [SKL+] For SURFTYPE_1D with linear mode, the surface must be padded * to 4 times the Surface Pitch # of bytes */ if (ISL_DEV_GEN(dev) >= 9 && tile_info->tiling == ISL_TILING_LINEAR && info->dim == ISL_SURF_DIM_1D) { total_h_el += 4; } /* Be sloppy. Align any leftover padding to a row boundary. */ total_h_el += isl_align_div_npot(pad_bytes, row_pitch); return total_h_el; } bool isl_surf_init_s(const struct isl_device *dev, struct isl_surf *surf, const struct isl_surf_init_info *restrict info) { const struct isl_format_layout *fmtl = isl_format_get_layout(info->format); const struct isl_extent4d logical_level0_px = { .w = info->width, .h = info->height, .d = info->depth, .a = info->array_len, }; enum isl_dim_layout dim_layout = isl_surf_choose_dim_layout(dev, info->dim); enum isl_tiling tiling; if (!isl_surf_choose_tiling(dev, info, &tiling)) return false; struct isl_tile_info tile_info; if (!isl_tiling_get_info(dev, tiling, fmtl->bs, &tile_info)) return false; enum isl_msaa_layout msaa_layout; if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout)) return false; struct isl_extent3d image_align_el; isl_choose_image_alignment_el(dev, info, tiling, msaa_layout, &image_align_el); struct isl_extent3d image_align_sa = isl_extent3d_el_to_sa(info->format, image_align_el); struct isl_extent4d phys_level0_sa; isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout, &phys_level0_sa); enum isl_array_pitch_span array_pitch_span = isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa); struct isl_extent2d phys_slice0_sa; isl_calc_phys_slice0_extent_sa(dev, info, dim_layout, msaa_layout, &image_align_sa, &phys_level0_sa, &phys_slice0_sa); assert(phys_slice0_sa.w % fmtl->bw == 0); assert(phys_slice0_sa.h % fmtl->bh == 0); const uint32_t row_pitch = isl_calc_row_pitch(dev, info, &tile_info, &image_align_sa, &phys_slice0_sa); const uint32_t array_pitch_sa_rows = isl_calc_array_pitch_sa_rows(dev, info, dim_layout, array_pitch_span, &image_align_sa, &phys_level0_sa, &phys_slice0_sa); assert(array_pitch_sa_rows % fmtl->bh == 0); const uint32_t array_pitch_el_rows = array_pitch_sa_rows / fmtl->bh; const uint32_t total_h_el = isl_calc_total_height_el(dev, info, &tile_info, phys_level0_sa.array_len, row_pitch, array_pitch_el_rows); const uint32_t total_h_sa = total_h_el * fmtl->bh; const uint32_t size = row_pitch * isl_align(total_h_sa, tile_info.height); /* Alignment of surface base address, in bytes */ uint32_t base_alignment = info->min_alignment; base_alignment = isl_align(base_alignment, tile_info.size); *surf = (struct isl_surf) { .dim = info->dim, .dim_layout = dim_layout, .msaa_layout = msaa_layout, .tiling = tiling, .format = info->format, .levels = info->levels, .samples = info->samples, .image_alignment_el = image_align_el, .logical_level0_px = logical_level0_px, .phys_level0_sa = phys_level0_sa, .size = size, .alignment = base_alignment, .row_pitch = row_pitch, .array_pitch_el_rows = array_pitch_el_rows, .array_pitch_span = array_pitch_span, .usage = info->usage, }; return true; } /** * A variant of isl_surf_get_image_offset_sa() specific to * ISL_DIM_LAYOUT_GEN4_2D. */ static void get_image_offset_sa_gen4_2d(const struct isl_surf *surf, uint32_t level, uint32_t layer, uint32_t *x_offset_sa, uint32_t *y_offset_sa) { assert(level < surf->levels); assert(layer < surf->phys_level0_sa.array_len); assert(surf->phys_level0_sa.depth == 1); const struct isl_extent3d image_align_sa = isl_surf_get_image_alignment_sa(surf); const uint32_t W0 = surf->phys_level0_sa.width; const uint32_t H0 = surf->phys_level0_sa.height; uint32_t x = 0; uint32_t y = layer * isl_surf_get_array_pitch_sa_rows(surf); for (uint32_t l = 0; l < level; ++l) { if (l == 1) { uint32_t W = isl_minify(W0, l); if (surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) isl_msaa_interleaved_scale_px_to_sa(surf->samples, &W, NULL); x += isl_align_npot(W, image_align_sa.w); } else { uint32_t H = isl_minify(H0, l); if (surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) isl_msaa_interleaved_scale_px_to_sa(surf->samples, NULL, &H); y += isl_align_npot(H, image_align_sa.h); } } *x_offset_sa = x; *y_offset_sa = y; } /** * A variant of isl_surf_get_image_offset_sa() specific to * ISL_DIM_LAYOUT_GEN4_3D. */ static void get_image_offset_sa_gen4_3d(const struct isl_surf *surf, uint32_t level, uint32_t logical_z_offset_px, uint32_t *x_offset_sa, uint32_t *y_offset_sa) { assert(level < surf->levels); assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level)); assert(surf->phys_level0_sa.array_len == 1); const struct isl_extent3d image_align_sa = isl_surf_get_image_alignment_sa(surf); const uint32_t W0 = surf->phys_level0_sa.width; const uint32_t H0 = surf->phys_level0_sa.height; const uint32_t D0 = surf->phys_level0_sa.depth; uint32_t x = 0; uint32_t y = 0; for (uint32_t l = 0; l < level; ++l) { const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h); const uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa.d); const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l); y += level_h * max_layers_vert; } const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w); const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h); const uint32_t level_d = isl_align_npot(isl_minify(D0, level), image_align_sa.d); const uint32_t max_layers_horiz = MIN(level_d, 1u << level); const uint32_t max_layers_vert = isl_align_div(level_d, 1u << level); x += level_w * (logical_z_offset_px % max_layers_horiz); y += level_h * (logical_z_offset_px / max_layers_vert); *x_offset_sa = x; *y_offset_sa = y; } void isl_surf_get_image_offset_sa(const struct isl_surf *surf, uint32_t level, uint32_t logical_array_layer, uint32_t logical_z_offset_px, uint32_t *x_offset_sa, uint32_t *y_offset_sa) { assert(level < surf->levels); assert(logical_array_layer < surf->logical_level0_px.array_len); assert(logical_z_offset_px < isl_minify(surf->logical_level0_px.depth, level)); switch (surf->dim_layout) { case ISL_DIM_LAYOUT_GEN9_1D: isl_finishme("%s:%s: gen9 1d surfaces", __FILE__, __func__); case ISL_DIM_LAYOUT_GEN4_2D: get_image_offset_sa_gen4_2d(surf, level, logical_array_layer, x_offset_sa, y_offset_sa); break; case ISL_DIM_LAYOUT_GEN4_3D: get_image_offset_sa_gen4_3d(surf, level, logical_z_offset_px, x_offset_sa, y_offset_sa); break; } }