/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "anv_private.h" #include "vk_format_info.h" #include "vk_util.h" #include "common/gen_l3_config.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" static void emit_lrm(struct anv_batch *batch, uint32_t reg, struct anv_address addr) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = reg; lrm.MemoryAddress = addr; } } static void emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = reg; lri.DataDWord = imm; } } #if GEN_IS_HASWELL || GEN_GEN >= 8 static void emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) { lrr.SourceRegisterAddress = src; lrr.DestinationRegisterAddress = dst; } } #endif void genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; /* If we are emitting a new state base address we probably need to re-emit * binding tables. */ cmd_buffer->state.descriptors_dirty |= ~0; /* Emit a render target cache flush. * * This isn't documented anywhere in the PRM. However, it seems to be * necessary prior to changing the surface state base adress. Without * this, we get GPU hangs when using multi-level command buffers which * clear depth, reset state base address, and then go render stuff. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.RenderTargetCacheFlushEnable = true; pc.CommandStreamerStallEnable = true; } anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) { sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 }; sba.GeneralStateMemoryObjectControlState = GENX(MOCS); sba.GeneralStateBaseAddressModifyEnable = true; sba.SurfaceStateBaseAddress = anv_cmd_buffer_surface_base_address(cmd_buffer); sba.SurfaceStateMemoryObjectControlState = GENX(MOCS); sba.SurfaceStateBaseAddressModifyEnable = true; sba.DynamicStateBaseAddress = (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 }; sba.DynamicStateMemoryObjectControlState = GENX(MOCS); sba.DynamicStateBaseAddressModifyEnable = true; sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 }; sba.IndirectObjectMemoryObjectControlState = GENX(MOCS); sba.IndirectObjectBaseAddressModifyEnable = true; sba.InstructionBaseAddress = (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 }; sba.InstructionMemoryObjectControlState = GENX(MOCS); sba.InstructionBaseAddressModifyEnable = true; # if (GEN_GEN >= 8) /* Broadwell requires that we specify a buffer size for a bunch of * these fields. However, since we will be growing the BO's live, we * just set them all to the maximum. */ sba.GeneralStateBufferSize = 0xfffff; sba.GeneralStateBufferSizeModifyEnable = true; sba.DynamicStateBufferSize = 0xfffff; sba.DynamicStateBufferSizeModifyEnable = true; sba.IndirectObjectBufferSize = 0xfffff; sba.IndirectObjectBufferSizeModifyEnable = true; sba.InstructionBufferSize = 0xfffff; sba.InstructionBuffersizeModifyEnable = true; # endif # if (GEN_GEN >= 9) sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { NULL, 0 }; sba.BindlessSurfaceStateMemoryObjectControlState = GENX(MOCS); sba.BindlessSurfaceStateBaseAddressModifyEnable = true; sba.BindlessSurfaceStateSize = 0; # endif # if (GEN_GEN >= 10) sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 }; sba.BindlessSamplerStateMemoryObjectControlState = GENX(MOCS); sba.BindlessSamplerStateBaseAddressModifyEnable = true; sba.BindlessSamplerStateBufferSize = 0; # endif } /* After re-setting the surface state base address, we have to do some * cache flusing so that the sampler engine will pick up the new * SURFACE_STATE objects and binding tables. From the Broadwell PRM, * Shared Function > 3D Sampler > State > State Caching (page 96): * * Coherency with system memory in the state cache, like the texture * cache is handled partially by software. It is expected that the * command stream or shader will issue Cache Flush operation or * Cache_Flush sampler message to ensure that the L1 cache remains * coherent with system memory. * * [...] * * Whenever the value of the Dynamic_State_Base_Addr, * Surface_State_Base_Addr are altered, the L1 state cache must be * invalidated to ensure the new surface or sampler state is fetched * from system memory. * * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit * which, according the PIPE_CONTROL instruction documentation in the * Broadwell PRM: * * Setting this bit is independent of any other bit in this packet. * This bit controls the invalidation of the L1 and L2 state caches * at the top of the pipe i.e. at the parsing time. * * Unfortunately, experimentation seems to indicate that state cache * invalidation through a PIPE_CONTROL does nothing whatsoever in * regards to surface state and binding tables. In stead, it seems that * invalidating the texture cache is what is actually needed. * * XXX: As far as we have been able to determine through * experimentation, shows that flush the texture cache appears to be * sufficient. The theory here is that all of the sampling/rendering * units cache the binding table in the texture cache. However, we have * yet to be able to actually confirm this. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.StateCacheInvalidationEnable = true; } } static void add_surface_reloc(struct anv_cmd_buffer *cmd_buffer, struct anv_state state, struct anv_address addr) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; VkResult result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc, state.offset + isl_dev->ss.addr_offset, addr.bo, addr.offset); if (result != VK_SUCCESS) anv_batch_set_error(&cmd_buffer->batch, result); } static void add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer, struct anv_surface_state state) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; assert(!anv_address_is_null(state.address)); add_surface_reloc(cmd_buffer, state.state, state.address); if (!anv_address_is_null(state.aux_address)) { VkResult result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc, state.state.offset + isl_dev->ss.aux_addr_offset, state.aux_address.bo, state.aux_address.offset); if (result != VK_SUCCESS) anv_batch_set_error(&cmd_buffer->batch, result); } if (!anv_address_is_null(state.clear_address)) { VkResult result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc, state.state.offset + isl_dev->ss.clear_color_state_offset, state.clear_address.bo, state.clear_address.offset); if (result != VK_SUCCESS) anv_batch_set_error(&cmd_buffer->batch, result); } } static void color_attachment_compute_aux_usage(struct anv_device * device, struct anv_cmd_state * cmd_state, uint32_t att, VkRect2D render_area, union isl_color_value *fast_clear_color) { struct anv_attachment_state *att_state = &cmd_state->attachments[att]; struct anv_image_view *iview = cmd_state->framebuffer->attachments[att]; assert(iview->n_planes == 1); if (iview->planes[0].isl.base_array_layer >= anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT, iview->planes[0].isl.base_level)) { /* There is no aux buffer which corresponds to the level and layer(s) * being accessed. */ att_state->aux_usage = ISL_AUX_USAGE_NONE; att_state->input_aux_usage = ISL_AUX_USAGE_NONE; att_state->fast_clear = false; return; } att_state->aux_usage = anv_layout_to_aux_usage(&device->info, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); /* If we don't have aux, then we should have returned early in the layer * check above. If we got here, we must have something. */ assert(att_state->aux_usage != ISL_AUX_USAGE_NONE); if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E || att_state->aux_usage == ISL_AUX_USAGE_MCS) { att_state->input_aux_usage = att_state->aux_usage; } else { /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode: * * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D * setting is only allowed if Surface Format supported for Fast * Clear. In addition, if the surface is bound to the sampling * engine, Surface Format must be supported for Render Target * Compression for surfaces bound to the sampling engine." * * In other words, we can only sample from a fast-cleared image if it * also supports color compression. */ if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) { att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D; /* While fast-clear resolves and partial resolves are fairly cheap in the * case where you render to most of the pixels, full resolves are not * because they potentially involve reading and writing the entire * framebuffer. If we can't texture with CCS_E, we should leave it off and * limit ourselves to fast clears. */ if (cmd_state->pass->attachments[att].first_subpass_layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) { anv_perf_warn(device->instance, iview->image, "Not temporarily enabling CCS_E."); } } else { att_state->input_aux_usage = ISL_AUX_USAGE_NONE; } } assert(iview->image->planes[0].aux_surface.isl.usage & (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT)); union isl_color_value clear_color = {}; anv_clear_color_from_att_state(&clear_color, att_state, iview); att_state->clear_color_is_zero_one = isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format); att_state->clear_color_is_zero = isl_color_value_is_zero(clear_color, iview->planes[0].isl.format); if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) { /* Start by getting the fast clear type. We use the first subpass * layout here because we don't want to fast-clear if the first subpass * to use the attachment can't handle fast-clears. */ enum anv_fast_clear_type fast_clear_type = anv_layout_to_fast_clear_type(&device->info, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, cmd_state->pass->attachments[att].first_subpass_layout); switch (fast_clear_type) { case ANV_FAST_CLEAR_NONE: att_state->fast_clear = false; break; case ANV_FAST_CLEAR_DEFAULT_VALUE: att_state->fast_clear = att_state->clear_color_is_zero; break; case ANV_FAST_CLEAR_ANY: att_state->fast_clear = true; break; } /* Potentially, we could do partial fast-clears but doing so has crazy * alignment restrictions. It's easier to just restrict to full size * fast clears for now. */ if (render_area.offset.x != 0 || render_area.offset.y != 0 || render_area.extent.width != iview->extent.width || render_area.extent.height != iview->extent.height) att_state->fast_clear = false; /* On Broadwell and earlier, we can only handle 0/1 clear colors */ if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one) att_state->fast_clear = false; /* We only allow fast clears to the first slice of an image (level 0, * layer 0) and only for the entire slice. This guarantees us that, at * any given time, there is only one clear color on any given image at * any given time. At the time of our testing (Jan 17, 2018), there * were no known applications which would benefit from fast-clearing * more than just the first slice. */ if (att_state->fast_clear && (iview->planes[0].isl.base_level > 0 || iview->planes[0].isl.base_array_layer > 0)) { anv_perf_warn(device->instance, iview->image, "Rendering with multi-lod or multi-layer framebuffer " "with LOAD_OP_LOAD and baseMipLevel > 0 or " "baseArrayLayer > 0. Not fast clearing."); att_state->fast_clear = false; } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) { anv_perf_warn(device->instance, iview->image, "Rendering to a multi-layer framebuffer with " "LOAD_OP_CLEAR. Only fast-clearing the first slice"); } if (att_state->fast_clear) *fast_clear_color = clear_color; } else { att_state->fast_clear = false; } } static void depth_stencil_attachment_compute_aux_usage(struct anv_device *device, struct anv_cmd_state *cmd_state, uint32_t att, VkRect2D render_area) { struct anv_render_pass_attachment *pass_att = &cmd_state->pass->attachments[att]; struct anv_attachment_state *att_state = &cmd_state->attachments[att]; struct anv_image_view *iview = cmd_state->framebuffer->attachments[att]; /* These will be initialized after the first subpass transition. */ att_state->aux_usage = ISL_AUX_USAGE_NONE; att_state->input_aux_usage = ISL_AUX_USAGE_NONE; if (GEN_GEN == 7) { /* We don't do any HiZ or depth fast-clears on gen7 yet */ att_state->fast_clear = false; return; } if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) { /* If we're just clearing stencil, we can always HiZ clear */ att_state->fast_clear = true; return; } /* Default to false for now */ att_state->fast_clear = false; /* We must have depth in order to have HiZ */ if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) return; const enum isl_aux_usage first_subpass_aux_usage = anv_layout_to_aux_usage(&device->info, iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, pass_att->first_subpass_layout); if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ) return; if (!blorp_can_hiz_clear_depth(GEN_GEN, iview->planes[0].isl.format, iview->image->samples, render_area.offset.x, render_area.offset.y, render_area.offset.x + render_area.extent.width, render_area.offset.y + render_area.extent.height)) return; if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL) return; if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) { /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8 * only supports returning 0.0f. Gens prior to gen8 do not support this * feature at all. */ return; } /* If we got here, then we can fast clear */ att_state->fast_clear = true; } static bool need_input_attachment_state(const struct anv_render_pass_attachment *att) { if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) return false; /* We only allocate input attachment states for color surfaces. Compression * is not yet enabled for depth textures and stencil doesn't allow * compression so we can just use the texture surface state from the view. */ return vk_format_is_color(att->format); } /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless * the initial layout is undefined, the HiZ buffer and depth buffer will * represent the same data at the end of this operation. */ static void transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageLayout initial_layout, VkImageLayout final_layout) { const bool hiz_enabled = ISL_AUX_USAGE_HIZ == anv_layout_to_aux_usage(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout); const bool enable_hiz = ISL_AUX_USAGE_HIZ == anv_layout_to_aux_usage(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_DEPTH_BIT, final_layout); enum isl_aux_op hiz_op; if (hiz_enabled && !enable_hiz) { hiz_op = ISL_AUX_OP_FULL_RESOLVE; } else if (!hiz_enabled && enable_hiz) { hiz_op = ISL_AUX_OP_AMBIGUATE; } else { assert(hiz_enabled == enable_hiz); /* If the same buffer will be used, no resolves are necessary. */ hiz_op = ISL_AUX_OP_NONE; } if (hiz_op != ISL_AUX_OP_NONE) anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, 0, 0, 1, hiz_op); } #define MI_PREDICATE_SRC0 0x2400 #define MI_PREDICATE_SRC1 0x2408 static void set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t base_layer, uint32_t layer_count, bool compressed) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); /* We only have compression tracking for CCS_E */ if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E) return; for (uint32_t a = 0; a < layer_count; a++) { uint32_t layer = base_layer + a; anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device, image, aspect, level, layer); sdi.ImmediateData = compressed ? UINT32_MAX : 0; } } } static void set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, enum anv_fast_clear_type fast_clear) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect); sdi.ImmediateData = fast_clear; } /* Whenever we have fast-clear, we consider that slice to be compressed. * This makes building predicates much easier. */ if (fast_clear != ANV_FAST_CLEAR_NONE) set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true); } #if GEN_IS_HASWELL || GEN_GEN >= 8 static inline uint32_t mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2) { struct GENX(MI_MATH_ALU_INSTRUCTION) instr = { .ALUOpcode = opcode, .Operand1 = operand1, .Operand2 = operand2, }; uint32_t dw; GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr); return dw; } #endif #define CS_GPR(n) (0x2600 + (n) * 8) /* This is only really practical on haswell and above because it requires * MI math in order to get it correct. */ #if GEN_GEN >= 8 || GEN_IS_HASWELL static void anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { struct anv_address fast_clear_type_addr = anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect); /* Name some registers */ const int image_fc_reg = MI_ALU_REG0; const int fc_imm_reg = MI_ALU_REG1; const int pred_reg = MI_ALU_REG2; uint32_t *dw; if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) { /* In this case, we're doing a full resolve which means we want the * resolve to happen if any compression (including fast-clears) is * present. * * In order to simplify the logic a bit, we make the assumption that, * if the first slice has been fast-cleared, it is also marked as * compressed. See also set_image_fast_clear_state. */ struct anv_address compression_state_addr = anv_image_get_compression_state_addr(cmd_buffer->device, image, aspect, level, array_layer); anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = MI_PREDICATE_SRC0; lrm.MemoryAddress = compression_state_addr; } anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = compression_state_addr; sdi.ImmediateData = 0; } if (level == 0 && array_layer == 0) { /* If the predicate is true, we want to write 0 to the fast clear type * and, if it's false, leave it alone. We can do this by writing * * clear_type = clear_type & ~predicate; */ anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = CS_GPR(image_fc_reg); lrm.MemoryAddress = fast_clear_type_addr; } anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) { lrr.DestinationRegisterAddress = CS_GPR(pred_reg); lrr.SourceRegisterAddress = MI_PREDICATE_SRC0; } dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH)); dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg); dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg); dw[3] = mi_alu(MI_ALU_AND, 0, 0); dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU); anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) { srm.MemoryAddress = fast_clear_type_addr; srm.RegisterAddress = CS_GPR(image_fc_reg); } } } else if (level == 0 && array_layer == 0) { /* In this case, we are doing a partial resolve to get rid of fast-clear * colors. We don't care about the compression state but we do care * about how much fast clear is allowed by the final layout. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); assert(fast_clear_supported < ANV_FAST_CLEAR_ANY); anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = CS_GPR(image_fc_reg); lrm.MemoryAddress = fast_clear_type_addr; } emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0); emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported); emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0); /* We need to compute (fast_clear_supported < image->fast_clear). * We do this by subtracting and storing the carry bit. */ dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH)); dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg); dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg); dw[3] = mi_alu(MI_ALU_SUB, 0, 0); dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF); /* Store the predicate */ emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg)); /* If the predicate is true, we want to write 0 to the fast clear type * and, if it's false, leave it alone. We can do this by writing * * clear_type = clear_type & ~predicate; */ dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH)); dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg); dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg); dw[3] = mi_alu(MI_ALU_AND, 0, 0); dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU); anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) { srm.RegisterAddress = CS_GPR(image_fc_reg); srm.MemoryAddress = fast_clear_type_addr; } } else { /* In this case, we're trying to do a partial resolve on a slice that * doesn't have clear color. There's nothing to do. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); return; } /* We use the first half of src0 for the actual predicate. Set the second * half of src0 and all of src1 to 0 as the predicate operation will be * doing an implicit src0 != src1. */ emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0); emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0); emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */ #if GEN_GEN <= 8 static void anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { struct anv_address fast_clear_type_addr = anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect); /* This only works for partial resolves and only when the clear color is * all or nothing. On the upside, this emits less command streamer code * and works on Ivybridge and Bay Trail. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); assert(fast_clear_supported != ANV_FAST_CLEAR_ANY); /* We don't support fast clears on anything other than the first slice. */ if (level > 0 || array_layer > 0) return; /* On gen8, we don't have a concept of default clear colors because we * can't sample from CCS surfaces. It's enough to just load the fast clear * state into the predicate register. */ anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = MI_PREDICATE_SRC0; lrm.MemoryAddress = fast_clear_type_addr; } anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = fast_clear_type_addr; sdi.ImmediateData = 0; } /* We use the first half of src0 for the actual predicate. Set the second * half of src0 and all of src1 to 0 as the predicate operation will be * doing an implicit src0 != src1. */ emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0); emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0); emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } #endif /* GEN_GEN <= 8 */ static void anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); #if GEN_GEN >= 9 anv_cmd_compute_resolve_predicate(cmd_buffer, image, aspect, level, array_layer, resolve_op, fast_clear_supported); #else /* GEN_GEN <= 8 */ anv_cmd_simple_resolve_predicate(cmd_buffer, image, aspect, level, array_layer, resolve_op, fast_clear_supported); #endif /* CCS_D only supports full resolves and BLORP will assert on us if we try * to do a partial resolve on a CCS_D surface. */ if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE && image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) resolve_op = ISL_AUX_OP_FULL_RESOLVE; anv_image_ccs_op(cmd_buffer, image, aspect, level, array_layer, 1, resolve_op, NULL, true); } static void anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); #if GEN_GEN >= 8 || GEN_IS_HASWELL anv_cmd_compute_resolve_predicate(cmd_buffer, image, aspect, 0, array_layer, resolve_op, fast_clear_supported); anv_image_mcs_op(cmd_buffer, image, aspect, array_layer, 1, resolve_op, NULL, true); #else unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail"); #endif } void genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, enum isl_aux_usage aux_usage, uint32_t level, uint32_t base_layer, uint32_t layer_count) { /* The aspect must be exactly one of the image aspects. */ assert(util_bitcount(aspect) == 1 && (aspect & image->aspects)); /* The only compression types with more than just fast-clears are MCS, * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually * track the current fast-clear and compression state. This leaves us * with just MCS and CCS_E. */ if (aux_usage != ISL_AUX_USAGE_CCS_E && aux_usage != ISL_AUX_USAGE_MCS) return; set_image_compressed_bit(cmd_buffer, image, aspect, level, base_layer, layer_count, true); } static void init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect) { assert(cmd_buffer && image); assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); set_image_fast_clear_state(cmd_buffer, image, aspect, ANV_FAST_CLEAR_NONE); /* The fast clear value dword(s) will be copied into a surface state object. * Ensure that the restrictions of the fields in the dword(s) are followed. * * CCS buffers on SKL+ can have any value set for the clear colors. */ if (image->samples == 1 && GEN_GEN >= 9) return; /* Other combinations of auxiliary buffers and platforms require specific * values in the clear value dword(s). */ struct anv_address addr = anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect); if (GEN_GEN >= 9) { for (unsigned i = 0; i < 4; i++) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = addr; sdi.Address.offset += i * 4; /* MCS buffers on SKL+ can only have 1/0 clear colors. */ assert(image->samples > 1); sdi.ImmediateData = 0; } } } else { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = addr; if (GEN_GEN >= 8 || GEN_IS_HASWELL) { /* Pre-SKL, the dword containing the clear values also contains * other fields, so we need to initialize those fields to match the * values that would be in a color attachment. */ sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 | ISL_CHANNEL_SELECT_GREEN << 22 | ISL_CHANNEL_SELECT_BLUE << 19 | ISL_CHANNEL_SELECT_ALPHA << 16; } else if (GEN_GEN == 7) { /* On IVB, the dword containing the clear values also contains * other fields that must be zero or can be zero. */ sdi.ImmediateData = 0; } } } } /* Copy the fast-clear value dword(s) between a surface state object and an * image's fast clear state buffer. */ static void genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer, struct anv_state surface_state, const struct anv_image *image, VkImageAspectFlagBits aspect, bool copy_from_surface_state) { assert(cmd_buffer && image); assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); struct anv_address ss_clear_addr = { .bo = &cmd_buffer->device->surface_state_pool.block_pool.bo, .offset = surface_state.offset + cmd_buffer->device->isl_dev.ss.clear_value_offset, }; const struct anv_address entry_addr = anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect); unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size; if (copy_from_surface_state) { genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr, ss_clear_addr, copy_size); } else { genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_clear_addr, entry_addr, copy_size); /* Updating a surface state object may require that the state cache be * invalidated. From the SKL PRM, Shared Functions -> State -> State * Caching: * * Whenever the RENDER_SURFACE_STATE object in memory pointed to by * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is * modified [...], the L1 state cache must be invalidated to ensure * the new surface or sampler state is fetched from system memory. * * In testing, SKL doesn't actually seem to need this, but HSW does. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_STATE_CACHE_INVALIDATE_BIT; } } /** * @brief Transitions a color buffer from one layout to another. * * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for * more information. * * @param level_count VK_REMAINING_MIP_LEVELS isn't supported. * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images, * this represents the maximum layers to transition at each * specified miplevel. */ static void transition_color_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, const uint32_t base_level, uint32_t level_count, uint32_t base_layer, uint32_t layer_count, VkImageLayout initial_layout, VkImageLayout final_layout) { const struct gen_device_info *devinfo = &cmd_buffer->device->info; /* Validate the inputs. */ assert(cmd_buffer); assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); /* These values aren't supported for simplicity's sake. */ assert(level_count != VK_REMAINING_MIP_LEVELS && layer_count != VK_REMAINING_ARRAY_LAYERS); /* Ensure the subresource range is valid. */ uint64_t last_level_num = base_level + level_count; const uint32_t max_depth = anv_minify(image->extent.depth, base_level); UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth); assert((uint64_t)base_layer + layer_count <= image_layers); assert(last_level_num <= image->levels); /* The spec disallows these final layouts. */ assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED && final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED); /* No work is necessary if the layout stays the same or if this subresource * range lacks auxiliary data. */ if (initial_layout == final_layout) return; uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); if (image->planes[plane].shadow_surface.isl.size_B > 0 && final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { /* This surface is a linear compressed image with a tiled shadow surface * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so * we need to ensure the shadow copy is up-to-date. */ assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR); assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR); assert(isl_format_is_compressed(image->planes[plane].surface.isl.format)); assert(plane == 0); anv_image_copy_to_shadow(cmd_buffer, image, base_level, level_count, base_layer, layer_count); } if (base_layer >= anv_image_aux_layers(image, aspect, base_level)) return; assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) { /* A subresource in the undefined layout may have been aliased and * populated with any arrangement of bits. Therefore, we must initialize * the related aux buffer and clear buffer entry with desirable values. * An initial layout of PREINITIALIZED is the same as UNDEFINED for * images with VK_IMAGE_TILING_OPTIMAL. * * Initialize the relevant clear buffer entries. */ if (base_level == 0 && base_layer == 0) init_fast_clear_color(cmd_buffer, image, aspect); /* Initialize the aux buffers to enable correct rendering. In order to * ensure that things such as storage images work correctly, aux buffers * need to be initialized to valid data. * * Having an aux buffer with invalid data is a problem for two reasons: * * 1) Having an invalid value in the buffer can confuse the hardware. * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is * invalid and leads to the hardware doing strange things. It * doesn't hang as far as we can tell but rendering corruption can * occur. * * 2) If this transition is into the GENERAL layout and we then use the * image as a storage image, then we must have the aux buffer in the * pass-through state so that, if we then go to texture from the * image, we get the results of our storage image writes and not the * fast clear color or other random data. * * For CCS both of the problems above are real demonstrable issues. In * that case, the only thing we can do is to perform an ambiguate to * transition the aux surface into the pass-through state. * * For MCS, (2) is never an issue because we don't support multisampled * storage images. In theory, issue (1) is a problem with MCS but we've * never seen it in the wild. For 4x and 16x, all bit patters could, in * theory, be interpreted as something but we don't know that all bit * patterns are actually valid. For 2x and 8x, you could easily end up * with the MCS referring to an invalid plane because not all bits of * the MCS value are actually used. Even though we've never seen issues * in the wild, it's best to play it safe and initialize the MCS. We * can use a fast-clear for MCS because we only ever touch from render * and texture (no image load store). */ if (image->samples == 1) { for (uint32_t l = 0; l < level_count; l++) { const uint32_t level = base_level + l; uint32_t aux_layers = anv_image_aux_layers(image, aspect, level); if (base_layer >= aux_layers) break; /* We will only get fewer layers as level increases */ uint32_t level_layer_count = MIN2(layer_count, aux_layers - base_layer); anv_image_ccs_op(cmd_buffer, image, aspect, level, base_layer, level_layer_count, ISL_AUX_OP_AMBIGUATE, NULL, false); if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { set_image_compressed_bit(cmd_buffer, image, aspect, level, base_layer, level_layer_count, false); } } } else { if (image->samples == 4 || image->samples == 16) { anv_perf_warn(cmd_buffer->device->instance, image, "Doing a potentially unnecessary fast-clear to " "define an MCS buffer."); } assert(base_level == 0 && level_count == 1); anv_image_mcs_op(cmd_buffer, image, aspect, base_layer, layer_count, ISL_AUX_OP_FAST_CLEAR, NULL, false); } return; } const enum isl_aux_usage initial_aux_usage = anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout); const enum isl_aux_usage final_aux_usage = anv_layout_to_aux_usage(devinfo, image, aspect, final_layout); /* The current code assumes that there is no mixing of CCS_E and CCS_D. * We can handle transitions between CCS_D/E to and from NONE. What we * don't yet handle is switching between CCS_E and CCS_D within a given * image. Doing so in a performant way requires more detailed aux state * tracking such as what is done in i965. For now, just assume that we * only have one type of compression. */ assert(initial_aux_usage == ISL_AUX_USAGE_NONE || final_aux_usage == ISL_AUX_USAGE_NONE || initial_aux_usage == final_aux_usage); /* If initial aux usage is NONE, there is nothing to resolve */ if (initial_aux_usage == ISL_AUX_USAGE_NONE) return; enum isl_aux_op resolve_op = ISL_AUX_OP_NONE; /* If the initial layout supports more fast clear than the final layout * then we need at least a partial resolve. */ const enum anv_fast_clear_type initial_fast_clear = anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout); const enum anv_fast_clear_type final_fast_clear = anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout); if (final_fast_clear < initial_fast_clear) resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE; if (initial_aux_usage == ISL_AUX_USAGE_CCS_E && final_aux_usage != ISL_AUX_USAGE_CCS_E) resolve_op = ISL_AUX_OP_FULL_RESOLVE; if (resolve_op == ISL_AUX_OP_NONE) return; /* Perform a resolve to synchronize data between the main and aux buffer. * Before we begin, we must satisfy the cache flushing requirement specified * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)": * * Any transition from any value in {Clear, Render, Resolve} to a * different value in {Clear, Render, Resolve} requires end of pipe * synchronization. * * We perform a flush of the write cache before and after the clear and * resolve operations to meet this requirement. * * Unlike other drawing, fast clear operations are not properly * synchronized. The first PIPE_CONTROL here likely ensures that the * contents of the previous render or clear hit the render target before we * resolve and the second likely ensures that the resolve is complete before * we do any more rendering or clearing. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT; for (uint32_t l = 0; l < level_count; l++) { uint32_t level = base_level + l; uint32_t aux_layers = anv_image_aux_layers(image, aspect, level); if (base_layer >= aux_layers) break; /* We will only get fewer layers as level increases */ uint32_t level_layer_count = MIN2(layer_count, aux_layers - base_layer); for (uint32_t a = 0; a < level_layer_count; a++) { uint32_t array_layer = base_layer + a; if (image->samples == 1) { anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect, level, array_layer, resolve_op, final_fast_clear); } else { anv_cmd_predicated_mcs_resolve(cmd_buffer, image, aspect, array_layer, resolve_op, final_fast_clear); } } } cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT; } /** * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass. */ static VkResult genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer, struct anv_render_pass *pass, const VkRenderPassBeginInfo *begin) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; struct anv_cmd_state *state = &cmd_buffer->state; vk_free(&cmd_buffer->pool->alloc, state->attachments); if (pass->attachment_count > 0) { state->attachments = vk_alloc(&cmd_buffer->pool->alloc, pass->attachment_count * sizeof(state->attachments[0]), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (state->attachments == NULL) { /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */ return anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY); } } else { state->attachments = NULL; } /* Reserve one for the NULL state. */ unsigned num_states = 1; for (uint32_t i = 0; i < pass->attachment_count; ++i) { if (vk_format_is_color(pass->attachments[i].format)) num_states++; if (need_input_attachment_state(&pass->attachments[i])) num_states++; } const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align); state->render_pass_states = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, num_states * ss_stride, isl_dev->ss.align); struct anv_state next_state = state->render_pass_states; next_state.alloc_size = isl_dev->ss.size; state->null_surface_state = next_state; next_state.offset += ss_stride; next_state.map += ss_stride; for (uint32_t i = 0; i < pass->attachment_count; ++i) { if (vk_format_is_color(pass->attachments[i].format)) { state->attachments[i].color.state = next_state; next_state.offset += ss_stride; next_state.map += ss_stride; } if (need_input_attachment_state(&pass->attachments[i])) { state->attachments[i].input.state = next_state; next_state.offset += ss_stride; next_state.map += ss_stride; } } assert(next_state.offset == state->render_pass_states.offset + state->render_pass_states.alloc_size); if (begin) { ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer); assert(pass->attachment_count == framebuffer->attachment_count); isl_null_fill_state(isl_dev, state->null_surface_state.map, isl_extent3d(framebuffer->width, framebuffer->height, framebuffer->layers)); for (uint32_t i = 0; i < pass->attachment_count; ++i) { struct anv_render_pass_attachment *att = &pass->attachments[i]; VkImageAspectFlags att_aspects = vk_format_aspects(att->format); VkImageAspectFlags clear_aspects = 0; VkImageAspectFlags load_aspects = 0; if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { /* color attachment */ if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT; } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT; } } else { /* depthstencil attachment */ if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; } } if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; } } } state->attachments[i].current_layout = att->initial_layout; state->attachments[i].pending_clear_aspects = clear_aspects; state->attachments[i].pending_load_aspects = load_aspects; if (clear_aspects) state->attachments[i].clear_value = begin->pClearValues[i]; struct anv_image_view *iview = framebuffer->attachments[i]; anv_assert(iview->vk_format == att->format); const uint32_t num_layers = iview->planes[0].isl.array_len; state->attachments[i].pending_clear_views = (1 << num_layers) - 1; union isl_color_value clear_color = { .u32 = { 0, } }; if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { anv_assert(iview->n_planes == 1); assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT); color_attachment_compute_aux_usage(cmd_buffer->device, state, i, begin->renderArea, &clear_color); anv_image_fill_surface_state(cmd_buffer->device, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, &iview->planes[0].isl, ISL_SURF_USAGE_RENDER_TARGET_BIT, state->attachments[i].aux_usage, &clear_color, 0, &state->attachments[i].color, NULL); add_surface_state_relocs(cmd_buffer, state->attachments[i].color); } else { depth_stencil_attachment_compute_aux_usage(cmd_buffer->device, state, i, begin->renderArea); } if (need_input_attachment_state(&pass->attachments[i])) { anv_image_fill_surface_state(cmd_buffer->device, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, &iview->planes[0].isl, ISL_SURF_USAGE_TEXTURE_BIT, state->attachments[i].input_aux_usage, &clear_color, 0, &state->attachments[i].input, NULL); add_surface_state_relocs(cmd_buffer, state->attachments[i].input); } } } return VK_SUCCESS; } VkResult genX(BeginCommandBuffer)( VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo* pBeginInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); /* If this is the first vkBeginCommandBuffer, we must *initialize* the * command buffer's state. Otherwise, we must *reset* its state. In both * cases we reset it. * * From the Vulkan 1.0 spec: * * If a command buffer is in the executable state and the command buffer * was allocated from a command pool with the * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then * vkBeginCommandBuffer implicitly resets the command buffer, behaving * as if vkResetCommandBuffer had been called with * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts * the command buffer in the recording state. */ anv_cmd_buffer_reset(cmd_buffer); cmd_buffer->usage_flags = pBeginInfo->flags; assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY || !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)); genX(cmd_buffer_emit_state_base_address)(cmd_buffer); /* We sometimes store vertex data in the dynamic state buffer for blorp * operations and our dynamic state stream may re-use data from previous * command buffers. In order to prevent stale cache data, we flush the VF * cache. We could do this on every blorp call but that's not really * needed as all of the data will get written by the CPU prior to the GPU * executing anything. The chances are fairly high that they will use * blorp at least once per primary command buffer so it shouldn't be * wasted. */ if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT; /* We send an "Indirect State Pointers Disable" packet at * EndCommandBuffer, so all push contant packets are ignored during a * context restore. Documentation says after that command, we need to * emit push constants again before any rendering operation. So we * flag them dirty here to make sure they get emitted. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; VkResult result = VK_SUCCESS; if (cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { assert(pBeginInfo->pInheritanceInfo); cmd_buffer->state.pass = anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass); cmd_buffer->state.subpass = &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass]; /* This is optional in the inheritance info. */ cmd_buffer->state.framebuffer = anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer); result = genX(cmd_buffer_setup_attachments)(cmd_buffer, cmd_buffer->state.pass, NULL); /* Record that HiZ is enabled if we can. */ if (cmd_buffer->state.framebuffer) { const struct anv_image_view * const iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); if (iview) { VkImageLayout layout = cmd_buffer->state.subpass->depth_stencil_attachment->layout; enum isl_aux_usage aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, layout); cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ; } } cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; } return result; } /* From the PRM, Volume 2a: * * "Indirect State Pointers Disable * * At the completion of the post-sync operation associated with this pipe * control packet, the indirect state pointers in the hardware are * considered invalid; the indirect pointers are not saved in the context. * If any new indirect state commands are executed in the command stream * while the pipe control is pending, the new indirect state commands are * preserved. * * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant * commands are only considered as Indirect State Pointers. Once ISP is * issued in a context, SW must initialize by programming push constant * commands for all the shaders (at least to zero length) before attempting * any rendering operation for the same context." * * 3DSTATE_CONSTANT_* packets are restored during a context restore, * even though they point to a BO that has been already unreferenced at * the end of the previous batch buffer. This has been fine so far since * we are protected by these scratch page (every address not covered by * a BO should be pointing to the scratch page). But on CNL, it is * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_* * instruction. * * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a * context restore, so the mentioned hang doesn't happen. However, * software must program push constant commands for all stages prior to * rendering anything. So we flag them dirty in BeginCommandBuffer. * * Finally, we also make sure to stall at pixel scoreboard to make sure the * constants have been loaded into the EUs prior to disable the push constants * so that it doesn't hang a previous 3DPRIMITIVE. */ static void emit_isp_disable(struct anv_cmd_buffer *cmd_buffer) { anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.StallAtPixelScoreboard = true; pc.CommandStreamerStallEnable = true; } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.IndirectStatePointersDisable = true; pc.CommandStreamerStallEnable = true; } } VkResult genX(EndCommandBuffer)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (anv_batch_has_error(&cmd_buffer->batch)) return cmd_buffer->batch.status; /* We want every command buffer to start with the PMA fix in a known state, * so we disable it at the end of the command buffer. */ genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); emit_isp_disable(cmd_buffer); anv_cmd_buffer_end_batch_buffer(cmd_buffer); return VK_SUCCESS; } void genX(CmdExecuteCommands)( VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer* pCmdBuffers) { ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer); assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); if (anv_batch_has_error(&primary->batch)) return; /* The secondary command buffers will assume that the PMA fix is disabled * when they begin executing. Make sure this is true. */ genX(cmd_buffer_enable_pma_fix)(primary, false); /* The secondary command buffer doesn't know which textures etc. have been * flushed prior to their execution. Apply those flushes now. */ genX(cmd_buffer_apply_pipe_flushes)(primary); for (uint32_t i = 0; i < commandBufferCount; i++) { ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]); assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); assert(!anv_batch_has_error(&secondary->batch)); if (secondary->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { /* If we're continuing a render pass from the primary, we need to * copy the surface states for the current subpass into the storage * we allocated for them in BeginCommandBuffer. */ struct anv_bo *ss_bo = &primary->device->surface_state_pool.block_pool.bo; struct anv_state src_state = primary->state.render_pass_states; struct anv_state dst_state = secondary->state.render_pass_states; assert(src_state.alloc_size == dst_state.alloc_size); genX(cmd_buffer_so_memcpy)(primary, (struct anv_address) { .bo = ss_bo, .offset = dst_state.offset, }, (struct anv_address) { .bo = ss_bo, .offset = src_state.offset, }, src_state.alloc_size); } anv_cmd_buffer_add_secondary(primary, secondary); } /* The secondary may have selected a different pipeline (3D or compute) and * may have changed the current L3$ configuration. Reset our tracking * variables to invalid values to ensure that we re-emit these in the case * where we do any draws or compute dispatches from the primary after the * secondary has returned. */ primary->state.current_pipeline = UINT32_MAX; primary->state.current_l3_config = NULL; /* Each of the secondary command buffers will use its own state base * address. We need to re-emit state base address for the primary after * all of the secondaries are done. * * TODO: Maybe we want to make this a dirty bit to avoid extra state base * address calls? */ genX(cmd_buffer_emit_state_base_address)(primary); } #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000 /** * Program the hardware to use the specified L3 configuration. */ void genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer, const struct gen_l3_config *cfg) { assert(cfg); if (cfg == cmd_buffer->state.current_l3_config) return; if (unlikely(INTEL_DEBUG & DEBUG_L3)) { intel_logd("L3 config transition: "); gen_dump_l3_config(cfg, stderr); } const bool has_slm = cfg->n[GEN_L3P_SLM]; /* According to the hardware docs, the L3 partitioning can only be changed * while the pipeline is completely drained and the caches are flushed, * which involves a first PIPE_CONTROL flush which stalls the pipeline... */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; } /* ...followed by a second pipelined PIPE_CONTROL that initiates * invalidation of the relevant caches. Note that because RO invalidation * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL * command is processed by the CS) we cannot combine it with the previous * stalling flush as the hardware documentation suggests, because that * would cause the CS to stall on previous rendering *after* RO * invalidation and wouldn't prevent the RO caches from being polluted by * concurrent rendering before the stall completes. This intentionally * doesn't implement the SKL+ hardware workaround suggesting to enable CS * stall on PIPE_CONTROLs with the texture cache invalidation bit set for * GPGPU workloads because the previous and subsequent PIPE_CONTROLs * already guarantee that there is no concurrent GPGPU kernel execution * (see SKL HSD 2132585). */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.InstructionCacheInvalidateEnable = true; pc.StateCacheInvalidationEnable = true; pc.PostSyncOperation = NoWrite; } /* Now send a third stalling flush to make sure that invalidation is * complete when the L3 configuration registers are modified. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; } #if GEN_GEN >= 8 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]); uint32_t l3cr; anv_pack_struct(&l3cr, GENX(L3CNTLREG), .SLMEnable = has_slm, .URBAllocation = cfg->n[GEN_L3P_URB], .ROAllocation = cfg->n[GEN_L3P_RO], .DCAllocation = cfg->n[GEN_L3P_DC], .AllAllocation = cfg->n[GEN_L3P_ALL]); /* Set up the L3 partitioning. */ emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr); #else const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL]; const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; assert(!cfg->n[GEN_L3P_ALL]); /* When enabled SLM only uses a portion of the L3 on half of the banks, * the matching space on the remaining banks has to be allocated to a * client (URB for all validated configurations) set to the * lower-bandwidth 2-bank address hashing mode. */ const struct gen_device_info *devinfo = &cmd_buffer->device->info; const bool urb_low_bw = has_slm && !devinfo->is_baytrail; assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]); /* Minimum number of ways that can be allocated to the URB. */ MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0; assert(cfg->n[GEN_L3P_URB] >= n0_urb); uint32_t l3sqcr1, l3cr2, l3cr3; anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1), .ConvertDC_UC = !has_dc, .ConvertIS_UC = !has_is, .ConvertC_UC = !has_c, .ConvertT_UC = !has_t); l3sqcr1 |= GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT : devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT : IVB_L3SQCREG1_SQGHPCI_DEFAULT; anv_pack_struct(&l3cr2, GENX(L3CNTLREG2), .SLMEnable = has_slm, .URBLowBandwidth = urb_low_bw, .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb, #if !GEN_IS_HASWELL .ALLAllocation = cfg->n[GEN_L3P_ALL], #endif .ROAllocation = cfg->n[GEN_L3P_RO], .DCAllocation = cfg->n[GEN_L3P_DC]); anv_pack_struct(&l3cr3, GENX(L3CNTLREG3), .ISAllocation = cfg->n[GEN_L3P_IS], .ISLowBandwidth = 0, .CAllocation = cfg->n[GEN_L3P_C], .CLowBandwidth = 0, .TAllocation = cfg->n[GEN_L3P_T], .TLowBandwidth = 0); /* Set up the L3 partitioning. */ emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1); emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2); emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3); #if GEN_IS_HASWELL if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) { /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep * them disabled to avoid crashing the system hard. */ uint32_t scratch1, chicken3; anv_pack_struct(&scratch1, GENX(SCRATCH1), .L3AtomicDisable = !has_dc); anv_pack_struct(&chicken3, GENX(CHICKEN3), .L3AtomicDisableMask = true, .L3AtomicDisable = !has_dc); emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1); emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3); } #endif #endif cmd_buffer->state.current_l3_config = cfg; } void genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer) { enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits; /* Flushes are pipelined while invalidations are handled immediately. * Therefore, if we're flushing anything then we need to schedule a stall * before any invalidations can happen. */ if (bits & ANV_PIPE_FLUSH_BITS) bits |= ANV_PIPE_NEEDS_CS_STALL_BIT; /* If we're going to do an invalidate and we have a pending CS stall that * has yet to be resolved, we do the CS stall now. */ if ((bits & ANV_PIPE_INVALIDATE_BITS) && (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) { bits |= ANV_PIPE_CS_STALL_BIT; bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT; } if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) { anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT; pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT; pipe.RenderTargetCacheFlushEnable = bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT; pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT; pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT; pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT; /* * According to the Broadwell documentation, any PIPE_CONTROL with the * "Command Streamer Stall" bit set must also have another bit set, * with five different options: * * - Render Target Cache Flush * - Depth Cache Flush * - Stall at Pixel Scoreboard * - Post-Sync Operation * - Depth Stall * - DC Flush Enable * * I chose "Stall at Pixel Scoreboard" since that's what we use in * mesa and it seems to work fine. The choice is fairly arbitrary. */ if ((bits & ANV_PIPE_CS_STALL_BIT) && !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT))) pipe.StallAtPixelScoreboard = true; } bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT); } if (bits & ANV_PIPE_INVALIDATE_BITS) { /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL", * * "If the VF Cache Invalidation Enable is set to a 1 in a * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to * a 1." * * This appears to hang Broadwell, so we restrict it to just gen9. */ if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe); anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.StateCacheInvalidationEnable = bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT; pipe.ConstantCacheInvalidationEnable = bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT; pipe.VFCacheInvalidationEnable = bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT; pipe.TextureCacheInvalidationEnable = bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT; pipe.InstructionCacheInvalidateEnable = bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT; /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL", * * "When VF Cache Invalidate is set “Post Sync Operation” must be * enabled to “Write Immediate Data” or “Write PS Depth Count” or * “Write Timestamp”. */ if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) { pipe.PostSyncOperation = WriteImmediateData; pipe.Address = (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 }; } } bits &= ~ANV_PIPE_INVALIDATE_BITS; } cmd_buffer->state.pending_pipe_bits = bits; } void genX(CmdPipelineBarrier)( VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, VkBool32 byRegion, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); /* XXX: Right now, we're really dumb and just flush whatever categories * the app asks for. One of these days we may make this a bit better * but right now that's all the hardware allows for in most areas. */ VkAccessFlags src_flags = 0; VkAccessFlags dst_flags = 0; for (uint32_t i = 0; i < memoryBarrierCount; i++) { src_flags |= pMemoryBarriers[i].srcAccessMask; dst_flags |= pMemoryBarriers[i].dstAccessMask; } for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) { src_flags |= pBufferMemoryBarriers[i].srcAccessMask; dst_flags |= pBufferMemoryBarriers[i].dstAccessMask; } for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) { src_flags |= pImageMemoryBarriers[i].srcAccessMask; dst_flags |= pImageMemoryBarriers[i].dstAccessMask; ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image); const VkImageSubresourceRange *range = &pImageMemoryBarriers[i].subresourceRange; if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { transition_depth_buffer(cmd_buffer, image, pImageMemoryBarriers[i].oldLayout, pImageMemoryBarriers[i].newLayout); } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { VkImageAspectFlags color_aspects = anv_image_expand_aspects(image, range->aspectMask); uint32_t aspect_bit; uint32_t base_layer, layer_count; if (image->type == VK_IMAGE_TYPE_3D) { base_layer = 0; layer_count = anv_minify(image->extent.depth, range->baseMipLevel); } else { base_layer = range->baseArrayLayer; layer_count = anv_get_layerCount(image, range); } anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) { transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit, range->baseMipLevel, anv_get_levelCount(image, range), base_layer, layer_count, pImageMemoryBarriers[i].oldLayout, pImageMemoryBarriers[i].newLayout); } } } cmd_buffer->state.pending_pipe_bits |= anv_pipe_flush_bits_for_access_flags(src_flags) | anv_pipe_invalidate_bits_for_access_flags(dst_flags); } static void cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer) { VkShaderStageFlags stages = cmd_buffer->state.gfx.base.pipeline->active_stages; /* In order to avoid thrash, we assume that vertex and fragment stages * always exist. In the rare case where one is missing *and* the other * uses push concstants, this may be suboptimal. However, avoiding stalls * seems more important. */ stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT; if (stages == cmd_buffer->state.push_constant_stages) return; #if GEN_GEN >= 8 const unsigned push_constant_kb = 32; #elif GEN_IS_HASWELL const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16; #else const unsigned push_constant_kb = 16; #endif const unsigned num_stages = util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS); unsigned size_per_stage = push_constant_kb / num_stages; /* Broadwell+ and Haswell gt3 require that the push constant sizes be in * units of 2KB. Incidentally, these are the same platforms that have * 32KB worth of push constant space. */ if (push_constant_kb == 32) size_per_stage &= ~1u; uint32_t kb_used = 0; for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) { unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0; anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) { alloc._3DCommandSubOpcode = 18 + i; alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0; alloc.ConstantBufferSize = push_size; } kb_used += push_size; } anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) { alloc.ConstantBufferOffset = kb_used; alloc.ConstantBufferSize = push_constant_kb - kb_used; } cmd_buffer->state.push_constant_stages = stages; /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS: * * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to * the next 3DPRIMITIVE command after programming the * 3DSTATE_PUSH_CONSTANT_ALLOC_VS" * * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of * pipeline setup, we need to dirty push constants. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; } static const struct anv_descriptor * anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state, const struct anv_pipeline_binding *binding) { assert(binding->set < MAX_SETS); const struct anv_descriptor_set *set = pipe_state->descriptors[binding->set]; const uint32_t offset = set->layout->binding[binding->binding].descriptor_index; return &set->descriptors[offset + binding->index]; } static uint32_t dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state, const struct anv_pipeline_binding *binding) { assert(binding->set < MAX_SETS); const struct anv_descriptor_set *set = pipe_state->descriptors[binding->set]; uint32_t dynamic_offset_idx = pipe_state->layout->set[binding->set].dynamic_offset_start + set->layout->binding[binding->binding].dynamic_offset_index + binding->index; return pipe_state->dynamic_offsets[dynamic_offset_idx]; } static VkResult emit_binding_table(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, struct anv_state *bt_state) { struct anv_subpass *subpass = cmd_buffer->state.subpass; struct anv_cmd_pipeline_state *pipe_state; struct anv_pipeline *pipeline; uint32_t bias, state_offset; switch (stage) { case MESA_SHADER_COMPUTE: pipe_state = &cmd_buffer->state.compute.base; bias = 1; break; default: pipe_state = &cmd_buffer->state.gfx.base; bias = 0; break; } pipeline = pipe_state->pipeline; if (!anv_pipeline_has_stage(pipeline, stage)) { *bt_state = (struct anv_state) { 0, }; return VK_SUCCESS; } struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map; if (bias + map->surface_count == 0) { *bt_state = (struct anv_state) { 0, }; return VK_SUCCESS; } *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, bias + map->surface_count, &state_offset); uint32_t *bt_map = bt_state->map; if (bt_state->map == NULL) return VK_ERROR_OUT_OF_DEVICE_MEMORY; if (stage == MESA_SHADER_COMPUTE && get_cs_prog_data(pipeline)->uses_num_work_groups) { struct anv_state surface_state; surface_state = anv_cmd_buffer_alloc_surface_state(cmd_buffer); const enum isl_format format = anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER); anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, cmd_buffer->state.compute.num_workgroups, 12, 1); bt_map[0] = surface_state.offset + state_offset; add_surface_reloc(cmd_buffer, surface_state, cmd_buffer->state.compute.num_workgroups); } if (map->surface_count == 0) goto out; if (map->image_count > 0) { VkResult result = anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images); if (result != VK_SUCCESS) return result; cmd_buffer->state.push_constants_dirty |= 1 << stage; } uint32_t image = 0; for (uint32_t s = 0; s < map->surface_count; s++) { struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s]; struct anv_state surface_state; if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) { /* Color attachment binding */ assert(stage == MESA_SHADER_FRAGMENT); assert(binding->binding == 0); if (binding->index < subpass->color_count) { const unsigned att = subpass->color_attachments[binding->index].attachment; /* From the Vulkan 1.0.46 spec: * * "If any color or depth/stencil attachments are * VK_ATTACHMENT_UNUSED, then no writes occur for those * attachments." */ if (att == VK_ATTACHMENT_UNUSED) { surface_state = cmd_buffer->state.null_surface_state; } else { surface_state = cmd_buffer->state.attachments[att].color.state; } } else { surface_state = cmd_buffer->state.null_surface_state; } bt_map[bias + s] = surface_state.offset + state_offset; continue; } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) { struct anv_state surface_state = anv_cmd_buffer_alloc_surface_state(cmd_buffer); struct anv_address constant_data = { .bo = &pipeline->device->dynamic_state_pool.block_pool.bo, .offset = pipeline->shaders[stage]->constant_data.offset, }; unsigned constant_data_size = pipeline->shaders[stage]->constant_data_size; const enum isl_format format = anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER); anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, constant_data, constant_data_size, 1); bt_map[bias + s] = surface_state.offset + state_offset; add_surface_reloc(cmd_buffer, surface_state, constant_data); continue; } const struct anv_descriptor *desc = anv_descriptor_for_binding(pipe_state, binding); switch (desc->type) { case VK_DESCRIPTOR_TYPE_SAMPLER: /* Nothing for us to do here */ continue; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: { struct anv_surface_state sstate = (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ? desc->image_view->planes[binding->plane].general_sampler_surface_state : desc->image_view->planes[binding->plane].optimal_sampler_surface_state; surface_state = sstate.state; assert(surface_state.alloc_size); add_surface_state_relocs(cmd_buffer, sstate); break; } case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: assert(stage == MESA_SHADER_FRAGMENT); if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) { /* For depth and stencil input attachments, we treat it like any * old texture that a user may have bound. */ struct anv_surface_state sstate = (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ? desc->image_view->planes[binding->plane].general_sampler_surface_state : desc->image_view->planes[binding->plane].optimal_sampler_surface_state; surface_state = sstate.state; assert(surface_state.alloc_size); add_surface_state_relocs(cmd_buffer, sstate); } else { /* For color input attachments, we create the surface state at * vkBeginRenderPass time so that we can include aux and clear * color information. */ assert(binding->input_attachment_index < subpass->input_count); const unsigned subpass_att = binding->input_attachment_index; const unsigned att = subpass->input_attachments[subpass_att].attachment; surface_state = cmd_buffer->state.attachments[att].input.state; } break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: { struct anv_surface_state sstate = (binding->write_only) ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state : desc->image_view->planes[binding->plane].storage_surface_state; surface_state = sstate.state; assert(surface_state.alloc_size); add_surface_state_relocs(cmd_buffer, sstate); struct brw_image_param *image_param = &cmd_buffer->state.push_constants[stage]->images[image++]; *image_param = desc->image_view->planes[binding->plane].storage_image_param; break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: surface_state = desc->buffer_view->surface_state; assert(surface_state.alloc_size); add_surface_reloc(cmd_buffer, surface_state, desc->buffer_view->address); break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { /* Compute the offset within the buffer */ uint32_t dynamic_offset = dynamic_offset_for_binding(pipe_state, binding); uint64_t offset = desc->offset + dynamic_offset; /* Clamp to the buffer size */ offset = MIN2(offset, desc->buffer->size); /* Clamp the range to the buffer size */ uint32_t range = MIN2(desc->range, desc->buffer->size - offset); struct anv_address address = anv_address_add(desc->buffer->address, offset); surface_state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64); enum isl_format format = anv_isl_format_for_descriptor_type(desc->type); anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, address, range, 1); add_surface_reloc(cmd_buffer, surface_state, address); break; } case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: surface_state = (binding->write_only) ? desc->buffer_view->writeonly_storage_surface_state : desc->buffer_view->storage_surface_state; assert(surface_state.alloc_size); add_surface_reloc(cmd_buffer, surface_state, desc->buffer_view->address); struct brw_image_param *image_param = &cmd_buffer->state.push_constants[stage]->images[image++]; *image_param = desc->buffer_view->storage_image_param; break; default: assert(!"Invalid descriptor type"); continue; } bt_map[bias + s] = surface_state.offset + state_offset; } assert(image == map->image_count); out: anv_state_flush(cmd_buffer->device, *bt_state); #if GEN_GEN >= 11 /* The PIPE_CONTROL command description says: * * "Whenever a Binding Table Index (BTI) used by a Render Taget Message * points to a different RENDER_SURFACE_STATE, SW must issue a Render * Target Cache Flush by enabling this bit. When render target flush * is set due to new association of BTI, PS Scoreboard Stall bit must * be set in this packet." * * FINISHME: Currently we shuffle around the surface states in the binding * table based on if they are getting used or not. So, we've to do below * pipe control flush for every binding table upload. Make changes so * that we do it only when we modify render target surface states. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.RenderTargetCacheFlushEnable = true; pc.StallAtPixelScoreboard = true; } #endif return VK_SUCCESS; } static VkResult emit_samplers(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, struct anv_state *state) { struct anv_cmd_pipeline_state *pipe_state = stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base : &cmd_buffer->state.gfx.base; struct anv_pipeline *pipeline = pipe_state->pipeline; if (!anv_pipeline_has_stage(pipeline, stage)) { *state = (struct anv_state) { 0, }; return VK_SUCCESS; } struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map; if (map->sampler_count == 0) { *state = (struct anv_state) { 0, }; return VK_SUCCESS; } uint32_t size = map->sampler_count * 16; *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32); if (state->map == NULL) return VK_ERROR_OUT_OF_DEVICE_MEMORY; for (uint32_t s = 0; s < map->sampler_count; s++) { struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s]; const struct anv_descriptor *desc = anv_descriptor_for_binding(pipe_state, binding); if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER && desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) continue; struct anv_sampler *sampler = desc->sampler; /* This can happen if we have an unfilled slot since TYPE_SAMPLER * happens to be zero. */ if (sampler == NULL) continue; memcpy(state->map + (s * 16), sampler->state[binding->plane], sizeof(sampler->state[0])); } anv_state_flush(cmd_buffer->device, *state); return VK_SUCCESS; } static uint32_t flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty & pipeline->active_stages; VkResult result = VK_SUCCESS; anv_foreach_stage(s, dirty) { result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]); if (result != VK_SUCCESS) break; result = emit_binding_table(cmd_buffer, s, &cmd_buffer->state.binding_tables[s]); if (result != VK_SUCCESS) break; } if (result != VK_SUCCESS) { assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY); result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); if (result != VK_SUCCESS) return 0; /* Re-emit state base addresses so we get the new surface state base * address before we start emitting binding tables etc. */ genX(cmd_buffer_emit_state_base_address)(cmd_buffer); /* Re-emit all active binding tables */ dirty |= pipeline->active_stages; anv_foreach_stage(s, dirty) { result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]); if (result != VK_SUCCESS) { anv_batch_set_error(&cmd_buffer->batch, result); return 0; } result = emit_binding_table(cmd_buffer, s, &cmd_buffer->state.binding_tables[s]); if (result != VK_SUCCESS) { anv_batch_set_error(&cmd_buffer->batch, result); return 0; } } } cmd_buffer->state.descriptors_dirty &= ~dirty; return dirty; } static void cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer, uint32_t stages) { static const uint32_t sampler_state_opcodes[] = { [MESA_SHADER_VERTEX] = 43, [MESA_SHADER_TESS_CTRL] = 44, /* HS */ [MESA_SHADER_TESS_EVAL] = 45, /* DS */ [MESA_SHADER_GEOMETRY] = 46, [MESA_SHADER_FRAGMENT] = 47, [MESA_SHADER_COMPUTE] = 0, }; static const uint32_t binding_table_opcodes[] = { [MESA_SHADER_VERTEX] = 38, [MESA_SHADER_TESS_CTRL] = 39, [MESA_SHADER_TESS_EVAL] = 40, [MESA_SHADER_GEOMETRY] = 41, [MESA_SHADER_FRAGMENT] = 42, [MESA_SHADER_COMPUTE] = 0, }; anv_foreach_stage(s, stages) { assert(s < ARRAY_SIZE(binding_table_opcodes)); assert(binding_table_opcodes[s] > 0); if (cmd_buffer->state.samplers[s].alloc_size > 0) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) { ssp._3DCommandSubOpcode = sampler_state_opcodes[s]; ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset; } } /* Always emit binding table pointers if we're asked to, since on SKL * this is what flushes push constants. */ anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) { btp._3DCommandSubOpcode = binding_table_opcodes[s]; btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset; } } } static void cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer, VkShaderStageFlags dirty_stages) { const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; const struct anv_pipeline *pipeline = gfx_state->base.pipeline; static const uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, [MESA_SHADER_COMPUTE] = 0, }; VkShaderStageFlags flushed = 0; anv_foreach_stage(stage, dirty_stages) { assert(stage < ARRAY_SIZE(push_constant_opcodes)); assert(push_constant_opcodes[stage] > 0); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) { c._3DCommandSubOpcode = push_constant_opcodes[stage]; if (anv_pipeline_has_stage(pipeline, stage)) { #if GEN_GEN >= 8 || GEN_IS_HASWELL const struct brw_stage_prog_data *prog_data = pipeline->shaders[stage]->prog_data; const struct anv_pipeline_bind_map *bind_map = &pipeline->shaders[stage]->bind_map; /* The Skylake PRM contains the following restriction: * * "The driver must ensure The following case does not occur * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with * buffer 3 read length equal to zero committed followed by a * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to * zero committed." * * To avoid this, we program the buffers in the highest slots. * This way, slot 0 is only used if slot 3 is also used. */ int n = 3; for (int i = 3; i >= 0; i--) { const struct brw_ubo_range *range = &prog_data->ubo_ranges[i]; if (range->length == 0) continue; const unsigned surface = prog_data->binding_table.ubo_start + range->block; assert(surface <= bind_map->surface_count); const struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[surface]; struct anv_address read_addr; uint32_t read_len; if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) { struct anv_address constant_data = { .bo = &pipeline->device->dynamic_state_pool.block_pool.bo, .offset = pipeline->shaders[stage]->constant_data.offset, }; unsigned constant_data_size = pipeline->shaders[stage]->constant_data_size; read_len = MIN2(range->length, DIV_ROUND_UP(constant_data_size, 32) - range->start); read_addr = anv_address_add(constant_data, range->start * 32); } else { const struct anv_descriptor *desc = anv_descriptor_for_binding(&gfx_state->base, binding); if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) { read_len = MIN2(range->length, DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start); read_addr = anv_address_add(desc->buffer_view->address, range->start * 32); } else { assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC); uint32_t dynamic_offset = dynamic_offset_for_binding(&gfx_state->base, binding); uint32_t buf_offset = MIN2(desc->offset + dynamic_offset, desc->buffer->size); uint32_t buf_range = MIN2(desc->range, desc->buffer->size - buf_offset); read_len = MIN2(range->length, DIV_ROUND_UP(buf_range, 32) - range->start); read_addr = anv_address_add(desc->buffer->address, buf_offset + range->start * 32); } } if (read_len > 0) { c.ConstantBody.Buffer[n] = read_addr; c.ConstantBody.ReadLength[n] = read_len; n--; } } struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage); if (state.alloc_size > 0) { c.ConstantBody.Buffer[n] = (struct anv_address) { .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = state.offset, }; c.ConstantBody.ReadLength[n] = DIV_ROUND_UP(state.alloc_size, 32); } #else /* For Ivy Bridge, the push constants packets have a different * rule that would require us to iterate in the other direction * and possibly mess around with dynamic state base address. * Don't bother; just emit regular push constants at n = 0. */ struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage); if (state.alloc_size > 0) { c.ConstantBody.Buffer[0].offset = state.offset, c.ConstantBody.ReadLength[0] = DIV_ROUND_UP(state.alloc_size, 32); } #endif } } flushed |= mesa_to_vk_shader_stage(stage); } cmd_buffer->state.push_constants_dirty &= ~flushed; } void genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; uint32_t *p; uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used; if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) vb_emit |= pipeline->vb_used; assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0); genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config); genX(flush_pipeline_select_3d)(cmd_buffer); if (vb_emit) { const uint32_t num_buffers = __builtin_popcount(vb_emit); const uint32_t num_dwords = 1 + num_buffers * 4; p = anv_batch_emitn(&cmd_buffer->batch, num_dwords, GENX(3DSTATE_VERTEX_BUFFERS)); uint32_t vb, i = 0; for_each_bit(vb, vb_emit) { struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer; uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset; struct GENX(VERTEX_BUFFER_STATE) state = { .VertexBufferIndex = vb, .VertexBufferMOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo), #if GEN_GEN <= 7 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA, .InstanceDataStepRate = pipeline->vb[vb].instance_divisor, #endif .AddressModifyEnable = true, .BufferPitch = pipeline->vb[vb].stride, .BufferStartingAddress = anv_address_add(buffer->address, offset), #if GEN_GEN >= 8 .BufferSize = buffer->size - offset #else .EndAddress = anv_address_add(buffer->address, buffer->size - 1), #endif }; GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state); i++; } } cmd_buffer->state.gfx.vb_dirty &= ~vb_emit; if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) { anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); /* The exact descriptor layout is pulled from the pipeline, so we need * to re-emit binding tables on every pipeline change. */ cmd_buffer->state.descriptors_dirty |= pipeline->active_stages; /* If the pipeline changed, we may need to re-allocate push constant * space in the URB. */ cmd_buffer_alloc_push_constants(cmd_buffer); } #if GEN_GEN <= 7 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT || cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) { /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1: * * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth * stall needs to be sent just prior to any 3DSTATE_VS, * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS, * 3DSTATE_BINDING_TABLE_POINTER_VS, * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one * PIPE_CONTROL needs to be sent before any combination of VS * associated 3DSTATE." */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DepthStallEnable = true; pc.PostSyncOperation = WriteImmediateData; pc.Address = (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 }; } } #endif /* Render targets live in the same binding table as fragment descriptors */ if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS) cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT; /* We emit the binding tables and sampler tables first, then emit push * constants and then finally emit binding table and sampler table * pointers. It has to happen in this order, since emitting the binding * tables may change the push constants (in case of storage images). After * emitting push constants, on SKL+ we have to emit the corresponding * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect. */ uint32_t dirty = 0; if (cmd_buffer->state.descriptors_dirty) dirty = flush_descriptor_sets(cmd_buffer); if (dirty || cmd_buffer->state.push_constants_dirty) { /* Because we're pushing UBOs, we have to push whenever either * descriptors or push constants is dirty. */ dirty |= cmd_buffer->state.push_constants_dirty; dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS; cmd_buffer_flush_push_constants(cmd_buffer, dirty); } if (dirty) cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty); if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) gen8_cmd_buffer_emit_viewport(cmd_buffer); if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | ANV_CMD_DIRTY_PIPELINE)) { gen8_cmd_buffer_emit_depth_viewport(cmd_buffer, pipeline->depth_clamp_enable); } if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR | ANV_CMD_DIRTY_RENDER_TARGETS)) gen7_cmd_buffer_emit_scissor(cmd_buffer); genX(cmd_buffer_flush_dynamic_state)(cmd_buffer); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } static void emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr, uint32_t size, uint32_t index) { uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS)); GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1, &(struct GENX(VERTEX_BUFFER_STATE)) { .VertexBufferIndex = index, .AddressModifyEnable = true, .BufferPitch = 0, .VertexBufferMOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo), #if (GEN_GEN >= 8) .BufferStartingAddress = addr, .BufferSize = size #else .BufferStartingAddress = addr, .EndAddress = anv_address_add(addr, size), #endif }); } static void emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr) { emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX); } static void emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer, uint32_t base_vertex, uint32_t base_instance) { struct anv_state id_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4); ((uint32_t *)id_state.map)[0] = base_vertex; ((uint32_t *)id_state.map)[1] = base_instance; anv_state_flush(cmd_buffer->device, id_state); struct anv_address addr = { .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = id_state.offset, }; emit_base_vertex_instance_bo(cmd_buffer, addr); } static void emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index) { struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4); ((uint32_t *)state.map)[0] = draw_index; anv_state_flush(cmd_buffer->device, state); struct anv_address addr = { .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = state.offset, }; emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX); } void genX(CmdDraw)( VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, 0); /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. We need to multiply instanceCount by the view count. */ instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = pipeline->topology; prim.VertexCountPerInstance = vertexCount; prim.StartVertexLocation = firstVertex; prim.InstanceCount = instanceCount; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = 0; } } void genX(CmdDrawIndexed)( VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, 0); /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. We need to multiply instanceCount by the view count. */ instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = pipeline->topology; prim.VertexCountPerInstance = indexCount; prim.StartVertexLocation = firstIndex; prim.InstanceCount = instanceCount; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = vertexOffset; } } /* Auto-Draw / Indirect Registers */ #define GEN7_3DPRIM_END_OFFSET 0x2420 #define GEN7_3DPRIM_START_VERTEX 0x2430 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438 #define GEN7_3DPRIM_START_INSTANCE 0x243C #define GEN7_3DPRIM_BASE_VERTEX 0x2440 /* MI_MATH only exists on Haswell+ */ #if GEN_IS_HASWELL || GEN_GEN >= 8 /* Emit dwords to multiply GPR0 by N */ static void build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N) { VK_OUTARRAY_MAKE(out, dw, dw_count); #define append_alu(opcode, operand1, operand2) \ vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2) assert(N > 0); unsigned top_bit = 31 - __builtin_clz(N); for (int i = top_bit - 1; i >= 0; i--) { /* We get our initial data in GPR0 and we write the final data out to * GPR0 but we use GPR1 as our scratch register. */ unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1; unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1; /* Shift the current value left by 1 */ append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg); append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg); append_alu(MI_ALU_ADD, 0, 0); if (N & (1 << i)) { /* Store ACCU to R1 and add R0 to R1 */ append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU); append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0); append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1); append_alu(MI_ALU_ADD, 0, 0); } append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU); } #undef append_alu } static void emit_mul_gpr0(struct anv_batch *batch, uint32_t N) { uint32_t num_dwords; build_alu_multiply_gpr0(NULL, &num_dwords, N); uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH)); build_alu_multiply_gpr0(dw + 1, &num_dwords, N); } #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */ static void load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr, bool indexed) { struct anv_batch *batch = &cmd_buffer->batch; emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, anv_address_add(addr, 0)); unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass); if (view_count > 1) { #if GEN_IS_HASWELL || GEN_GEN >= 8 emit_lrm(batch, CS_GPR(0), anv_address_add(addr, 4)); emit_mul_gpr0(batch, view_count); emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0)); #else anv_finishme("Multiview + indirect draw requires MI_MATH; " "MI_MATH is not supported on Ivy Bridge"); emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4)); #endif } else { emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4)); } emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, anv_address_add(addr, 8)); if (indexed) { emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, anv_address_add(addr, 12)); emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 16)); } else { emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 12)); emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0); } } void genX(CmdDrawIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); for (uint32_t i = 0; i < drawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); load_indirect_parameters(cmd_buffer, draw, false); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = pipeline->topology; } offset += stride; } } void genX(CmdDrawIndexedIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); for (uint32_t i = 0; i < drawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); /* TODO: We need to stomp base vertex to 0 somehow */ if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); load_indirect_parameters(cmd_buffer, draw, true); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = pipeline->topology; } offset += stride; } } static VkResult flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline; struct anv_state surfaces = { 0, }, samplers = { 0, }; VkResult result; result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces); if (result != VK_SUCCESS) { assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY); result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); if (result != VK_SUCCESS) return result; /* Re-emit state base addresses so we get the new surface state base * address before we start emitting binding tables etc. */ genX(cmd_buffer_emit_state_base_address)(cmd_buffer); result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces); if (result != VK_SUCCESS) { anv_batch_set_error(&cmd_buffer->batch, result); return result; } } result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers); if (result != VK_SUCCESS) { anv_batch_set_error(&cmd_buffer->batch, result); return result; } uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)]; struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = { .BindingTablePointer = surfaces.offset, .SamplerStatePointer = samplers.offset, }; GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc); struct anv_state state = anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw, pipeline->interface_descriptor_data, GENX(INTERFACE_DESCRIPTOR_DATA_length), 64); uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) { mid.InterfaceDescriptorTotalLength = size; mid.InterfaceDescriptorDataStartAddress = state.offset; } return VK_SUCCESS; } void genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline; MAYBE_UNUSED VkResult result; assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT); genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config); genX(flush_pipeline_select_gpgpu)(cmd_buffer); if (cmd_buffer->state.compute.pipeline_dirty) { /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE: * * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless * the only bits that are changed are scoreboard related: Scoreboard * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For * these scoreboard related states, a MEDIA_STATE_FLUSH is * sufficient." */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); } if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) || cmd_buffer->state.compute.pipeline_dirty) { /* FIXME: figure out descriptors for gen7 */ result = flush_compute_descriptor_set(cmd_buffer); if (result != VK_SUCCESS) return; cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; } if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) { struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer); if (push_state.alloc_size) { anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) { curbe.CURBETotalDataLength = push_state.alloc_size; curbe.CURBEDataStartAddress = push_state.offset; } } cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; } cmd_buffer->state.compute.pipeline_dirty = false; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } #if GEN_GEN == 7 static VkResult verify_cmd_parser(const struct anv_device *device, int required_version, const char *function) { if (device->instance->physicalDevice.cmd_parser_version < required_version) { return vk_errorf(device->instance, device->instance, VK_ERROR_FEATURE_NOT_PRESENT, "cmd parser version %d is required for %s", required_version, function); } else { return VK_SUCCESS; } } #endif static void anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ) { if (anv_batch_has_error(&cmd_buffer->batch)) return; VkResult result = anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, MESA_SHADER_COMPUTE, base_work_group_id); if (result != VK_SUCCESS) { cmd_buffer->batch.status = result; return; } struct anv_push_constants *push = cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE]; if (push->base_work_group_id[0] != baseGroupX || push->base_work_group_id[1] != baseGroupY || push->base_work_group_id[2] != baseGroupZ) { push->base_work_group_id[0] = baseGroupX; push->base_work_group_id[1] = baseGroupY; push->base_work_group_id[2] = baseGroupZ; cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } } void genX(CmdDispatch)( VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) { genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z); } void genX(CmdDispatchBase)( VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline; const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline); anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX, baseGroupY, baseGroupZ); if (anv_batch_has_error(&cmd_buffer->batch)) return; if (prog_data->uses_num_work_groups) { struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4); uint32_t *sizes = state.map; sizes[0] = groupCountX; sizes[1] = groupCountY; sizes[2] = groupCountZ; anv_state_flush(cmd_buffer->device, state); cmd_buffer->state.compute.num_workgroups = (struct anv_address) { .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = state.offset, }; } genX(cmd_buffer_flush_compute_state)(cmd_buffer); anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) { ggw.SIMDSize = prog_data->simd_size / 16; ggw.ThreadDepthCounterMaximum = 0; ggw.ThreadHeightCounterMaximum = 0; ggw.ThreadWidthCounterMaximum = prog_data->threads - 1; ggw.ThreadGroupIDXDimension = groupCountX; ggw.ThreadGroupIDYDimension = groupCountY; ggw.ThreadGroupIDZDimension = groupCountZ; ggw.RightExecutionMask = pipeline->cs_right_mask; ggw.BottomExecutionMask = 0xffffffff; } anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf); } #define GPGPU_DISPATCHDIMX 0x2500 #define GPGPU_DISPATCHDIMY 0x2504 #define GPGPU_DISPATCHDIMZ 0x2508 void genX(CmdDispatchIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline; const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline); struct anv_address addr = anv_address_add(buffer->address, offset); struct anv_batch *batch = &cmd_buffer->batch; anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0); #if GEN_GEN == 7 /* Linux 4.4 added command parser version 5 which allows the GPGPU * indirect dispatch registers to be written. */ if (verify_cmd_parser(cmd_buffer->device, 5, "vkCmdDispatchIndirect") != VK_SUCCESS) return; #endif if (prog_data->uses_num_work_groups) cmd_buffer->state.compute.num_workgroups = addr; genX(cmd_buffer_flush_compute_state)(cmd_buffer); emit_lrm(batch, GPGPU_DISPATCHDIMX, anv_address_add(addr, 0)); emit_lrm(batch, GPGPU_DISPATCHDIMY, anv_address_add(addr, 4)); emit_lrm(batch, GPGPU_DISPATCHDIMZ, anv_address_add(addr, 8)); #if GEN_GEN <= 7 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */ emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0); emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0); emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0); /* Load compute_dispatch_indirect_x_size into SRC0 */ emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 0)); /* predicate = (compute_dispatch_indirect_x_size == 0); */ anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* Load compute_dispatch_indirect_y_size into SRC0 */ emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 4)); /* predicate |= (compute_dispatch_indirect_y_size == 0); */ anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* Load compute_dispatch_indirect_z_size into SRC0 */ emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 8)); /* predicate |= (compute_dispatch_indirect_z_size == 0); */ anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* predicate = !predicate; */ #define COMPARE_FALSE 1 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_FALSE; } #endif anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) { ggw.IndirectParameterEnable = true; ggw.PredicateEnable = GEN_GEN <= 7; ggw.SIMDSize = prog_data->simd_size / 16; ggw.ThreadDepthCounterMaximum = 0; ggw.ThreadHeightCounterMaximum = 0; ggw.ThreadWidthCounterMaximum = prog_data->threads - 1; ggw.RightExecutionMask = pipeline->cs_right_mask; ggw.BottomExecutionMask = 0xffffffff; } anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf); } static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer, uint32_t pipeline) { UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info; if (cmd_buffer->state.current_pipeline == pipeline) return; #if GEN_GEN >= 8 && GEN_GEN < 10 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT: * * Software must clear the COLOR_CALC_STATE Valid field in * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT * with Pipeline Select set to GPGPU. * * The internal hardware docs recommend the same workaround for Gen9 * hardware too. */ if (pipeline == GPGPU) anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t); #endif /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction] * PIPELINE_SELECT [DevBWR+]": * * Project: DEVSNB+ * * Software must ensure all the write caches are flushed through a * stalling PIPE_CONTROL command followed by another PIPE_CONTROL * command to invalidate read only caches prior to programming * MI_PIPELINE_SELECT command to change the Pipeline Select Mode. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.RenderTargetCacheFlushEnable = true; pc.DepthCacheFlushEnable = true; pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.StateCacheInvalidationEnable = true; pc.InstructionCacheInvalidateEnable = true; pc.PostSyncOperation = NoWrite; } anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) { #if GEN_GEN >= 9 ps.MaskBits = 3; #endif ps.PipelineSelection = pipeline; } #if GEN_GEN == 9 if (devinfo->is_geminilake) { /* Project: DevGLK * * "This chicken bit works around a hardware issue with barrier logic * encountered when switching between GPGPU and 3D pipelines. To * workaround the issue, this mode bit should be set after a pipeline * is selected." */ uint32_t scec; anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1), .GLKBarrierMode = pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU : GLK_BARRIER_MODE_3D_HULL, .GLKBarrierModeMask = 1); emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec); } #endif cmd_buffer->state.current_pipeline = pipeline; } void genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer) { genX(flush_pipeline_select)(cmd_buffer, _3D); } void genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer) { genX(flush_pipeline_select)(cmd_buffer, GPGPU); } void genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer) { if (GEN_GEN >= 8) return; /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER: * * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit * set), followed by a pipelined depth cache flush (PIPE_CONTROL with * Depth Flush Bit set, followed by another pipelined depth stall * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise * guarantee that the pipeline from WM onwards is already flushed (e.g., * via a preceding MI_FLUSH)." */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthStallEnable = true; } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthCacheFlushEnable = true; } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthStallEnable = true; } } static void cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; const struct anv_image_view *iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); const struct anv_image *image = iview ? iview->image : NULL; /* FIXME: Width and Height are wrong */ genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer); uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch, device->isl_dev.ds.size / 4); if (dw == NULL) return; struct isl_depth_stencil_hiz_emit_info info = { }; if (iview) info.view = &iview->planes[0].isl; if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) { uint32_t depth_plane = anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT); const struct anv_surface *surface = &image->planes[depth_plane].surface; info.depth_surf = &surface->isl; info.depth_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.depth_offset / 4, image->planes[depth_plane].address.bo, image->planes[depth_plane].address.offset + surface->offset); info.mocs = anv_mocs_for_bo(device, image->planes[depth_plane].address.bo); const uint32_t ds = cmd_buffer->state.subpass->depth_stencil_attachment->attachment; info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage; if (info.hiz_usage == ISL_AUX_USAGE_HIZ) { info.hiz_surf = &image->planes[depth_plane].aux_surface.isl; info.hiz_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.hiz_offset / 4, image->planes[depth_plane].address.bo, image->planes[depth_plane].address.offset + image->planes[depth_plane].aux_surface.offset); info.depth_clear_value = ANV_HZ_FC_VAL; } } if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) { uint32_t stencil_plane = anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT); const struct anv_surface *surface = &image->planes[stencil_plane].surface; info.stencil_surf = &surface->isl; info.stencil_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.stencil_offset / 4, image->planes[stencil_plane].address.bo, image->planes[stencil_plane].address.offset + surface->offset); info.mocs = anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo); } isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info); cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ; } /** * This ANDs the view mask of the current subpass with the pending clear * views in the attachment to get the mask of views active in the subpass * that still need to be cleared. */ static inline uint32_t get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state, const struct anv_attachment_state *att_state) { return cmd_state->subpass->view_mask & att_state->pending_clear_views; } static inline bool do_first_layer_clear(const struct anv_cmd_state *cmd_state, const struct anv_attachment_state *att_state) { if (!cmd_state->subpass->view_mask) return true; uint32_t pending_clear_mask = get_multiview_subpass_clear_mask(cmd_state, att_state); return pending_clear_mask & 1; } static inline bool current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state, uint32_t att_idx) { const uint32_t last_subpass_idx = cmd_state->pass->attachments[att_idx].last_subpass_idx; const struct anv_subpass *last_subpass = &cmd_state->pass->subpasses[last_subpass_idx]; return last_subpass == cmd_state->subpass; } static void cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer, uint32_t subpass_id) { struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id]; cmd_state->subpass = subpass; cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. If the client asks for instancing, we need to use the * Instance Data Step Rate to ensure that we repeat the client's * per-instance data once for each view. Since this bit is in * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top * of each subpass. */ if (GEN_GEN == 7) cmd_buffer->state.gfx.vb_dirty |= ~0; /* It is possible to start a render pass with an old pipeline. Because the * render pass and subpass index are both baked into the pipeline, this is * highly unlikely. In order to do so, it requires that you have a render * pass with a single subpass and that you use that render pass twice * back-to-back and use the same pipeline at the start of the second render * pass as at the end of the first. In order to avoid unpredictable issues * with this edge case, we just dirty the pipeline at the start of every * subpass. */ cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE; /* Accumulate any subpass flushes that need to happen before the subpass */ cmd_buffer->state.pending_pipe_bits |= cmd_buffer->state.pass->subpass_flushes[subpass_id]; VkRect2D render_area = cmd_buffer->state.render_area; struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; bool is_multiview = subpass->view_mask != 0; for (uint32_t i = 0; i < subpass->attachment_count; ++i) { const uint32_t a = subpass->attachments[i].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; assert(a < cmd_state->pass->attachment_count); struct anv_attachment_state *att_state = &cmd_state->attachments[a]; struct anv_image_view *iview = fb->attachments[a]; const struct anv_image *image = iview->image; /* A resolve is necessary before use as an input attachment if the clear * color or auxiliary buffer usage isn't supported by the sampler. */ const bool input_needs_resolve = (att_state->fast_clear && !att_state->clear_color_is_zero_one) || att_state->input_aux_usage != att_state->aux_usage; VkImageLayout target_layout; if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV && !input_needs_resolve) { /* Layout transitions before the final only help to enable sampling * as an input attachment. If the input attachment supports sampling * using the auxiliary surface, we can skip such transitions by * making the target layout one that is CCS-aware. */ target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } else { target_layout = subpass->attachments[i].layout; } if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); uint32_t base_layer, layer_count; if (image->type == VK_IMAGE_TYPE_3D) { base_layer = 0; layer_count = anv_minify(iview->image->extent.depth, iview->planes[0].isl.base_level); } else { base_layer = iview->planes[0].isl.base_array_layer; layer_count = fb->layers; } transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, iview->planes[0].isl.base_level, 1, base_layer, layer_count, att_state->current_layout, target_layout); } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { transition_depth_buffer(cmd_buffer, image, att_state->current_layout, target_layout); att_state->aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_DEPTH_BIT, target_layout); } att_state->current_layout = target_layout; if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) { assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT); /* Multi-planar images are not supported as attachments */ assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); assert(image->n_planes == 1); uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer; uint32_t clear_layer_count = fb->layers; if (att_state->fast_clear && do_first_layer_clear(cmd_state, att_state)) { /* We only support fast-clears on the first layer */ assert(iview->planes[0].isl.base_level == 0); assert(iview->planes[0].isl.base_array_layer == 0); union isl_color_value clear_color = {}; anv_clear_color_from_att_state(&clear_color, att_state, iview); if (iview->image->samples == 1) { anv_image_ccs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1, ISL_AUX_OP_FAST_CLEAR, &clear_color, false); } else { anv_image_mcs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, ISL_AUX_OP_FAST_CLEAR, &clear_color, false); } base_clear_layer++; clear_layer_count--; if (is_multiview) att_state->pending_clear_views &= ~1; if (att_state->clear_color_is_zero) { /* This image has the auxiliary buffer enabled. We can mark the * subresource as not needing a resolve because the clear color * will match what's in every RENDER_SURFACE_STATE object when * it's being used for sampling. */ set_image_fast_clear_state(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, ANV_FAST_CLEAR_DEFAULT_VALUE); } else { set_image_fast_clear_state(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, ANV_FAST_CLEAR_ANY); } } /* From the VkFramebufferCreateInfo spec: * * "If the render pass uses multiview, then layers must be one and each * attachment requires a number of layers that is greater than the * maximum bit index set in the view mask in the subpasses in which it * is used." * * So if multiview is active we ignore the number of layers in the * framebuffer and instead we honor the view mask from the subpass. */ if (is_multiview) { assert(image->n_planes == 1); uint32_t pending_clear_mask = get_multiview_subpass_clear_mask(cmd_state, att_state); uint32_t layer_idx; for_each_bit(layer_idx, pending_clear_mask) { uint32_t layer = iview->planes[0].isl.base_array_layer + layer_idx; anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, att_state->aux_usage, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, iview->planes[0].isl.base_level, layer, 1, render_area, vk_to_isl_color(att_state->clear_value.color)); } att_state->pending_clear_views &= ~pending_clear_mask; } else if (clear_layer_count > 0) { assert(image->n_planes == 1); anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, att_state->aux_usage, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, iview->planes[0].isl.base_level, base_clear_layer, clear_layer_count, render_area, vk_to_isl_color(att_state->clear_value.color)); } } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { if (att_state->fast_clear && !is_multiview) { /* We currently only support HiZ for single-layer images */ if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ); assert(iview->planes[0].isl.base_level == 0); assert(iview->planes[0].isl.base_array_layer == 0); assert(fb->layers == 1); } anv_image_hiz_clear(cmd_buffer, image, att_state->pending_clear_aspects, iview->planes[0].isl.base_level, iview->planes[0].isl.base_array_layer, fb->layers, render_area, att_state->clear_value.depthStencil.stencil); } else if (is_multiview) { uint32_t pending_clear_mask = get_multiview_subpass_clear_mask(cmd_state, att_state); uint32_t layer_idx; for_each_bit(layer_idx, pending_clear_mask) { uint32_t layer = iview->planes[0].isl.base_array_layer + layer_idx; anv_image_clear_depth_stencil(cmd_buffer, image, att_state->pending_clear_aspects, att_state->aux_usage, iview->planes[0].isl.base_level, layer, 1, render_area, att_state->clear_value.depthStencil.depth, att_state->clear_value.depthStencil.stencil); } att_state->pending_clear_views &= ~pending_clear_mask; } else { anv_image_clear_depth_stencil(cmd_buffer, image, att_state->pending_clear_aspects, att_state->aux_usage, iview->planes[0].isl.base_level, iview->planes[0].isl.base_array_layer, fb->layers, render_area, att_state->clear_value.depthStencil.depth, att_state->clear_value.depthStencil.stencil); } } else { assert(att_state->pending_clear_aspects == 0); } if (GEN_GEN < 10 && (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->planes[0].aux_surface.isl.size_B > 0 && iview->planes[0].isl.base_level == 0 && iview->planes[0].isl.base_array_layer == 0) { if (att_state->aux_usage != ISL_AUX_USAGE_NONE) { genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state, image, VK_IMAGE_ASPECT_COLOR_BIT, false /* copy to ss */); } if (need_input_attachment_state(&cmd_state->pass->attachments[a]) && att_state->input_aux_usage != ISL_AUX_USAGE_NONE) { genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state, image, VK_IMAGE_ASPECT_COLOR_BIT, false /* copy to ss */); } } if (subpass->attachments[i].usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) { /* We assume that if we're starting a subpass, we're going to do some * rendering so we may end up with compressed data. */ genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, att_state->aux_usage, iview->planes[0].isl.base_level, iview->planes[0].isl.base_array_layer, fb->layers); } else if (subpass->attachments[i].usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { /* We may be writing depth or stencil so we need to mark the surface. * Unfortunately, there's no way to know at this point whether the * depth or stencil tests used will actually write to the surface. * * Even though stencil may be plane 1, it always shares a base_level * with depth. */ const struct isl_view *ds_view = &iview->planes[0].isl; if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) { genX(cmd_buffer_mark_image_written)(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, att_state->aux_usage, ds_view->base_level, ds_view->base_array_layer, fb->layers); } if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) { /* Even though stencil may be plane 1, it always shares a * base_level with depth. */ genX(cmd_buffer_mark_image_written)(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, ISL_AUX_USAGE_NONE, ds_view->base_level, ds_view->base_array_layer, fb->layers); } } /* If multiview is enabled, then we are only done clearing when we no * longer have pending layers to clear, or when we have processed the * last subpass that uses this attachment. */ if (!is_multiview || att_state->pending_clear_views == 0 || current_subpass_is_last_for_attachment(cmd_state, a)) { att_state->pending_clear_aspects = 0; } att_state->pending_load_aspects = 0; } cmd_buffer_emit_depth_stencil(cmd_buffer); } static void cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer) { struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_subpass *subpass = cmd_state->subpass; uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state); anv_cmd_buffer_resolve_subpass(cmd_buffer); struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; for (uint32_t i = 0; i < subpass->attachment_count; ++i) { const uint32_t a = subpass->attachments[i].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id) continue; assert(a < cmd_state->pass->attachment_count); struct anv_attachment_state *att_state = &cmd_state->attachments[a]; struct anv_image_view *iview = fb->attachments[a]; const struct anv_image *image = iview->image; /* Transition the image into the final layout for this render pass */ VkImageLayout target_layout = cmd_state->pass->attachments[a].final_layout; if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); uint32_t base_layer, layer_count; if (image->type == VK_IMAGE_TYPE_3D) { base_layer = 0; layer_count = anv_minify(iview->image->extent.depth, iview->planes[0].isl.base_level); } else { base_layer = iview->planes[0].isl.base_array_layer; layer_count = fb->layers; } transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, iview->planes[0].isl.base_level, 1, base_layer, layer_count, att_state->current_layout, target_layout); } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { transition_depth_buffer(cmd_buffer, image, att_state->current_layout, target_layout); } } /* Accumulate any subpass flushes that need to happen after the subpass. * Yes, they do get accumulated twice in the NextSubpass case but since * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up * ORing the bits in twice so it's harmless. */ cmd_buffer->state.pending_pipe_bits |= cmd_buffer->state.pass->subpass_flushes[subpass_id + 1]; } void genX(CmdBeginRenderPass)( VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass); ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer); cmd_buffer->state.framebuffer = framebuffer; cmd_buffer->state.pass = pass; cmd_buffer->state.render_area = pRenderPassBegin->renderArea; VkResult result = genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin); /* If we failed to setup the attachments we should not try to go further */ if (result != VK_SUCCESS) { assert(anv_batch_has_error(&cmd_buffer->batch)); return; } genX(flush_pipeline_select_3d)(cmd_buffer); cmd_buffer_begin_subpass(cmd_buffer, 0); } void genX(CmdBeginRenderPass2KHR)( VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBeginInfo, const VkSubpassBeginInfoKHR* pSubpassBeginInfo) { genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo, pSubpassBeginInfo->contents); } void genX(CmdNextSubpass)( VkCommandBuffer commandBuffer, VkSubpassContents contents) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (anv_batch_has_error(&cmd_buffer->batch)) return; assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state); cmd_buffer_end_subpass(cmd_buffer); cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1); } void genX(CmdNextSubpass2KHR)( VkCommandBuffer commandBuffer, const VkSubpassBeginInfoKHR* pSubpassBeginInfo, const VkSubpassEndInfoKHR* pSubpassEndInfo) { genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents); } void genX(CmdEndRenderPass)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (anv_batch_has_error(&cmd_buffer->batch)) return; cmd_buffer_end_subpass(cmd_buffer); cmd_buffer->state.hiz_enabled = false; #ifndef NDEBUG anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer); #endif /* Remove references to render pass specific state. This enables us to * detect whether or not we're in a renderpass. */ cmd_buffer->state.framebuffer = NULL; cmd_buffer->state.pass = NULL; cmd_buffer->state.subpass = NULL; } void genX(CmdEndRenderPass2KHR)( VkCommandBuffer commandBuffer, const VkSubpassEndInfoKHR* pSubpassEndInfo) { genX(CmdEndRenderPass)(commandBuffer); }