/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" #include "genX_pipeline_util.h" static void emit_ia_state(struct anv_pipeline *pipeline, const VkPipelineInputAssemblyStateCreateInfo *info, const struct anv_graphics_pipeline_create_info *extra) { anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) { vft.PrimitiveTopologyType = pipeline->topology; } } VkResult genX(graphics_pipeline_create)( VkDevice _device, struct anv_pipeline_cache * cache, const VkGraphicsPipelineCreateInfo* pCreateInfo, const struct anv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipeline) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass); struct anv_physical_device *physical_device = &device->instance->physicalDevice; struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; struct anv_pipeline *pipeline; VkResult result; uint32_t offset, length; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO); pipeline = anv_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); result = anv_pipeline_init(pipeline, device, cache, pCreateInfo, extra, pAllocator); if (result != VK_SUCCESS) { anv_free2(&device->alloc, pAllocator, pipeline); return result; } assert(pCreateInfo->pVertexInputState); emit_vertex_input(pipeline, pCreateInfo->pVertexInputState, extra); assert(pCreateInfo->pInputAssemblyState); emit_ia_state(pipeline, pCreateInfo->pInputAssemblyState, extra); assert(pCreateInfo->pRasterizationState); emit_rs_state(pipeline, pCreateInfo->pRasterizationState, pCreateInfo->pMultisampleState, pass, subpass, extra); emit_ms_state(pipeline, pCreateInfo->pMultisampleState); emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass); emit_cb_state(pipeline, pCreateInfo->pColorBlendState, pCreateInfo->pMultisampleState); emit_urb_setup(pipeline); emit_3dstate_clip(pipeline, pCreateInfo->pViewportState, pCreateInfo->pRasterizationState, extra); emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState); const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) { wm.StatisticsEnable = true; wm.LineEndCapAntialiasingRegionWidth = _05pixels; wm.LineAntialiasingRegionWidth = _10pixels; wm.ForceThreadDispatchEnable = NORMAL; wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT; if (wm_prog_data && wm_prog_data->early_fragment_tests) { wm.EarlyDepthStencilControl = PREPS; } else if (wm_prog_data && wm_prog_data->has_side_effects) { wm.EarlyDepthStencilControl = PSEXEC; } else { wm.EarlyDepthStencilControl = NORMAL; } wm.BarycentricInterpolationMode = pipeline->ps_ksp0 == NO_KERNEL ? 0 : wm_prog_data->barycentric_interp_modes; } if (pipeline->gs_kernel == NO_KERNEL) { anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs); } else { const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline); offset = 1; length = (gs_prog_data->base.vue_map.num_slots + 1) / 2 - offset; anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) { gs.SingleProgramFlow = false; gs.KernelStartPointer = pipeline->gs_kernel; gs.VectorMaskEnable = false; gs.SamplerCount = 0; gs.BindingTableEntryCount = 0; gs.ExpectedVertexCount = gs_prog_data->vertices_in; gs.ScratchSpaceBasePointer = (struct anv_address) { .bo = anv_scratch_pool_alloc(device, &device->scratch_pool, MESA_SHADER_GEOMETRY, gs_prog_data->base.base.total_scratch), .offset = 0, }; gs.PerThreadScratchSpace = scratch_space(&gs_prog_data->base.base); gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1; gs.OutputTopology = gs_prog_data->output_topology; gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length; gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles; gs.DispatchGRFStartRegisterForURBData = gs_prog_data->base.base.dispatch_grf_start_reg; gs.MaximumNumberofThreads = physical_device->max_gs_threads / 2 - 1; gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords; gs.DispatchMode = gs_prog_data->base.dispatch_mode; gs.StatisticsEnable = true; gs.IncludePrimitiveID = gs_prog_data->include_primitive_id; gs.ReorderMode = TRAILING; gs.Enable = true; gs.ControlDataFormat = gs_prog_data->control_data_format; gs.StaticOutput = gs_prog_data->static_vertex_count >= 0; gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ? gs_prog_data->static_vertex_count : 0; /* FIXME: mesa sets this based on ctx->Transform.ClipPlanesEnabled: * UserClipDistanceClipTestEnableBitmask_3DSTATE_GS(v) * UserClipDistanceCullTestEnableBitmask(v) */ gs.VertexURBEntryOutputReadOffset = offset; gs.VertexURBEntryOutputLength = length; } } const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); /* Skip the VUE header and position slots */ offset = 1; length = (vs_prog_data->base.vue_map.num_slots + 1) / 2 - offset; uint32_t vs_start = pipeline->vs_simd8 != NO_KERNEL ? pipeline->vs_simd8 : pipeline->vs_vec4; if (vs_start == NO_KERNEL || (extra && extra->disable_vs)) { anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) { vs.FunctionEnable = false; /* Even if VS is disabled, SBE still gets the amount of * vertex data to read from this field. */ vs.VertexURBEntryOutputReadOffset = offset; vs.VertexURBEntryOutputLength = length; } } else { anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) { vs.KernelStartPointer = vs_start; vs.SingleVertexDispatch = false; vs.VectorMaskEnable = false; vs.SamplerCount = 0; vs.BindingTableEntryCount = vs_prog_data->base.base.binding_table.size_bytes / 4, vs.ThreadDispatchPriority = false; vs.FloatingPointMode = IEEE754; vs.IllegalOpcodeExceptionEnable = false; vs.AccessesUAV = false; vs.SoftwareExceptionEnable = false; vs.ScratchSpaceBasePointer = (struct anv_address) { .bo = anv_scratch_pool_alloc(device, &device->scratch_pool, MESA_SHADER_VERTEX, vs_prog_data->base.base.total_scratch), .offset = 0, }; vs.PerThreadScratchSpace = scratch_space(&vs_prog_data->base.base); vs.DispatchGRFStartRegisterForURBData = vs_prog_data->base.base.dispatch_grf_start_reg; vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length; vs.VertexURBEntryReadOffset = 0; vs.MaximumNumberofThreads = physical_device->max_vs_threads - 1; vs.StatisticsEnable = false; vs.SIMD8DispatchEnable = pipeline->vs_simd8 != NO_KERNEL; vs.VertexCacheDisable = false; vs.FunctionEnable = true; vs.VertexURBEntryOutputReadOffset = offset; vs.VertexURBEntryOutputLength = length; /* TODO */ vs.UserClipDistanceClipTestEnableBitmask = 0; vs.UserClipDistanceCullTestEnableBitmask = 0; } } const int num_thread_bias = GEN_GEN == 8 ? 2 : 1; if (pipeline->ps_ksp0 == NO_KERNEL) { anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), extra) { extra.PixelShaderValid = false; } } else { emit_3dstate_sbe(pipeline); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) { ps.KernelStartPointer0 = pipeline->ps_ksp0; ps.KernelStartPointer1 = 0; ps.KernelStartPointer2 = pipeline->ps_ksp0 + wm_prog_data->prog_offset_2; ps._8PixelDispatchEnable = wm_prog_data->dispatch_8; ps._16PixelDispatchEnable = wm_prog_data->dispatch_16; ps._32PixelDispatchEnable = false; ps.SingleProgramFlow = false; ps.VectorMaskEnable = true; ps.SamplerCount = 1; ps.PushConstantEnable = wm_prog_data->base.nr_params > 0; ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE: POSOFFSET_NONE; ps.MaximumNumberofThreadsPerPSD = 64 - num_thread_bias; ps.ScratchSpaceBasePointer = (struct anv_address) { .bo = anv_scratch_pool_alloc(device, &device->scratch_pool, MESA_SHADER_FRAGMENT, wm_prog_data->base.total_scratch), .offset = 0, }; ps.PerThreadScratchSpace = scratch_space(&wm_prog_data->base); ps.DispatchGRFStartRegisterForConstantSetupData0 = wm_prog_data->base.dispatch_grf_start_reg; ps.DispatchGRFStartRegisterForConstantSetupData1 = 0; ps.DispatchGRFStartRegisterForConstantSetupData2 = wm_prog_data->dispatch_grf_start_reg_2; } anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) { ps.PixelShaderValid = true; ps.PixelShaderKillsPixel = wm_prog_data->uses_kill; ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode; ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0; ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask; ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch; ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth; ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w; #if GEN_GEN >= 9 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary; ps.InputCoverageMaskState = wm_prog_data->uses_sample_mask ? ICMS_INNER_CONSERVATIVE : ICMS_NONE; #else ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask; #endif } } *pPipeline = anv_pipeline_to_handle(pipeline); return VK_SUCCESS; }