/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" #include "common/gen_guardband.h" #if GEN_GEN == 8 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer) { struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; uint32_t count = cmd_buffer->state.gfx.dynamic.viewport.count; const VkViewport *viewports = cmd_buffer->state.gfx.dynamic.viewport.viewports; struct anv_state sf_clip_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64); for (uint32_t i = 0; i < count; i++) { const VkViewport *vp = &viewports[i]; /* The gen7 state struct has just the matrix and guardband fields, the * gen8 struct adds the min/max viewport fields. */ struct GENX(SF_CLIP_VIEWPORT) sfv = { .ViewportMatrixElementm00 = vp->width / 2, .ViewportMatrixElementm11 = vp->height / 2, .ViewportMatrixElementm22 = vp->maxDepth - vp->minDepth, .ViewportMatrixElementm30 = vp->x + vp->width / 2, .ViewportMatrixElementm31 = vp->y + vp->height / 2, .ViewportMatrixElementm32 = vp->minDepth, .XMinClipGuardband = -1.0f, .XMaxClipGuardband = 1.0f, .YMinClipGuardband = -1.0f, .YMaxClipGuardband = 1.0f, .XMinViewPort = vp->x, .XMaxViewPort = vp->x + vp->width - 1, .YMinViewPort = MIN2(vp->y, vp->y + vp->height), .YMaxViewPort = MAX2(vp->y, vp->y + vp->height) - 1, }; if (fb) { /* We can only calculate a "real" guardband clip if we know the * framebuffer at the time we emit the packet. Otherwise, we have * fall back to a worst-case guardband of [-1, 1]. */ gen_calculate_guardband_size(fb->width, fb->height, sfv.ViewportMatrixElementm00, sfv.ViewportMatrixElementm11, sfv.ViewportMatrixElementm30, sfv.ViewportMatrixElementm31, &sfv.XMinClipGuardband, &sfv.XMaxClipGuardband, &sfv.YMinClipGuardband, &sfv.YMaxClipGuardband); } GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64, &sfv); } anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) { clip.SFClipViewportPointer = sf_clip_state.offset; } } void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer, bool depth_clamp_enable) { uint32_t count = cmd_buffer->state.gfx.dynamic.viewport.count; const VkViewport *viewports = cmd_buffer->state.gfx.dynamic.viewport.viewports; struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32); for (uint32_t i = 0; i < count; i++) { const VkViewport *vp = &viewports[i]; struct GENX(CC_VIEWPORT) cc_viewport = { .MinimumDepth = depth_clamp_enable ? vp->minDepth : 0.0f, .MaximumDepth = depth_clamp_enable ? vp->maxDepth : 1.0f, }; GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport); } anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) { cc.CCViewportPointer = cc_state.offset; } } #endif void genX(cmd_buffer_enable_pma_fix)(struct anv_cmd_buffer *cmd_buffer, bool enable) { if (cmd_buffer->state.pma_fix_enabled == enable) return; cmd_buffer->state.pma_fix_enabled = enable; /* According to the Broadwell PIPE_CONTROL documentation, software should * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary. * * The Skylake docs say to use a depth stall rather than a command * streamer stall. However, the hardware seems to violently disagree. * A full command streamer stall seems to be needed in both cases. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DepthCacheFlushEnable = true; pc.CommandStreamerStallEnable = true; pc.RenderTargetCacheFlushEnable = true; } #if GEN_GEN == 9 uint32_t cache_mode; anv_pack_struct(&cache_mode, GENX(CACHE_MODE_0), .STCPMAOptimizationEnable = enable, .STCPMAOptimizationEnableMask = true); anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = GENX(CACHE_MODE_0_num); lri.DataDWord = cache_mode; } #elif GEN_GEN == 8 uint32_t cache_mode; anv_pack_struct(&cache_mode, GENX(CACHE_MODE_1), .NPPMAFixEnable = enable, .NPEarlyZFailsDisable = enable, .NPPMAFixEnableMask = true, .NPEarlyZFailsDisableMask = true); anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = GENX(CACHE_MODE_1_num); lri.DataDWord = cache_mode; } #endif /* GEN_GEN == 8 */ /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache * Flush bits is often necessary. We do it regardless because it's easier. * The render cache flush is also necessary if stencil writes are enabled. * * Again, the Skylake docs give a different set of flushes but the BDW * flushes seem to work just as well. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DepthStallEnable = true; pc.DepthCacheFlushEnable = true; pc.RenderTargetCacheFlushEnable = true; } } UNUSED static bool want_depth_pma_fix(struct anv_cmd_buffer *cmd_buffer) { assert(GEN_GEN == 8); /* From the Broadwell PRM Vol. 2c CACHE_MODE_1::NP_PMA_FIX_ENABLE: * * SW must set this bit in order to enable this fix when following * expression is TRUE. * * 3DSTATE_WM::ForceThreadDispatch != 1 && * !(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) && * (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) && * (3DSTATE_DEPTH_BUFFER::HIZ Enable) && * !(3DSTATE_WM::EDSC_Mode == EDSC_PREPS) && * (3DSTATE_PS_EXTRA::PixelShaderValid) && * !(3DSTATE_WM_HZ_OP::DepthBufferClear || * 3DSTATE_WM_HZ_OP::DepthBufferResolve || * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable || * 3DSTATE_WM_HZ_OP::StencilBufferClear) && * (3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable) && * (((3DSTATE_PS_EXTRA::PixelShaderKillsPixels || * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget || * 3DSTATE_PS_BLEND::AlphaToCoverageEnable || * 3DSTATE_PS_BLEND::AlphaTestEnable || * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) && * 3DSTATE_WM::ForceKillPix != ForceOff && * ((3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable && * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE) || * (3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable && * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE && * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE))) || * (3DSTATE_PS_EXTRA:: Pixel Shader Computed Depth mode != PSCDEPTH_OFF)) */ /* These are always true: * 3DSTATE_WM::ForceThreadDispatch != 1 && * !(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) */ /* We only enable the PMA fix if we know for certain that HiZ is enabled. * If we don't know whether HiZ is enabled or not, we disable the PMA fix * and there is no harm. * * (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) && * 3DSTATE_DEPTH_BUFFER::HIZ Enable */ if (!cmd_buffer->state.hiz_enabled) return false; /* 3DSTATE_PS_EXTRA::PixelShaderValid */ struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) return false; /* !(3DSTATE_WM::EDSC_Mode == EDSC_PREPS) */ const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); if (wm_prog_data->early_fragment_tests) return false; /* We never use anv_pipeline for HiZ ops so this is trivially true: * !(3DSTATE_WM_HZ_OP::DepthBufferClear || * 3DSTATE_WM_HZ_OP::DepthBufferResolve || * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable || * 3DSTATE_WM_HZ_OP::StencilBufferClear) */ /* 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable */ if (!pipeline->depth_test_enable) return false; /* (((3DSTATE_PS_EXTRA::PixelShaderKillsPixels || * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget || * 3DSTATE_PS_BLEND::AlphaToCoverageEnable || * 3DSTATE_PS_BLEND::AlphaTestEnable || * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) && * 3DSTATE_WM::ForceKillPix != ForceOff && * ((3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable && * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE) || * (3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable && * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE && * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE))) || * (3DSTATE_PS_EXTRA:: Pixel Shader Computed Depth mode != PSCDEPTH_OFF)) */ return (pipeline->kill_pixel && (pipeline->writes_depth || pipeline->writes_stencil)) || wm_prog_data->computed_depth_mode != PSCDEPTH_OFF; } UNUSED static bool want_stencil_pma_fix(struct anv_cmd_buffer *cmd_buffer) { if (GEN_GEN > 9) return false; assert(GEN_GEN == 9); /* From the Skylake PRM Vol. 2c CACHE_MODE_1::STC PMA Optimization Enable: * * Clearing this bit will force the STC cache to wait for pending * retirement of pixels at the HZ-read stage and do the STC-test for * Non-promoted, R-computed and Computed depth modes instead of * postponing the STC-test to RCPFE. * * STC_TEST_EN = 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE && * 3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable * * STC_WRITE_EN = 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE && * (3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable && * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE) * * COMP_STC_EN = STC_TEST_EN && * 3DSTATE_PS_EXTRA::PixelShaderComputesStencil * * SW parses the pipeline states to generate the following logical * signal indicating if PMA FIX can be enabled. * * STC_PMA_OPT = * 3DSTATE_WM::ForceThreadDispatch != 1 && * !(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) && * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL && * 3DSTATE_DEPTH_BUFFER::HIZ Enable && * !(3DSTATE_WM::EDSC_Mode == 2) && * 3DSTATE_PS_EXTRA::PixelShaderValid && * !(3DSTATE_WM_HZ_OP::DepthBufferClear || * 3DSTATE_WM_HZ_OP::DepthBufferResolve || * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable || * 3DSTATE_WM_HZ_OP::StencilBufferClear) && * (COMP_STC_EN || STC_WRITE_EN) && * ((3DSTATE_PS_EXTRA::PixelShaderKillsPixels || * 3DSTATE_WM::ForceKillPix == ON || * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget || * 3DSTATE_PS_BLEND::AlphaToCoverageEnable || * 3DSTATE_PS_BLEND::AlphaTestEnable || * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) || * (3DSTATE_PS_EXTRA::Pixel Shader Computed Depth mode != PSCDEPTH_OFF)) */ /* These are always true: * 3DSTATE_WM::ForceThreadDispatch != 1 && * !(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) */ /* We only enable the PMA fix if we know for certain that HiZ is enabled. * If we don't know whether HiZ is enabled or not, we disable the PMA fix * and there is no harm. * * (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) && * 3DSTATE_DEPTH_BUFFER::HIZ Enable */ if (!cmd_buffer->state.hiz_enabled) return false; /* We can't possibly know if HiZ is enabled without the framebuffer */ assert(cmd_buffer->state.framebuffer); /* HiZ is enabled so we had better have a depth buffer with HiZ */ const struct anv_image_view *ds_iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); assert(ds_iview && ds_iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ); /* 3DSTATE_PS_EXTRA::PixelShaderValid */ struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) return false; /* !(3DSTATE_WM::EDSC_Mode == 2) */ const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); if (wm_prog_data->early_fragment_tests) return false; /* We never use anv_pipeline for HiZ ops so this is trivially true: * !(3DSTATE_WM_HZ_OP::DepthBufferClear || * 3DSTATE_WM_HZ_OP::DepthBufferResolve || * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable || * 3DSTATE_WM_HZ_OP::StencilBufferClear) */ /* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE && * 3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable */ const bool stc_test_en = (ds_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && pipeline->stencil_test_enable; /* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE && * (3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable && * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE) */ const bool stc_write_en = (ds_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && (cmd_buffer->state.gfx.dynamic.stencil_write_mask.front || cmd_buffer->state.gfx.dynamic.stencil_write_mask.back) && pipeline->writes_stencil; /* STC_TEST_EN && 3DSTATE_PS_EXTRA::PixelShaderComputesStencil */ const bool comp_stc_en = stc_test_en && wm_prog_data->computed_stencil; /* COMP_STC_EN || STC_WRITE_EN */ if (!(comp_stc_en || stc_write_en)) return false; /* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels || * 3DSTATE_WM::ForceKillPix == ON || * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget || * 3DSTATE_PS_BLEND::AlphaToCoverageEnable || * 3DSTATE_PS_BLEND::AlphaTestEnable || * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) || * (3DSTATE_PS_EXTRA::Pixel Shader Computed Depth mode != PSCDEPTH_OFF) */ return pipeline->kill_pixel || wm_prog_data->computed_depth_mode != PSCDEPTH_OFF; } void genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; struct anv_dynamic_state *d = &cmd_buffer->state.gfx.dynamic; if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) { uint32_t sf_dw[GENX(3DSTATE_SF_length)]; struct GENX(3DSTATE_SF) sf = { GENX(3DSTATE_SF_header), }; #if GEN_GEN == 8 if (cmd_buffer->device->info.is_cherryview) { sf.CHVLineWidth = d->line_width; } else { sf.LineWidth = d->line_width; } #else sf.LineWidth = d->line_width, #endif GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf); anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gen8.sf); } if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){ uint32_t raster_dw[GENX(3DSTATE_RASTER_length)]; struct GENX(3DSTATE_RASTER) raster = { GENX(3DSTATE_RASTER_header), .GlobalDepthOffsetConstant = d->depth_bias.bias, .GlobalDepthOffsetScale = d->depth_bias.slope, .GlobalDepthOffsetClamp = d->depth_bias.clamp }; GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster); anv_batch_emit_merge(&cmd_buffer->batch, raster_dw, pipeline->gen8.raster); } /* Stencil reference values moved from COLOR_CALC_STATE in gen8 to * 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split * across different state packets for gen8 and gen9. We handle that by * using a big old #if switch here. */ #if GEN_GEN == 8 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) { struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, GENX(COLOR_CALC_STATE_length) * 4, 64); struct GENX(COLOR_CALC_STATE) cc = { .BlendConstantColorRed = d->blend_constants[0], .BlendConstantColorGreen = d->blend_constants[1], .BlendConstantColorBlue = d->blend_constants[2], .BlendConstantColorAlpha = d->blend_constants[3], .StencilReferenceValue = d->stencil_reference.front & 0xff, .BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff, }; GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) { ccp.ColorCalcStatePointer = cc_state.offset; ccp.ColorCalcStatePointerValid = true; } } if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_RENDER_TARGETS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) { uint32_t wm_depth_stencil_dw[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; struct GENX(3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil) = { GENX(3DSTATE_WM_DEPTH_STENCIL_header), .StencilTestMask = d->stencil_compare_mask.front & 0xff, .StencilWriteMask = d->stencil_write_mask.front & 0xff, .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff, .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff, .StencilBufferWriteEnable = (d->stencil_write_mask.front || d->stencil_write_mask.back) && pipeline->writes_stencil, }; GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, wm_depth_stencil_dw, &wm_depth_stencil); anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw, pipeline->gen8.wm_depth_stencil); genX(cmd_buffer_enable_pma_fix)(cmd_buffer, want_depth_pma_fix(cmd_buffer)); } #else if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) { struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, GENX(COLOR_CALC_STATE_length) * 4, 64); struct GENX(COLOR_CALC_STATE) cc = { .BlendConstantColorRed = d->blend_constants[0], .BlendConstantColorGreen = d->blend_constants[1], .BlendConstantColorBlue = d->blend_constants[2], .BlendConstantColorAlpha = d->blend_constants[3], }; GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) { ccp.ColorCalcStatePointer = cc_state.offset; ccp.ColorCalcStatePointerValid = true; } } if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_RENDER_TARGETS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) { uint32_t dwords[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; struct GENX(3DSTATE_WM_DEPTH_STENCIL) wm_depth_stencil = { GENX(3DSTATE_WM_DEPTH_STENCIL_header), .StencilTestMask = d->stencil_compare_mask.front & 0xff, .StencilWriteMask = d->stencil_write_mask.front & 0xff, .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff, .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff, .StencilReferenceValue = d->stencil_reference.front & 0xff, .BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff, .StencilBufferWriteEnable = (d->stencil_write_mask.front || d->stencil_write_mask.back) && pipeline->writes_stencil, }; GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, dwords, &wm_depth_stencil); anv_batch_emit_merge(&cmd_buffer->batch, dwords, pipeline->gen9.wm_depth_stencil); genX(cmd_buffer_enable_pma_fix)(cmd_buffer, want_stencil_pma_fix(cmd_buffer)); } #endif if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_LINE_STIPPLE), ls) { ls.LineStipplePattern = d->line_stipple.pattern; ls.LineStippleInverseRepeatCount = 1.0f / MAX2(1, d->line_stipple.factor); ls.LineStippleRepeatCount = d->line_stipple.factor; } } if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_INDEX_BUFFER)) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF), vf) { vf.IndexedDrawCutIndexEnable = pipeline->primitive_restart; vf.CutIndex = cmd_buffer->state.restart_index; } } cmd_buffer->state.gfx.dirty = 0; } static uint32_t vk_to_gen_index_type(VkIndexType type) { switch (type) { case VK_INDEX_TYPE_UINT8_EXT: return INDEX_BYTE; case VK_INDEX_TYPE_UINT16: return INDEX_WORD; case VK_INDEX_TYPE_UINT32: return INDEX_DWORD; default: unreachable("invalid index type"); } } static uint32_t restart_index_for_type(VkIndexType type) { switch (type) { case VK_INDEX_TYPE_UINT8_EXT: return UINT8_MAX; case VK_INDEX_TYPE_UINT16: return UINT16_MAX; case VK_INDEX_TYPE_UINT32: return UINT32_MAX; default: unreachable("invalid index type"); } } void genX(CmdBindIndexBuffer)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkIndexType indexType) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); cmd_buffer->state.restart_index = restart_index_for_type(indexType); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) { ib.IndexFormat = vk_to_gen_index_type(indexType); ib.MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo); ib.BufferStartingAddress = anv_address_add(buffer->address, offset); ib.BufferSize = buffer->size - offset; } cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER; }