/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" #if GEN_GEN == 8 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer) { uint32_t count = cmd_buffer->state.dynamic.viewport.count; const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports; struct anv_state sf_clip_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64); for (uint32_t i = 0; i < count; i++) { const VkViewport *vp = &viewports[i]; /* The gen7 state struct has just the matrix and guardband fields, the * gen8 struct adds the min/max viewport fields. */ struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = { .ViewportMatrixElementm00 = vp->width / 2, .ViewportMatrixElementm11 = vp->height / 2, .ViewportMatrixElementm22 = 1.0, .ViewportMatrixElementm30 = vp->x + vp->width / 2, .ViewportMatrixElementm31 = vp->y + vp->height / 2, .ViewportMatrixElementm32 = 0.0, .XMinClipGuardband = -1.0f, .XMaxClipGuardband = 1.0f, .YMinClipGuardband = -1.0f, .YMaxClipGuardband = 1.0f, .XMinViewPort = vp->x, .XMaxViewPort = vp->x + vp->width - 1, .YMinViewPort = vp->y, .YMaxViewPort = vp->y + vp->height - 1, }; GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64, &sf_clip_viewport); } if (!cmd_buffer->device->info.has_llc) anv_state_clflush(sf_clip_state); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) { clip.SFClipViewportPointer = sf_clip_state.offset; } } void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer, bool depth_clamp_enable) { uint32_t count = cmd_buffer->state.dynamic.viewport.count; const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports; struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32); for (uint32_t i = 0; i < count; i++) { const VkViewport *vp = &viewports[i]; struct GENX(CC_VIEWPORT) cc_viewport = { .MinimumDepth = depth_clamp_enable ? vp->minDepth : 0.0f, .MaximumDepth = depth_clamp_enable ? vp->maxDepth : 1.0f, }; GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport); } if (!cmd_buffer->device->info.has_llc) anv_state_clflush(cc_state); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) { cc.CCViewportPointer = cc_state.offset; } } #endif static void __emit_genx_sf_state(struct anv_cmd_buffer *cmd_buffer) { uint32_t sf_dw[GENX(3DSTATE_SF_length)]; struct GENX(3DSTATE_SF) sf = { GENX(3DSTATE_SF_header), .LineWidth = cmd_buffer->state.dynamic.line_width, }; GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf); /* FIXME: gen9.fs */ anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, cmd_buffer->state.pipeline->gen8.sf); } #include "genxml/gen9_pack.h" static void __emit_gen9_sf_state(struct anv_cmd_buffer *cmd_buffer) { uint32_t sf_dw[GENX(3DSTATE_SF_length)]; struct GEN9_3DSTATE_SF sf = { GEN9_3DSTATE_SF_header, .LineWidth = cmd_buffer->state.dynamic.line_width, }; GEN9_3DSTATE_SF_pack(NULL, sf_dw, &sf); /* FIXME: gen9.fs */ anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, cmd_buffer->state.pipeline->gen8.sf); } static void __emit_sf_state(struct anv_cmd_buffer *cmd_buffer) { if (cmd_buffer->device->info.is_cherryview) __emit_gen9_sf_state(cmd_buffer); else __emit_genx_sf_state(cmd_buffer); } void genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.pipeline; if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) { __emit_sf_state(cmd_buffer); } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){ uint32_t raster_dw[GENX(3DSTATE_RASTER_length)]; struct GENX(3DSTATE_RASTER) raster = { GENX(3DSTATE_RASTER_header), .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias, .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope, .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp }; GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster); anv_batch_emit_merge(&cmd_buffer->batch, raster_dw, pipeline->gen8.raster); } /* Stencil reference values moved from COLOR_CALC_STATE in gen8 to * 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split * across different state packets for gen8 and gen9. We handle that by * using a big old #if switch here. */ #if GEN_GEN == 8 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) { struct anv_dynamic_state *d = &cmd_buffer->state.dynamic; struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, GENX(COLOR_CALC_STATE_length) * 4, 64); struct GENX(COLOR_CALC_STATE) cc = { .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0], .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1], .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2], .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3], .StencilReferenceValue = d->stencil_reference.front & 0xff, .BackFaceStencilReferenceValue = d->stencil_reference.back & 0xff, }; GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc); if (!cmd_buffer->device->info.has_llc) anv_state_clflush(cc_state); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) { ccp.ColorCalcStatePointer = cc_state.offset; ccp.ColorCalcStatePointerValid = true; } } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) { uint32_t wm_depth_stencil_dw[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; struct anv_dynamic_state *d = &cmd_buffer->state.dynamic; struct GENX(3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil) = { GENX(3DSTATE_WM_DEPTH_STENCIL_header), .StencilTestMask = d->stencil_compare_mask.front & 0xff, .StencilWriteMask = d->stencil_write_mask.front & 0xff, .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff, .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff, }; GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, wm_depth_stencil_dw, &wm_depth_stencil); anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw, pipeline->gen8.wm_depth_stencil); } #else if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) { struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, GEN9_COLOR_CALC_STATE_length * 4, 64); struct GEN9_COLOR_CALC_STATE cc = { .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0], .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1], .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2], .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3], }; GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc); if (!cmd_buffer->device->info.has_llc) anv_state_clflush(cc_state); anv_batch_emit(&cmd_buffer->batch, GEN9_3DSTATE_CC_STATE_POINTERS, ccp) { ccp.ColorCalcStatePointer = cc_state.offset; ccp.ColorCalcStatePointerValid = true; } } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) { uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length]; struct anv_dynamic_state *d = &cmd_buffer->state.dynamic; struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = { GEN9_3DSTATE_WM_DEPTH_STENCIL_header, .StencilTestMask = d->stencil_compare_mask.front & 0xff, .StencilWriteMask = d->stencil_write_mask.front & 0xff, .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff, .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff, .StencilReferenceValue = d->stencil_reference.front & 0xff, .BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff, }; GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil); anv_batch_emit_merge(&cmd_buffer->batch, dwords, pipeline->gen9.wm_depth_stencil); } #endif if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_INDEX_BUFFER)) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF), vf) { vf.IndexedDrawCutIndexEnable = pipeline->primitive_restart; vf.CutIndex = cmd_buffer->state.restart_index; } } cmd_buffer->state.dirty = 0; } void genX(CmdBindIndexBuffer)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkIndexType indexType) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); static const uint32_t vk_to_gen_index_type[] = { [VK_INDEX_TYPE_UINT16] = INDEX_WORD, [VK_INDEX_TYPE_UINT32] = INDEX_DWORD, }; static const uint32_t restart_index_for_type[] = { [VK_INDEX_TYPE_UINT16] = UINT16_MAX, [VK_INDEX_TYPE_UINT32] = UINT32_MAX, }; cmd_buffer->state.restart_index = restart_index_for_type[indexType]; anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) { ib.IndexFormat = vk_to_gen_index_type[indexType]; ib.MemoryObjectControlState = GENX(MOCS); ib.BufferStartingAddress = (struct anv_address) { buffer->bo, buffer->offset + offset }; ib.BufferSize = buffer->size - offset; } cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER; } static VkResult flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; struct anv_state surfaces = { 0, }, samplers = { 0, }; VkResult result; result = anv_cmd_buffer_emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers); if (result != VK_SUCCESS) return result; result = anv_cmd_buffer_emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces); if (result != VK_SUCCESS) return result; struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer); const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline); const struct brw_stage_prog_data *prog_data = &cs_prog_data->base; if (push_state.alloc_size) { anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) { curbe.CURBETotalDataLength = push_state.alloc_size; curbe.CURBEDataStartAddress = push_state.offset; } } const uint32_t slm_size = encode_slm_size(GEN_GEN, prog_data->total_shared); struct anv_state state = anv_state_pool_emit(&device->dynamic_state_pool, GENX(INTERFACE_DESCRIPTOR_DATA), 64, .KernelStartPointer = pipeline->cs_simd, .KernelStartPointerHigh = 0, .BindingTablePointer = surfaces.offset, .BindingTableEntryCount = 0, .SamplerStatePointer = samplers.offset, .SamplerCount = 0, .ConstantIndirectURBEntryReadLength = cs_prog_data->push.per_thread.regs, .ConstantURBEntryReadOffset = 0, .BarrierEnable = cs_prog_data->uses_barrier, .SharedLocalMemorySize = slm_size, .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads, .CrossThreadConstantDataReadLength = cs_prog_data->push.cross_thread.regs); uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) { mid.InterfaceDescriptorTotalLength = size; mid.InterfaceDescriptorDataStartAddress = state.offset; } return VK_SUCCESS; } void genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; MAYBE_UNUSED VkResult result; assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT); genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config); genX(flush_pipeline_select_gpgpu)(cmd_buffer); if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) || (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) { result = flush_compute_descriptor_set(cmd_buffer); assert(result == VK_SUCCESS); cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; } cmd_buffer->state.compute_dirty = 0; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } void genX(CmdSetEvent)( VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags stageMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_event, event, _event); anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DestinationAddressType = DAT_PPGTT, pc.PostSyncOperation = WriteImmediateData, pc.Address = (struct anv_address) { &cmd_buffer->device->dynamic_state_block_pool.bo, event->state.offset }; pc.ImmediateData = VK_EVENT_SET; } } void genX(CmdResetEvent)( VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags stageMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_event, event, _event); anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DestinationAddressType = DAT_PPGTT; pc.PostSyncOperation = WriteImmediateData; pc.Address = (struct anv_address) { &cmd_buffer->device->dynamic_state_block_pool.bo, event->state.offset }; pc.ImmediateData = VK_EVENT_RESET; } } void genX(CmdWaitEvents)( VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); for (uint32_t i = 0; i < eventCount; i++) { ANV_FROM_HANDLE(anv_event, event, pEvents[i]); anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) { sem.WaitMode = PollingMode, sem.CompareOperation = COMPARE_SAD_EQUAL_SDD, sem.SemaphoreDataDword = VK_EVENT_SET, sem.SemaphoreAddress = (struct anv_address) { &cmd_buffer->device->dynamic_state_block_pool.bo, event->state.offset }; } } genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask, false, /* byRegion */ memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); }