/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "vk_format_info.h" static uint32_t vertex_element_comp_control(enum isl_format format, unsigned comp) { uint8_t bits; switch (comp) { case 0: bits = isl_format_layouts[format].channels.r.bits; break; case 1: bits = isl_format_layouts[format].channels.g.bits; break; case 2: bits = isl_format_layouts[format].channels.b.bits; break; case 3: bits = isl_format_layouts[format].channels.a.bits; break; default: unreachable("Invalid component"); } if (bits) { return VFCOMP_STORE_SRC; } else if (comp < 3) { return VFCOMP_STORE_0; } else if (isl_format_layouts[format].channels.r.type == ISL_UINT || isl_format_layouts[format].channels.r.type == ISL_SINT) { assert(comp == 3); return VFCOMP_STORE_1_INT; } else { assert(comp == 3); return VFCOMP_STORE_1_FP; } } static void emit_vertex_input(struct anv_pipeline *pipeline, const VkPipelineVertexInputStateCreateInfo *info, const struct anv_graphics_pipeline_create_info *extra) { const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); uint32_t elements; if (extra && extra->disable_vs) { /* If the VS is disabled, just assume the user knows what they're * doing and apply the layout blindly. This can only come from * meta, so this *should* be safe. */ elements = 0; for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) elements |= (1 << info->pVertexAttributeDescriptions[i].location); } else { /* Pull inputs_read out of the VS prog data */ uint64_t inputs_read = vs_prog_data->inputs_read; assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0); elements = inputs_read >> VERT_ATTRIB_GENERIC0; } #if GEN_GEN >= 8 /* On BDW+, we only need to allocate space for base ids. Setting up * the actual vertex and instance id is a separate packet. */ const bool needs_svgs_elem = vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance; #else /* On Haswell and prior, vertex and instance id are created by using the * ComponentControl fields, so we need an element for any of them. */ const bool needs_svgs_elem = vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid || vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance; #endif uint32_t elem_count = __builtin_popcount(elements) + needs_svgs_elem; if (elem_count == 0) return; uint32_t *p; const uint32_t num_dwords = 1 + elem_count * 2; p = anv_batch_emitn(&pipeline->batch, num_dwords, GENX(3DSTATE_VERTEX_ELEMENTS)); memset(p + 1, 0, (num_dwords - 1) * 4); for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription *desc = &info->pVertexAttributeDescriptions[i]; enum isl_format format = anv_get_isl_format(&pipeline->device->info, desc->format, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_TILING_LINEAR); assert(desc->binding < 32); if ((elements & (1 << desc->location)) == 0) continue; /* Binding unused */ uint32_t slot = __builtin_popcount(elements & ((1 << desc->location) - 1)); struct GENX(VERTEX_ELEMENT_STATE) element = { .VertexBufferIndex = desc->binding, .Valid = true, .SourceElementFormat = format, .EdgeFlagEnable = false, .SourceElementOffset = desc->offset, .Component0Control = vertex_element_comp_control(format, 0), .Component1Control = vertex_element_comp_control(format, 1), .Component2Control = vertex_element_comp_control(format, 2), .Component3Control = vertex_element_comp_control(format, 3), }; GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element); #if GEN_GEN >= 8 /* On Broadwell and later, we have a separate VF_INSTANCING packet * that controls instancing. On Haswell and prior, that's part of * VERTEX_BUFFER_STATE which we emit later. */ anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) { vfi.InstancingEnable = pipeline->instancing_enable[desc->binding], vfi.VertexElementIndex = slot, /* Vulkan so far doesn't have an instance divisor, so * this is always 1 (ignored if not instancing). */ vfi.InstanceDataStepRate = 1; } #endif } const uint32_t id_slot = __builtin_popcount(elements); if (needs_svgs_elem) { /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum: * "Within a VERTEX_ELEMENT_STATE structure, if a Component * Control field is set to something other than VFCOMP_STORE_SRC, * no higher-numbered Component Control fields may be set to * VFCOMP_STORE_SRC" * * This means, that if we have BaseInstance, we need BaseVertex as * well. Just do all or nothing. */ uint32_t base_ctrl = (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0; struct GENX(VERTEX_ELEMENT_STATE) element = { .VertexBufferIndex = 32, /* Reserved for this */ .Valid = true, .SourceElementFormat = ISL_FORMAT_R32G32_UINT, .Component0Control = base_ctrl, .Component1Control = base_ctrl, #if GEN_GEN >= 8 .Component2Control = VFCOMP_STORE_0, .Component3Control = VFCOMP_STORE_0, #else .Component2Control = VFCOMP_STORE_VID, .Component3Control = VFCOMP_STORE_IID, #endif }; GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element); } #if GEN_GEN >= 8 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) { sgvs.VertexIDEnable = vs_prog_data->uses_vertexid; sgvs.VertexIDComponentNumber = 2; sgvs.VertexIDElementOffset = id_slot; sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid; sgvs.InstanceIDComponentNumber = 3; sgvs.InstanceIDElementOffset = id_slot; } #endif } static inline void emit_urb_setup(struct anv_pipeline *pipeline) { #if GEN_GEN == 7 && !GEN_IS_HASWELL struct anv_device *device = pipeline->device; /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1: * * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall * needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS, * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS, * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL * needs to be sent before any combination of VS associated 3DSTATE." */ anv_batch_emit(&pipeline->batch, GEN7_PIPE_CONTROL, pc) { pc.DepthStallEnable = true; pc.PostSyncOperation = WriteImmediateData; pc.Address = (struct anv_address) { &device->workaround_bo, 0 }; } #endif for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_VS), urb) { urb._3DCommandSubOpcode = 48 + i; urb.VSURBStartingAddress = pipeline->urb.start[i]; urb.VSURBEntryAllocationSize = pipeline->urb.size[i] - 1; urb.VSNumberofURBEntries = pipeline->urb.entries[i]; } } } static void emit_3dstate_sbe(struct anv_pipeline *pipeline) { const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline); const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); const struct brw_vue_map *fs_input_map; if (pipeline->gs_kernel == NO_KERNEL) fs_input_map = &vs_prog_data->base.vue_map; else fs_input_map = &gs_prog_data->base.vue_map; struct GENX(3DSTATE_SBE) sbe = { GENX(3DSTATE_SBE_header), .AttributeSwizzleEnable = true, .PointSpriteTextureCoordinateOrigin = UPPERLEFT, .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs, .ConstantInterpolationEnable = wm_prog_data->flat_inputs, #if GEN_GEN >= 9 .Attribute0ActiveComponentFormat = ACF_XYZW, .Attribute1ActiveComponentFormat = ACF_XYZW, .Attribute2ActiveComponentFormat = ACF_XYZW, .Attribute3ActiveComponentFormat = ACF_XYZW, .Attribute4ActiveComponentFormat = ACF_XYZW, .Attribute5ActiveComponentFormat = ACF_XYZW, .Attribute6ActiveComponentFormat = ACF_XYZW, .Attribute7ActiveComponentFormat = ACF_XYZW, .Attribute8ActiveComponentFormat = ACF_XYZW, .Attribute9ActiveComponentFormat = ACF_XYZW, .Attribute10ActiveComponentFormat = ACF_XYZW, .Attribute11ActiveComponentFormat = ACF_XYZW, .Attribute12ActiveComponentFormat = ACF_XYZW, .Attribute13ActiveComponentFormat = ACF_XYZW, .Attribute14ActiveComponentFormat = ACF_XYZW, .Attribute15ActiveComponentFormat = ACF_XYZW, /* wow, much field, very attribute */ .Attribute16ActiveComponentFormat = ACF_XYZW, .Attribute17ActiveComponentFormat = ACF_XYZW, .Attribute18ActiveComponentFormat = ACF_XYZW, .Attribute19ActiveComponentFormat = ACF_XYZW, .Attribute20ActiveComponentFormat = ACF_XYZW, .Attribute21ActiveComponentFormat = ACF_XYZW, .Attribute22ActiveComponentFormat = ACF_XYZW, .Attribute23ActiveComponentFormat = ACF_XYZW, .Attribute24ActiveComponentFormat = ACF_XYZW, .Attribute25ActiveComponentFormat = ACF_XYZW, .Attribute26ActiveComponentFormat = ACF_XYZW, .Attribute27ActiveComponentFormat = ACF_XYZW, .Attribute28ActiveComponentFormat = ACF_XYZW, .Attribute29ActiveComponentFormat = ACF_XYZW, .Attribute28ActiveComponentFormat = ACF_XYZW, .Attribute29ActiveComponentFormat = ACF_XYZW, .Attribute30ActiveComponentFormat = ACF_XYZW, #endif }; #if GEN_GEN >= 8 /* On Broadwell, they broke 3DSTATE_SBE into two packets */ struct GENX(3DSTATE_SBE_SWIZ) swiz = { GENX(3DSTATE_SBE_SWIZ_header), }; #else # define swiz sbe #endif int max_source_attr = 0; for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) { int input_index = wm_prog_data->urb_setup[attr]; if (input_index < 0) continue; if (attr == VARYING_SLOT_PNTC) { sbe.PointSpriteTextureCoordinateEnable = 1 << input_index; continue; } const int slot = fs_input_map->varying_to_slot[attr]; if (input_index >= 16) continue; if (slot == -1) { /* This attribute does not exist in the VUE--that means that the * vertex shader did not write to it. It could be that it's a * regular varying read by the fragment shader but not written by * the vertex shader or it's gl_PrimitiveID. In the first case the * value is undefined, in the second it needs to be * gl_PrimitiveID. */ swiz.Attribute[input_index].ConstantSource = PRIM_ID; swiz.Attribute[input_index].ComponentOverrideX = true; swiz.Attribute[input_index].ComponentOverrideY = true; swiz.Attribute[input_index].ComponentOverrideZ = true; swiz.Attribute[input_index].ComponentOverrideW = true; } else { assert(slot >= 2); const int source_attr = slot - 2; max_source_attr = MAX2(max_source_attr, source_attr); /* We have to subtract two slots to accout for the URB entry output * read offset in the VS and GS stages. */ swiz.Attribute[input_index].SourceAttribute = source_attr; } } sbe.VertexURBEntryReadOffset = 1; /* Skip the VUE header and position slots */ sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2); uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_length)); GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe); #if GEN_GEN >= 8 dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length)); GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz); #endif } static inline uint32_t scratch_space(const struct brw_stage_prog_data *prog_data) { return ffs(prog_data->total_scratch / 2048); } static const uint32_t vk_to_gen_cullmode[] = { [VK_CULL_MODE_NONE] = CULLMODE_NONE, [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT, [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK, [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH }; static const uint32_t vk_to_gen_fillmode[] = { [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID, [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME, [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT, }; static const uint32_t vk_to_gen_front_face[] = { [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1, [VK_FRONT_FACE_CLOCKWISE] = 0 }; static const uint32_t vk_to_gen_logic_op[] = { [VK_LOGIC_OP_COPY] = LOGICOP_COPY, [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR, [VK_LOGIC_OP_AND] = LOGICOP_AND, [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE, [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED, [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP, [VK_LOGIC_OP_XOR] = LOGICOP_XOR, [VK_LOGIC_OP_OR] = LOGICOP_OR, [VK_LOGIC_OP_NOR] = LOGICOP_NOR, [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV, [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT, [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE, [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED, [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED, [VK_LOGIC_OP_NAND] = LOGICOP_NAND, [VK_LOGIC_OP_SET] = LOGICOP_SET, }; static const uint32_t vk_to_gen_blend[] = { [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO, [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE, [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR, [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR, [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR, [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR, [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA, [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA, [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA, [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA, [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR, [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR, [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA, [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA, [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE, [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR, [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR, [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA, [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA, }; static const uint32_t vk_to_gen_blend_op[] = { [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD, [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT, [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT, [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN, [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX, }; static const uint32_t vk_to_gen_compare_op[] = { [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER, [VK_COMPARE_OP_LESS] = PREFILTEROPLESS, [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL, [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL, [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER, [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL, [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL, [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS, }; static const uint32_t vk_to_gen_stencil_op[] = { [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP, [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO, [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE, [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT, [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT, [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT, [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR, [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR, }; static void emit_ds_state(struct anv_pipeline *pipeline, const VkPipelineDepthStencilStateCreateInfo *info, const struct anv_render_pass *pass, const struct anv_subpass *subpass) { #if GEN_GEN == 7 # define depth_stencil_dw pipeline->gen7.depth_stencil_state #elif GEN_GEN == 8 # define depth_stencil_dw pipeline->gen8.wm_depth_stencil #else # define depth_stencil_dw pipeline->gen9.wm_depth_stencil #endif if (info == NULL) { /* We're going to OR this together with the dynamic state. We need * to make sure it's initialized to something useful. */ memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw)); return; } /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */ #if GEN_GEN <= 7 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = { #else struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = { #endif .DepthTestEnable = info->depthTestEnable, .DepthBufferWriteEnable = info->depthWriteEnable, .DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp], .DoubleSidedStencilEnable = true, .StencilTestEnable = info->stencilTestEnable, .StencilBufferWriteEnable = info->stencilTestEnable, .StencilFailOp = vk_to_gen_stencil_op[info->front.failOp], .StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.passOp], .StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.depthFailOp], .StencilTestFunction = vk_to_gen_compare_op[info->front.compareOp], .BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.failOp], .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.passOp], .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.depthFailOp], .BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.compareOp], }; VkImageAspectFlags aspects = 0; if (pass->attachments == NULL) { /* This comes from meta. Assume we have verything. */ aspects = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; } else if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) { VkFormat depth_stencil_format = pass->attachments[subpass->depth_stencil_attachment].format; aspects = vk_format_aspects(depth_stencil_format); } /* The Vulkan spec requires that if either depth or stencil is not present, * the pipeline is to act as if the test silently passes. */ if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) { depth_stencil.DepthBufferWriteEnable = false; depth_stencil.DepthTestFunction = PREFILTEROPALWAYS; } if (!(aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) { depth_stencil.StencilBufferWriteEnable = false; depth_stencil.StencilTestFunction = PREFILTEROPALWAYS; depth_stencil.BackfaceStencilTestFunction = PREFILTEROPALWAYS; } /* From the Broadwell PRM: * * "If Depth_Test_Enable = 1 AND Depth_Test_func = EQUAL, the * Depth_Write_Enable must be set to 0." */ if (info->depthTestEnable && info->depthCompareOp == VK_COMPARE_OP_EQUAL) depth_stencil.DepthBufferWriteEnable = false; #if GEN_GEN <= 7 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil); #else GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil); #endif } static void emit_cb_state(struct anv_pipeline *pipeline, const VkPipelineColorBlendStateCreateInfo *info, const VkPipelineMultisampleStateCreateInfo *ms_info) { struct anv_device *device = pipeline->device; const uint32_t num_dwords = GENX(BLEND_STATE_length); pipeline->blend_state = anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64); struct GENX(BLEND_STATE) blend_state = { #if GEN_GEN >= 8 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable, .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable, #else /* Make sure it gets zeroed */ .Entry = { { 0, }, }, #endif }; /* Default everything to disabled */ for (uint32_t i = 0; i < 8; i++) { blend_state.Entry[i].WriteDisableAlpha = true; blend_state.Entry[i].WriteDisableRed = true; blend_state.Entry[i].WriteDisableGreen = true; blend_state.Entry[i].WriteDisableBlue = true; } struct anv_pipeline_bind_map *map = &pipeline->bindings[MESA_SHADER_FRAGMENT]; bool has_writeable_rt = false; for (unsigned i = 0; i < map->surface_count; i++) { struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i]; /* All color attachments are at the beginning of the binding table */ if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) break; /* We can have at most 8 attachments */ assert(i < 8); if (binding->index >= info->attachmentCount) continue; assert(binding->binding == 0); const VkPipelineColorBlendAttachmentState *a = &info->pAttachments[binding->index]; blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) { #if GEN_GEN < 8 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable, .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable, #endif .LogicOpEnable = info->logicOpEnable, .LogicOpFunction = vk_to_gen_logic_op[info->logicOp], .ColorBufferBlendEnable = a->blendEnable, .ColorClampRange = COLORCLAMP_RTFORMAT, .PreBlendColorClampEnable = true, .PostBlendColorClampEnable = true, .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor], .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor], .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp], .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor], .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor], .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp], .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT), .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT), .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT), .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT), }; if (a->srcColorBlendFactor != a->srcAlphaBlendFactor || a->dstColorBlendFactor != a->dstAlphaBlendFactor || a->colorBlendOp != a->alphaBlendOp) { #if GEN_GEN >= 8 blend_state.IndependentAlphaBlendEnable = true; #else blend_state.Entry[i].IndependentAlphaBlendEnable = true; #endif } if (a->colorWriteMask != 0) has_writeable_rt = true; /* Our hardware applies the blend factor prior to the blend function * regardless of what function is used. Technically, this means the * hardware can do MORE than GL or Vulkan specify. However, it also * means that, for MIN and MAX, we have to stomp the blend factor to * ONE to make it a no-op. */ if (a->colorBlendOp == VK_BLEND_OP_MIN || a->colorBlendOp == VK_BLEND_OP_MAX) { blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE; blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE; } if (a->alphaBlendOp == VK_BLEND_OP_MIN || a->alphaBlendOp == VK_BLEND_OP_MAX) { blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE; blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE; } } #if GEN_GEN >= 8 struct GENX(BLEND_STATE_ENTRY) *bs0 = &blend_state.Entry[0]; anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) { blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable; blend.HasWriteableRT = has_writeable_rt; blend.ColorBufferBlendEnable = bs0->ColorBufferBlendEnable; blend.SourceAlphaBlendFactor = bs0->SourceAlphaBlendFactor; blend.DestinationAlphaBlendFactor = bs0->DestinationAlphaBlendFactor; blend.SourceBlendFactor = bs0->SourceBlendFactor; blend.DestinationBlendFactor = bs0->DestinationBlendFactor; blend.AlphaTestEnable = false; blend.IndependentAlphaBlendEnable = blend_state.IndependentAlphaBlendEnable; } #else (void)has_writeable_rt; #endif GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state); if (!device->info.has_llc) anv_state_clflush(pipeline->blend_state); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) { bsp.BlendStatePointer = pipeline->blend_state.offset; #if GEN_GEN >= 8 bsp.BlendStatePointerValid = true; #endif } } static void emit_3dstate_clip(struct anv_pipeline *pipeline, const VkPipelineViewportStateCreateInfo *vp_info, const VkPipelineRasterizationStateCreateInfo *rs_info, const struct anv_graphics_pipeline_create_info *extra) { const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); (void) wm_prog_data; anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) { clip.ClipEnable = !(extra && extra->use_rectlist); clip.EarlyCullEnable = true; clip.APIMode = APIMODE_D3D, clip.ViewportXYClipTestEnable = true; clip.ClipMode = rs_info->rasterizerDiscardEnable ? CLIPMODE_REJECT_ALL : CLIPMODE_NORMAL; clip.TriangleStripListProvokingVertexSelect = 0; clip.LineStripListProvokingVertexSelect = 0; clip.TriangleFanProvokingVertexSelect = 1; clip.MinimumPointWidth = 0.125; clip.MaximumPointWidth = 255.875; clip.MaximumVPIndex = vp_info->viewportCount - 1; #if GEN_GEN == 7 clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace]; clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode]; clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable; #else clip.NonPerspectiveBarycentricEnable = wm_prog_data ? (wm_prog_data->barycentric_interp_modes & 0x38) != 0 : 0; #endif } }