/* * Copyright (c) 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "anv_private.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" /** * Chunk of L3 cache reserved for some specific purpose. */ enum anv_l3_partition { /** Shared local memory. */ L3P_SLM = 0, /** Unified return buffer. */ L3P_URB, /** Union of DC and RO. */ L3P_ALL, /** Data cluster RW partition. */ L3P_DC, /** Union of IS, C and T. */ L3P_RO, /** Instruction and state cache. */ L3P_IS, /** Constant cache. */ L3P_C, /** Texture cache. */ L3P_T, /** Number of supported L3 partitions. */ NUM_L3P }; /** * L3 configuration represented as the number of ways allocated for each * partition. \sa get_l3_way_size(). */ struct anv_l3_config { unsigned n[NUM_L3P]; }; #if GEN_GEN == 7 /** * IVB/HSW validated L3 configurations. The first entry will be used as * default by gen7_restore_default_l3_config(), otherwise the ordering is * unimportant. */ static const struct anv_l3_config ivb_l3_configs[] = { /* SLM URB ALL DC RO IS C T */ {{ 0, 32, 0, 0, 32, 0, 0, 0 }}, {{ 0, 32, 0, 16, 16, 0, 0, 0 }}, {{ 0, 32, 0, 4, 0, 8, 4, 16 }}, {{ 0, 28, 0, 8, 0, 8, 4, 16 }}, {{ 0, 28, 0, 16, 0, 8, 4, 8 }}, {{ 0, 28, 0, 8, 0, 16, 4, 8 }}, {{ 0, 28, 0, 0, 0, 16, 4, 16 }}, {{ 0, 32, 0, 0, 0, 16, 0, 16 }}, {{ 0, 28, 0, 4, 32, 0, 0, 0 }}, {{ 16, 16, 0, 16, 16, 0, 0, 0 }}, {{ 16, 16, 0, 8, 0, 8, 8, 8 }}, {{ 16, 16, 0, 4, 0, 8, 4, 16 }}, {{ 16, 16, 0, 4, 0, 16, 4, 8 }}, {{ 16, 16, 0, 0, 32, 0, 0, 0 }}, {{ 0 }} }; #endif #if GEN_GEN == 7 && !GEN_IS_HASWELL /** * VLV validated L3 configurations. \sa ivb_l3_configs. */ static const struct anv_l3_config vlv_l3_configs[] = { /* SLM URB ALL DC RO IS C T */ {{ 0, 64, 0, 0, 32, 0, 0, 0 }}, {{ 0, 80, 0, 0, 16, 0, 0, 0 }}, {{ 0, 80, 0, 8, 8, 0, 0, 0 }}, {{ 0, 64, 0, 16, 16, 0, 0, 0 }}, {{ 0, 60, 0, 4, 32, 0, 0, 0 }}, {{ 32, 32, 0, 16, 16, 0, 0, 0 }}, {{ 32, 40, 0, 8, 16, 0, 0, 0 }}, {{ 32, 40, 0, 16, 8, 0, 0, 0 }}, {{ 0 }} }; #endif #if GEN_GEN == 8 /** * BDW validated L3 configurations. \sa ivb_l3_configs. */ static const struct anv_l3_config bdw_l3_configs[] = { /* SLM URB ALL DC RO IS C T */ {{ 0, 48, 48, 0, 0, 0, 0, 0 }}, {{ 0, 48, 0, 16, 32, 0, 0, 0 }}, {{ 0, 32, 0, 16, 48, 0, 0, 0 }}, {{ 0, 32, 0, 0, 64, 0, 0, 0 }}, {{ 0, 32, 64, 0, 0, 0, 0, 0 }}, {{ 24, 16, 48, 0, 0, 0, 0, 0 }}, {{ 24, 16, 0, 16, 32, 0, 0, 0 }}, {{ 24, 16, 0, 32, 16, 0, 0, 0 }}, {{ 0 }} }; #endif #if GEN_GEN == 8 || GEN_GEN == 9 /** * CHV/SKL validated L3 configurations. \sa ivb_l3_configs. */ static const struct anv_l3_config chv_l3_configs[] = { /* SLM URB ALL DC RO IS C T */ {{ 0, 48, 48, 0, 0, 0, 0, 0 }}, {{ 0, 48, 0, 16, 32, 0, 0, 0 }}, {{ 0, 32, 0, 16, 48, 0, 0, 0 }}, {{ 0, 32, 0, 0, 64, 0, 0, 0 }}, {{ 0, 32, 64, 0, 0, 0, 0, 0 }}, {{ 32, 16, 48, 0, 0, 0, 0, 0 }}, {{ 32, 16, 0, 16, 32, 0, 0, 0 }}, {{ 32, 16, 0, 32, 16, 0, 0, 0 }}, {{ 0 }} }; #endif /** * Return a zero-terminated array of validated L3 configurations for the * specified device. */ static inline const struct anv_l3_config * get_l3_configs(const struct brw_device_info *devinfo) { assert(devinfo->gen == GEN_GEN); #if GEN_IS_HASWELL return ivb_l3_configs; #elif GEN_GEN == 7 return (devinfo->is_baytrail ? vlv_l3_configs : ivb_l3_configs); #elif GEN_GEN == 8 return (devinfo->is_cherryview ? chv_l3_configs : bdw_l3_configs); #elif GEN_GEN == 9 return chv_l3_configs; #else #error GEN not supported #endif } /** * Return the size of an L3 way in KB. */ static unsigned get_l3_way_size(const struct brw_device_info *devinfo) { if (devinfo->is_baytrail) return 2; else if (devinfo->is_cherryview || devinfo->gt == 1) return 4; else return 8 * devinfo->num_slices; } /** * L3 configuration represented as a vector of weights giving the desired * relative size of each partition. The scale is arbitrary, only the ratios * between weights will have an influence on the selection of the closest L3 * configuration. */ struct anv_l3_weights { float w[NUM_L3P]; }; /** * L1-normalize a vector of L3 partition weights. */ static struct anv_l3_weights norm_l3_weights(struct anv_l3_weights w) { float sz = 0; for (unsigned i = 0; i < NUM_L3P; i++) sz += w.w[i]; for (unsigned i = 0; i < NUM_L3P; i++) w.w[i] /= sz; return w; } /** * Get the relative partition weights of the specified L3 configuration. */ static struct anv_l3_weights get_config_l3_weights(const struct anv_l3_config *cfg) { if (cfg) { struct anv_l3_weights w; for (unsigned i = 0; i < NUM_L3P; i++) w.w[i] = cfg->n[i]; return norm_l3_weights(w); } else { const struct anv_l3_weights w = { { 0 } }; return w; } } /** * Distance between two L3 configurations represented as vectors of weights. * Usually just the L1 metric except when the two configurations are * considered incompatible in which case the distance will be infinite. Note * that the compatibility condition is asymmetric -- They will be considered * incompatible whenever the reference configuration \p w0 requires SLM, DC, * or URB but \p w1 doesn't provide it. */ static float diff_l3_weights(struct anv_l3_weights w0, struct anv_l3_weights w1) { if ((w0.w[L3P_SLM] && !w1.w[L3P_SLM]) || (w0.w[L3P_DC] && !w1.w[L3P_DC] && !w1.w[L3P_ALL]) || (w0.w[L3P_URB] && !w1.w[L3P_URB])) { return HUGE_VALF; } else { float dw = 0; for (unsigned i = 0; i < NUM_L3P; i++) dw += fabs(w0.w[i] - w1.w[i]); return dw; } } /** * Return the closest validated L3 configuration for the specified device and * weight vector. */ static const struct anv_l3_config * get_l3_config(const struct brw_device_info *devinfo, struct anv_l3_weights w0) { const struct anv_l3_config *const cfgs = get_l3_configs(devinfo); const struct anv_l3_config *cfg_best = NULL; float dw_best = HUGE_VALF; for (const struct anv_l3_config *cfg = cfgs; cfg->n[L3P_URB]; cfg++) { const float dw = diff_l3_weights(w0, get_config_l3_weights(cfg)); if (dw < dw_best) { cfg_best = cfg; dw_best = dw; } } return cfg_best; } /** * Return a reasonable default L3 configuration for the specified device based * on whether SLM and DC are required. In the non-SLM non-DC case the result * is intended to approximately resemble the hardware defaults. */ static struct anv_l3_weights get_default_l3_weights(const struct brw_device_info *devinfo, bool needs_dc, bool needs_slm) { struct anv_l3_weights w = {{ 0 }}; w.w[L3P_SLM] = needs_slm; w.w[L3P_URB] = 1.0; if (devinfo->gen >= 8) { w.w[L3P_ALL] = 1.0; } else { w.w[L3P_DC] = needs_dc ? 0.1 : 0; w.w[L3P_RO] = devinfo->is_baytrail ? 0.5 : 1.0; } return norm_l3_weights(w); } /** * Calculate the desired L3 partitioning based on the current state of the * pipeline. For now this simply returns the conservative defaults calculated * by get_default_l3_weights(), but we could probably do better by gathering * more statistics from the pipeline state (e.g. guess of expected URB usage * and bound surfaces), or by using feed-back from performance counters. */ static struct anv_l3_weights get_pipeline_state_l3_weights(const struct anv_pipeline *pipeline) { bool needs_dc = false, needs_slm = false; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { const struct brw_stage_prog_data *prog_data = pipeline->prog_data[i]; needs_dc |= pipeline->needs_data_cache; needs_slm |= prog_data && prog_data->total_shared; } return get_default_l3_weights(&pipeline->device->info, needs_dc, needs_slm); } #define emit_lri(batch, reg, imm) \ anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) { \ lri.RegisterOffset = __anv_reg_num(reg); \ lri.DataDWord = imm; \ } #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000 /** * Program the hardware to use the specified L3 configuration. */ static void setup_l3_config(struct anv_cmd_buffer *cmd_buffer/*, struct brw_context *brw*/, const struct anv_l3_config *cfg) { const bool has_slm = cfg->n[L3P_SLM]; /* According to the hardware docs, the L3 partitioning can only be changed * while the pipeline is completely drained and the caches are flushed, * which involves a first PIPE_CONTROL flush which stalls the pipeline... */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; } /* ...followed by a second pipelined PIPE_CONTROL that initiates * invalidation of the relevant caches. Note that because RO invalidation * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL * command is processed by the CS) we cannot combine it with the previous * stalling flush as the hardware documentation suggests, because that * would cause the CS to stall on previous rendering *after* RO * invalidation and wouldn't prevent the RO caches from being polluted by * concurrent rendering before the stall completes. This intentionally * doesn't implement the SKL+ hardware workaround suggesting to enable CS * stall on PIPE_CONTROLs with the texture cache invalidation bit set for * GPGPU workloads because the previous and subsequent PIPE_CONTROLs * already guarantee that there is no concurrent GPGPU kernel execution * (see SKL HSD 2132585). */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.InstructionCacheInvalidateEnable = true; pc.StateCacheInvalidationEnable = true; pc.PostSyncOperation = NoWrite; } /* Now send a third stalling flush to make sure that invalidation is * complete when the L3 configuration registers are modified. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; } #if GEN_GEN >= 8 assert(!cfg->n[L3P_IS] && !cfg->n[L3P_C] && !cfg->n[L3P_T]); uint32_t l3cr; anv_pack_struct(&l3cr, GENX(L3CNTLREG), .SLMEnable = has_slm, .URBAllocation = cfg->n[L3P_URB], .ROAllocation = cfg->n[L3P_RO], .DCAllocation = cfg->n[L3P_DC], .AllAllocation = cfg->n[L3P_ALL]); /* Set up the L3 partitioning. */ emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG), l3cr); #else const bool has_dc = cfg->n[L3P_DC] || cfg->n[L3P_ALL]; const bool has_is = cfg->n[L3P_IS] || cfg->n[L3P_RO] || cfg->n[L3P_ALL]; const bool has_c = cfg->n[L3P_C] || cfg->n[L3P_RO] || cfg->n[L3P_ALL]; const bool has_t = cfg->n[L3P_T] || cfg->n[L3P_RO] || cfg->n[L3P_ALL]; assert(!cfg->n[L3P_ALL]); /* When enabled SLM only uses a portion of the L3 on half of the banks, * the matching space on the remaining banks has to be allocated to a * client (URB for all validated configurations) set to the * lower-bandwidth 2-bank address hashing mode. */ const struct brw_device_info *devinfo = &cmd_buffer->device->info; const bool urb_low_bw = has_slm && !devinfo->is_baytrail; assert(!urb_low_bw || cfg->n[L3P_URB] == cfg->n[L3P_SLM]); /* Minimum number of ways that can be allocated to the URB. */ const unsigned n0_urb = (devinfo->is_baytrail ? 32 : 0); assert(cfg->n[L3P_URB] >= n0_urb); uint32_t l3sqcr1, l3cr2, l3cr3; anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1), .ConvertDC_UC = !has_dc, .ConvertIS_UC = !has_is, .ConvertC_UC = !has_c, .ConvertT_UC = !has_t); l3sqcr1 |= GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT : devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT : IVB_L3SQCREG1_SQGHPCI_DEFAULT; anv_pack_struct(&l3cr2, GENX(L3CNTLREG2), .SLMEnable = has_slm, .URBLowBandwidth = urb_low_bw, .URBAllocation = cfg->n[L3P_URB], #if !GEN_IS_HASWELL .ALLAllocation = cfg->n[L3P_ALL], #endif .ROAllocation = cfg->n[L3P_RO], .DCAllocation = cfg->n[L3P_DC]); anv_pack_struct(&l3cr3, GENX(L3CNTLREG3), .ISAllocation = cfg->n[L3P_IS], .ISLowBandwidth = 0, .CAllocation = cfg->n[L3P_C], .CLowBandwidth = 0, .TAllocation = cfg->n[L3P_T], .TLowBandwidth = 0); /* Set up the L3 partitioning. */ emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1), l3sqcr1); emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2), l3cr2); emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3), l3cr3); #if GEN_IS_HASWELL if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) { /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep * them disabled to avoid crashing the system hard. */ uint32_t scratch1, chicken3; anv_pack_struct(&scratch1, GENX(SCRATCH1), .L3AtomicDisable = !has_dc); anv_pack_struct(&chicken3, GENX(CHICKEN3), .L3AtomicDisable = !has_dc); emit_lri(&cmd_buffer->batch, GENX(SCRATCH1), scratch1); emit_lri(&cmd_buffer->batch, GENX(CHICKEN3), chicken3); } #endif #endif } /** * Return the unit brw_context::urb::size is expressed in, in KB. \sa * brw_device_info::urb::size. */ static unsigned get_urb_size_scale(const struct brw_device_info *devinfo) { return (devinfo->gen >= 8 ? devinfo->num_slices : 1); } void genX(setup_pipeline_l3_config)(struct anv_pipeline *pipeline) { const struct anv_l3_weights w = get_pipeline_state_l3_weights(pipeline); const struct brw_device_info *devinfo = &pipeline->device->info; const struct anv_l3_config *const cfg = get_l3_config(devinfo, w); pipeline->urb.l3_config = cfg; unsigned sz = cfg->n[L3P_URB] * get_l3_way_size(devinfo); #if GEN_GEN == 9 /* From the SKL "L3 Allocation and Programming" documentation: * * "URB is limited to 1008KB due to programming restrictions. This is not * a restriction of the L3 implementation, but of the FF and other clients. * Therefore, in a GT4 implementation it is possible for the programmed * allocation of the L3 data array to provide 3*384KB=1152KB for URB, but * only 1008KB of this will be used." */ sz = MIN2(1008, sz); #endif pipeline->urb.total_size = sz / get_urb_size_scale(devinfo); } /** * Print out the specified L3 configuration. */ static void dump_l3_config(const struct anv_l3_config *cfg) { fprintf(stderr, "SLM=%d URB=%d ALL=%d DC=%d RO=%d IS=%d C=%d T=%d\n", cfg->n[L3P_SLM], cfg->n[L3P_URB], cfg->n[L3P_ALL], cfg->n[L3P_DC], cfg->n[L3P_RO], cfg->n[L3P_IS], cfg->n[L3P_C], cfg->n[L3P_T]); } void genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer, const struct anv_pipeline *pipeline) { struct anv_cmd_state *state = &cmd_buffer->state; const struct anv_l3_config *const cfg = pipeline->urb.l3_config; assert(cfg); if (cfg != state->current_l3_config) { setup_l3_config(cmd_buffer, cfg); state->current_l3_config = cfg; if (unlikely(INTEL_DEBUG & DEBUG_L3)) { fprintf(stderr, "L3 config transition: "); dump_l3_config(cfg); } } }