/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" VkResult genX(CreateQueryPool)( VkDevice _device, const VkQueryPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkQueryPool* pQueryPool) { ANV_FROM_HANDLE(anv_device, device, _device); const struct anv_physical_device *pdevice = &device->instance->physicalDevice; struct anv_query_pool *pool; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO); /* Query pool slots are made up of some number of 64-bit values packed * tightly together. The first 64-bit value is always the "available" bit * which is 0 when the query is unavailable and 1 when it is available. * The 64-bit values that follow are determined by the type of query. */ uint32_t uint64s_per_slot = 1; VkQueryPipelineStatisticFlags pipeline_statistics = 0; switch (pCreateInfo->queryType) { case VK_QUERY_TYPE_OCCLUSION: /* Occlusion queries have two values: begin and end. */ uint64s_per_slot += 2; break; case VK_QUERY_TYPE_TIMESTAMP: /* Timestamps just have the one timestamp value */ uint64s_per_slot += 1; break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: pipeline_statistics = pCreateInfo->pipelineStatistics; /* We're going to trust this field implicitly so we need to ensure that * no unhandled extension bits leak in. */ pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK; /* Statistics queries have a min and max for every statistic */ uint64s_per_slot += 2 * util_bitcount(pipeline_statistics); break; case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: /* Transform feedback queries are 4 values, begin/end for * written/available. */ uint64s_per_slot += 4; break; default: assert(!"Invalid query type"); } pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pool == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); pool->type = pCreateInfo->queryType; pool->pipeline_statistics = pipeline_statistics; pool->stride = uint64s_per_slot * sizeof(uint64_t); pool->slots = pCreateInfo->queryCount; uint64_t size = pool->slots * pool->stride; result = anv_bo_init_new(&pool->bo, device, size); if (result != VK_SUCCESS) goto fail; if (pdevice->supports_48bit_addresses) pool->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; if (pdevice->use_softpin) pool->bo.flags |= EXEC_OBJECT_PINNED; if (pdevice->has_exec_async) pool->bo.flags |= EXEC_OBJECT_ASYNC; anv_vma_alloc(device, &pool->bo); /* For query pools, we set the caching mode to I915_CACHING_CACHED. On LLC * platforms, this does nothing. On non-LLC platforms, this means snooping * which comes at a slight cost. However, the buffers aren't big, won't be * written frequently, and trying to handle the flushing manually without * doing too much flushing is extremely painful. */ anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED); pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0); *pQueryPool = anv_query_pool_to_handle(pool); return VK_SUCCESS; fail: vk_free2(&device->alloc, pAllocator, pool); return result; } void genX(DestroyQueryPool)( VkDevice _device, VkQueryPool _pool, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_query_pool, pool, _pool); if (!pool) return; anv_gem_munmap(pool->bo.map, pool->bo.size); anv_vma_free(device, &pool->bo); anv_gem_close(device, pool->bo.gem_handle); vk_free2(&device->alloc, pAllocator, pool); } static struct anv_address anv_query_address(struct anv_query_pool *pool, uint32_t query) { return (struct anv_address) { .bo = &pool->bo, .offset = query * pool->stride, }; } static void cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags, uint32_t value_index, uint64_t result) { if (flags & VK_QUERY_RESULT_64_BIT) { uint64_t *dst64 = dst_slot; dst64[value_index] = result; } else { uint32_t *dst32 = dst_slot; dst32[value_index] = result; } } static bool query_is_available(uint64_t *slot) { return *(volatile uint64_t *)slot; } static VkResult wait_for_available(struct anv_device *device, struct anv_query_pool *pool, uint64_t *slot) { while (true) { if (query_is_available(slot)) return VK_SUCCESS; int ret = anv_gem_busy(device, pool->bo.gem_handle); if (ret == 1) { /* The BO is still busy, keep waiting. */ continue; } else if (ret == -1) { /* We don't know the real error. */ return anv_device_set_lost(device, "gem wait failed: %m"); } else { assert(ret == 0); /* The BO is no longer busy. */ if (query_is_available(slot)) { return VK_SUCCESS; } else { VkResult status = anv_device_query_status(device); if (status != VK_SUCCESS) return status; /* If we haven't seen availability yet, then we never will. This * can only happen if we have a client error where they call * GetQueryPoolResults on a query that they haven't submitted to * the GPU yet. The spec allows us to do anything in this case, * but returning VK_SUCCESS doesn't seem right and we shouldn't * just keep spinning. */ return VK_NOT_READY; } } } } VkResult genX(GetQueryPoolResults)( VkDevice _device, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, VkDeviceSize stride, VkQueryResultFlags flags) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_query_pool, pool, queryPool); assert(pool->type == VK_QUERY_TYPE_OCCLUSION || pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS || pool->type == VK_QUERY_TYPE_TIMESTAMP || pool->type == VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT); if (anv_device_is_lost(device)) return VK_ERROR_DEVICE_LOST; if (pData == NULL) return VK_SUCCESS; void *data_end = pData + dataSize; VkResult status = VK_SUCCESS; for (uint32_t i = 0; i < queryCount; i++) { uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride; /* Availability is always at the start of the slot */ bool available = slot[0]; if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) { status = wait_for_available(device, pool, slot); if (status != VK_SUCCESS) return status; available = true; } /* From the Vulkan 1.0.42 spec: * * "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are * both not set then no result values are written to pData for * queries that are in the unavailable state at the time of the call, * and vkGetQueryPoolResults returns VK_NOT_READY. However, * availability state is still written to pData for those queries if * VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set." */ bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT); uint32_t idx = 0; switch (pool->type) { case VK_QUERY_TYPE_OCCLUSION: if (write_results) cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]); idx++; break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: { uint32_t statistics = pool->pipeline_statistics; while (statistics) { uint32_t stat = u_bit_scan(&statistics); if (write_results) { uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1]; /* WaDividePSInvocationCountBy4:HSW,BDW */ if ((device->info.gen == 8 || device->info.is_haswell) && (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) result >>= 2; cpu_write_query_result(pData, flags, idx, result); } idx++; } assert(idx == util_bitcount(pool->pipeline_statistics)); break; } case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: if (write_results) cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]); idx++; if (write_results) cpu_write_query_result(pData, flags, idx, slot[4] - slot[3]); idx++; break; case VK_QUERY_TYPE_TIMESTAMP: if (write_results) cpu_write_query_result(pData, flags, idx, slot[1]); idx++; break; default: unreachable("invalid pool type"); } if (!write_results) status = VK_NOT_READY; if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) cpu_write_query_result(pData, flags, idx, available); pData += stride; if (pData >= data_end) break; } return status; } static void emit_srm32(struct anv_batch *batch, struct anv_address addr, uint32_t reg) { anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) { srm.MemoryAddress = addr; srm.RegisterAddress = reg; } } static void emit_srm64(struct anv_batch *batch, struct anv_address addr, uint32_t reg) { emit_srm32(batch, anv_address_add(addr, 0), reg + 0); emit_srm32(batch, anv_address_add(addr, 4), reg + 4); } static void emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr) { anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DestinationAddressType = DAT_PPGTT; pc.PostSyncOperation = WritePSDepthCount; pc.DepthStallEnable = true; pc.Address = addr; if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4) pc.CommandStreamerStallEnable = true; } } static void emit_query_availability(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr) { anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DestinationAddressType = DAT_PPGTT; pc.PostSyncOperation = WriteImmediateData; pc.Address = addr; pc.ImmediateData = 1; } } /** * Goes through a series of consecutive query indices in the given pool * setting all element values to 0 and emitting them as available. */ static void emit_zero_queries(struct anv_cmd_buffer *cmd_buffer, struct anv_query_pool *pool, uint32_t first_index, uint32_t num_queries) { for (uint32_t i = 0; i < num_queries; i++) { struct anv_address slot_addr = anv_query_address(pool, first_index + i); genX(cmd_buffer_mi_memset)(cmd_buffer, anv_address_add(slot_addr, 8), 0, pool->stride - 8); emit_query_availability(cmd_buffer, slot_addr); } } void genX(CmdResetQueryPool)( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_query_pool, pool, queryPool); for (uint32_t i = 0; i < queryCount; i++) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) { sdm.Address = anv_query_address(pool, firstQuery + i); sdm.ImmediateData = 0; } } } static const uint32_t vk_pipeline_stat_to_reg[] = { GENX(IA_VERTICES_COUNT_num), GENX(IA_PRIMITIVES_COUNT_num), GENX(VS_INVOCATION_COUNT_num), GENX(GS_INVOCATION_COUNT_num), GENX(GS_PRIMITIVES_COUNT_num), GENX(CL_INVOCATION_COUNT_num), GENX(CL_PRIMITIVES_COUNT_num), GENX(PS_INVOCATION_COUNT_num), GENX(HS_INVOCATION_COUNT_num), GENX(DS_INVOCATION_COUNT_num), GENX(CS_INVOCATION_COUNT_num), }; static void emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat, struct anv_address addr) { STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK == (1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1); assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg)); emit_srm64(&cmd_buffer->batch, addr, vk_pipeline_stat_to_reg[stat]); } static void emit_xfb_query(struct anv_cmd_buffer *cmd_buffer, uint32_t stream, struct anv_address addr) { assert(stream < MAX_XFB_STREAMS); anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) { lrm.RegisterAddress = GENX(SO_NUM_PRIMS_WRITTEN0_num) + 0 + stream * 8; lrm.MemoryAddress = anv_address_add(addr, 0); } anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) { lrm.RegisterAddress = GENX(SO_NUM_PRIMS_WRITTEN0_num) + 4 + stream * 8; lrm.MemoryAddress = anv_address_add(addr, 4); } anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) { lrm.RegisterAddress = GENX(SO_PRIM_STORAGE_NEEDED0_num) + 0 + stream * 8; lrm.MemoryAddress = anv_address_add(addr, 16); } anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) { lrm.RegisterAddress = GENX(SO_PRIM_STORAGE_NEEDED0_num) + 4 + stream * 8; lrm.MemoryAddress = anv_address_add(addr, 20); } } void genX(CmdBeginQuery)( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, VkQueryControlFlags flags) { genX(CmdBeginQueryIndexedEXT)(commandBuffer, queryPool, query, flags, 0); } void genX(CmdBeginQueryIndexedEXT)( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, VkQueryControlFlags flags, uint32_t index) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_query_pool, pool, queryPool); struct anv_address query_addr = anv_query_address(pool, query); switch (pool->type) { case VK_QUERY_TYPE_OCCLUSION: emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 8)); break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: { /* TODO: This might only be necessary for certain stats */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.CommandStreamerStallEnable = true; pc.StallAtPixelScoreboard = true; } uint32_t statistics = pool->pipeline_statistics; uint32_t offset = 8; while (statistics) { uint32_t stat = u_bit_scan(&statistics); emit_pipeline_stat(cmd_buffer, stat, anv_address_add(query_addr, offset)); offset += 16; } break; } case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.CommandStreamerStallEnable = true; pc.StallAtPixelScoreboard = true; } emit_xfb_query(cmd_buffer, index, anv_address_add(query_addr, 8)); break; default: unreachable(""); } } void genX(CmdEndQuery)( VkCommandBuffer commandBuffer, VkQueryPool queryPool, VkQueryControlFlags flags) { genX(CmdEndQueryIndexedEXT)(commandBuffer, queryPool, flags, 0); } void genX(CmdEndQueryIndexedEXT)( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, uint32_t index) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_query_pool, pool, queryPool); struct anv_address query_addr = anv_query_address(pool, query); switch (pool->type) { case VK_QUERY_TYPE_OCCLUSION: emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 16)); emit_query_availability(cmd_buffer, query_addr); break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: { /* TODO: This might only be necessary for certain stats */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.CommandStreamerStallEnable = true; pc.StallAtPixelScoreboard = true; } uint32_t statistics = pool->pipeline_statistics; uint32_t offset = 16; while (statistics) { uint32_t stat = u_bit_scan(&statistics); emit_pipeline_stat(cmd_buffer, stat, anv_address_add(query_addr, offset)); offset += 16; } emit_query_availability(cmd_buffer, query_addr); break; } case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.CommandStreamerStallEnable = true; pc.StallAtPixelScoreboard = true; } emit_xfb_query(cmd_buffer, index, anv_address_add(query_addr, 16)); emit_query_availability(cmd_buffer, query_addr); break; default: unreachable(""); } /* When multiview is active the spec requires that N consecutive query * indices are used, where N is the number of active views in the subpass. * The spec allows that we only write the results to one of the queries * but we still need to manage result availability for all the query indices. * Since we only emit a single query for all active views in the * first index, mark the other query indices as being already available * with result 0. */ if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) { const uint32_t num_queries = util_bitcount(cmd_buffer->state.subpass->view_mask); if (num_queries > 1) emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1); } } #define TIMESTAMP 0x2358 void genX(CmdWriteTimestamp)( VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t query) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_query_pool, pool, queryPool); struct anv_address query_addr = anv_query_address(pool, query); assert(pool->type == VK_QUERY_TYPE_TIMESTAMP); switch (pipelineStage) { case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT: emit_srm64(&cmd_buffer->batch, anv_address_add(query_addr, 8), TIMESTAMP); break; default: /* Everything else is bottom-of-pipe */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DestinationAddressType = DAT_PPGTT; pc.PostSyncOperation = WriteTimestamp; pc.Address = anv_address_add(query_addr, 8); if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4) pc.CommandStreamerStallEnable = true; } break; } emit_query_availability(cmd_buffer, query_addr); /* When multiview is active the spec requires that N consecutive query * indices are used, where N is the number of active views in the subpass. * The spec allows that we only write the results to one of the queries * but we still need to manage result availability for all the query indices. * Since we only emit a single query for all active views in the * first index, mark the other query indices as being already available * with result 0. */ if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) { const uint32_t num_queries = util_bitcount(cmd_buffer->state.subpass->view_mask); if (num_queries > 1) emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1); } } #if GEN_GEN > 7 || GEN_IS_HASWELL static uint32_t mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2) { struct GENX(MI_MATH_ALU_INSTRUCTION) instr = { .ALUOpcode = opcode, .Operand1 = operand1, .Operand2 = operand2, }; uint32_t dw; GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr); return dw; } #define CS_GPR(n) (0x2600 + (n) * 8) static void emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg, struct anv_address addr) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = reg; lrm.MemoryAddress = anv_address_add(addr, 0); } anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = reg + 4; lrm.MemoryAddress = anv_address_add(addr, 4); } } static void emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = reg; lri.DataDWord = imm; } } static void emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm) { emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm); emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32)); } static void emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) { lrr.SourceRegisterAddress = src; lrr.DestinationRegisterAddress = dst; } } /* * GPR0 = GPR0 & ((1ull << n) - 1); */ static void keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n) { assert(n < 64); emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1); uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH)); if (!dw) { anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY); return; } dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0); dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1); dw[3] = mi_alu(MI_ALU_AND, 0, 0); dw[4] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU); } /* * GPR0 = GPR0 << 30; */ static void shl_gpr0_by_30_bits(struct anv_batch *batch) { /* First we mask 34 bits of GPR0 to prevent overflow */ keep_gpr0_lower_n_bits(batch, 34); const uint32_t outer_count = 5; const uint32_t inner_count = 6; STATIC_ASSERT(outer_count * inner_count == 30); const uint32_t cmd_len = 1 + inner_count * 4; /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of * 30 left shifts. */ for (int o = 0; o < outer_count; o++) { /* Submit one MI_MATH to shift left by 6 bits */ uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH)); if (!dw) { anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY); return; } dw++; for (int i = 0; i < inner_count; i++, dw += 4) { dw[0] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0); dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0); dw[2] = mi_alu(MI_ALU_ADD, 0, 0); dw[3] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU); } } } /* * GPR0 = GPR0 >> 2; * * Note that the upper 30 bits of GPR are lost! */ static void shr_gpr0_by_2_bits(struct anv_batch *batch) { shl_gpr0_by_30_bits(batch); emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0)); emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0); } static void gpu_write_query_result(struct anv_batch *batch, struct anv_address dst_addr, VkQueryResultFlags flags, uint32_t value_index, uint32_t reg) { if (flags & VK_QUERY_RESULT_64_BIT) { emit_srm64(batch, anv_address_add(dst_addr, value_index * 8), reg); } else { emit_srm32(batch, anv_address_add(dst_addr, value_index * 4), reg); } } static void compute_query_result(struct anv_batch *batch, uint32_t dst_reg, struct anv_address addr) { emit_load_alu_reg_u64(batch, CS_GPR(0), anv_address_add(addr, 0)); emit_load_alu_reg_u64(batch, CS_GPR(1), anv_address_add(addr, 8)); /* FIXME: We need to clamp the result for 32 bit. */ uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH)); if (!dw) { anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY); return; } dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG1); dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0); dw[3] = mi_alu(MI_ALU_SUB, 0, 0); dw[4] = mi_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU); } void genX(CmdCopyQueryPoolResults)( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize destStride, VkQueryResultFlags flags) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_query_pool, pool, queryPool); ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer); /* If render target writes are ongoing, request a render target cache flush * to ensure proper ordering of the commands from the 3d pipe and the * command streamer. */ if (cmd_buffer->state.pending_pipe_bits & ANV_PIPE_RENDER_TARGET_BUFFER_WRITES) { cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT; } if ((flags & VK_QUERY_RESULT_WAIT_BIT) || (cmd_buffer->state.pending_pipe_bits & ANV_PIPE_FLUSH_BITS)) { cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } struct anv_address dest_addr = anv_address_add(buffer->address, destOffset); for (uint32_t i = 0; i < queryCount; i++) { struct anv_address query_addr = anv_query_address(pool, firstQuery + i); uint32_t idx = 0; switch (pool->type) { case VK_QUERY_TYPE_OCCLUSION: compute_query_result(&cmd_buffer->batch, MI_ALU_REG2, anv_address_add(query_addr, 8)); gpu_write_query_result(&cmd_buffer->batch, dest_addr, flags, idx++, CS_GPR(2)); break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: { uint32_t statistics = pool->pipeline_statistics; while (statistics) { uint32_t stat = u_bit_scan(&statistics); compute_query_result(&cmd_buffer->batch, MI_ALU_REG0, anv_address_add(query_addr, idx * 16 + 8)); /* WaDividePSInvocationCountBy4:HSW,BDW */ if ((cmd_buffer->device->info.gen == 8 || cmd_buffer->device->info.is_haswell) && (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) { shr_gpr0_by_2_bits(&cmd_buffer->batch); } gpu_write_query_result(&cmd_buffer->batch, dest_addr, flags, idx++, CS_GPR(0)); } assert(idx == util_bitcount(pool->pipeline_statistics)); break; } case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: compute_query_result(&cmd_buffer->batch, MI_ALU_REG2, anv_address_add(query_addr, 8)); gpu_write_query_result(&cmd_buffer->batch, dest_addr, flags, idx++, CS_GPR(2)); compute_query_result(&cmd_buffer->batch, MI_ALU_REG2, anv_address_add(query_addr, 24)); gpu_write_query_result(&cmd_buffer->batch, dest_addr, flags, idx++, CS_GPR(2)); break; case VK_QUERY_TYPE_TIMESTAMP: emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(2), anv_address_add(query_addr, 8)); gpu_write_query_result(&cmd_buffer->batch, dest_addr, flags, 0, CS_GPR(2)); break; default: unreachable("unhandled query type"); } if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) { emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0), query_addr); gpu_write_query_result(&cmd_buffer->batch, dest_addr, flags, idx, CS_GPR(0)); } dest_addr = anv_address_add(dest_addr, destStride); } } #else void genX(CmdCopyQueryPoolResults)( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize destStride, VkQueryResultFlags flags) { anv_finishme("Queries not yet supported on Ivy Bridge"); } #endif