/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" static uint32_t cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer) { static const uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, [MESA_SHADER_COMPUTE] = 0, }; VkShaderStageFlags flushed = 0; anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) { if (stage == MESA_SHADER_COMPUTE) continue; struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage); if (state.offset == 0) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), ._3DCommandSubOpcode = push_constant_opcodes[stage]); } else { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), ._3DCommandSubOpcode = push_constant_opcodes[stage], .ConstantBody = { .PointerToConstantBuffer0 = { .offset = state.offset }, .ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32), }); } } cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS; return flushed; } #if GEN_GEN == 7 && !GEN_IS_HASWELL void gen7_cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer, uint32_t stages) { static const uint32_t sampler_state_opcodes[] = { [MESA_SHADER_VERTEX] = 43, [MESA_SHADER_TESS_CTRL] = 44, /* HS */ [MESA_SHADER_TESS_EVAL] = 45, /* DS */ [MESA_SHADER_GEOMETRY] = 46, [MESA_SHADER_FRAGMENT] = 47, [MESA_SHADER_COMPUTE] = 0, }; static const uint32_t binding_table_opcodes[] = { [MESA_SHADER_VERTEX] = 38, [MESA_SHADER_TESS_CTRL] = 39, [MESA_SHADER_TESS_EVAL] = 40, [MESA_SHADER_GEOMETRY] = 41, [MESA_SHADER_FRAGMENT] = 42, [MESA_SHADER_COMPUTE] = 0, }; anv_foreach_stage(s, stages) { if (cmd_buffer->state.samplers[s].alloc_size > 0) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ._3DCommandSubOpcode = sampler_state_opcodes[s], .PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset); } /* Always emit binding table pointers if we're asked to, since on SKL * this is what flushes push constants. */ anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ._3DCommandSubOpcode = binding_table_opcodes[s], .PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset); } } uint32_t gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer) { VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty & cmd_buffer->state.pipeline->active_stages; VkResult result = VK_SUCCESS; anv_foreach_stage(s, dirty) { result = anv_cmd_buffer_emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]); if (result != VK_SUCCESS) break; result = anv_cmd_buffer_emit_binding_table(cmd_buffer, s, &cmd_buffer->state.binding_tables[s]); if (result != VK_SUCCESS) break; } if (result != VK_SUCCESS) { assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY); result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); assert(result == VK_SUCCESS); /* Re-emit state base addresses so we get the new surface state base * address before we start emitting binding tables etc. */ anv_cmd_buffer_emit_state_base_address(cmd_buffer); /* Re-emit all active binding tables */ dirty |= cmd_buffer->state.pipeline->active_stages; anv_foreach_stage(s, dirty) { result = anv_cmd_buffer_emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]); if (result != VK_SUCCESS) return result; result = anv_cmd_buffer_emit_binding_table(cmd_buffer, s, &cmd_buffer->state.binding_tables[s]); if (result != VK_SUCCESS) return result; } } cmd_buffer->state.descriptors_dirty &= ~dirty; return dirty; } #endif /* GEN_GEN == 7 && !GEN_IS_HASWELL */ static inline int64_t clamp_int64(int64_t x, int64_t min, int64_t max) { if (x < min) return min; else if (x < max) return x; else return max; } #if GEN_GEN == 7 && !GEN_IS_HASWELL static void emit_scissor_state(struct anv_cmd_buffer *cmd_buffer, uint32_t count, const VkRect2D *scissors) { struct anv_state scissor_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32); for (uint32_t i = 0; i < count; i++) { const VkRect2D *s = &scissors[i]; /* Since xmax and ymax are inclusive, we have to have xmax < xmin or * ymax < ymin for empty clips. In case clip x, y, width height are all * 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't * what we want. Just special case empty clips and produce a canonical * empty clip. */ static const struct GEN7_SCISSOR_RECT empty_scissor = { .ScissorRectangleYMin = 1, .ScissorRectangleXMin = 1, .ScissorRectangleYMax = 0, .ScissorRectangleXMax = 0 }; const int max = 0xffff; struct GEN7_SCISSOR_RECT scissor = { /* Do this math using int64_t so overflow gets clamped correctly. */ .ScissorRectangleYMin = clamp_int64(s->offset.y, 0, max), .ScissorRectangleXMin = clamp_int64(s->offset.x, 0, max), .ScissorRectangleYMax = clamp_int64((uint64_t) s->offset.y + s->extent.height - 1, 0, max), .ScissorRectangleXMax = clamp_int64((uint64_t) s->offset.x + s->extent.width - 1, 0, max) }; if (s->extent.width <= 0 || s->extent.height <= 0) { GEN7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8, &empty_scissor); } else { GEN7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8, &scissor); } } anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_SCISSOR_STATE_POINTERS, .ScissorRectPointer = scissor_state.offset); if (!cmd_buffer->device->info.has_llc) anv_state_clflush(scissor_state); } void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer) { if (cmd_buffer->state.dynamic.scissor.count > 0) { emit_scissor_state(cmd_buffer, cmd_buffer->state.dynamic.scissor.count, cmd_buffer->state.dynamic.scissor.scissors); } else { /* Emit a default scissor based on the currently bound framebuffer */ emit_scissor_state(cmd_buffer, 1, &(VkRect2D) { .offset = { .x = 0, .y = 0, }, .extent = { .width = cmd_buffer->state.framebuffer->width, .height = cmd_buffer->state.framebuffer->height, }, }); } } #endif static const uint32_t vk_to_gen_index_type[] = { [VK_INDEX_TYPE_UINT16] = INDEX_WORD, [VK_INDEX_TYPE_UINT32] = INDEX_DWORD, }; static const uint32_t restart_index_for_type[] = { [VK_INDEX_TYPE_UINT16] = UINT16_MAX, [VK_INDEX_TYPE_UINT32] = UINT32_MAX, }; void genX(CmdBindIndexBuffer)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkIndexType indexType) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER; if (GEN_IS_HASWELL) cmd_buffer->state.restart_index = restart_index_for_type[indexType]; cmd_buffer->state.gen7.index_buffer = buffer; cmd_buffer->state.gen7.index_type = vk_to_gen_index_type[indexType]; cmd_buffer->state.gen7.index_offset = offset; } static VkResult flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; struct anv_state surfaces = { 0, }, samplers = { 0, }; VkResult result; result = anv_cmd_buffer_emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers); if (result != VK_SUCCESS) return result; result = anv_cmd_buffer_emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces); if (result != VK_SUCCESS) return result; struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer); const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data; const struct brw_stage_prog_data *prog_data = &cs_prog_data->base; unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8; unsigned push_constant_data_size = (prog_data->nr_params + local_id_dwords) * 4; unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32); unsigned push_constant_regs = reg_aligned_constant_size / 32; if (push_state.alloc_size) { anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), .CURBETotalDataLength = push_state.alloc_size, .CURBEDataStartAddress = push_state.offset); } assert(prog_data->total_shared <= 64 * 1024); uint32_t slm_size = 0; if (prog_data->total_shared > 0) { /* slm_size is in 4k increments, but must be a power of 2. */ slm_size = 4 * 1024; while (slm_size < prog_data->total_shared) slm_size <<= 1; slm_size /= 4 * 1024; } struct anv_state state = anv_state_pool_emit(&device->dynamic_state_pool, GENX(INTERFACE_DESCRIPTOR_DATA), 64, .KernelStartPointer = pipeline->cs_simd, .BindingTablePointer = surfaces.offset, .SamplerStatePointer = samplers.offset, .ConstantURBEntryReadLength = push_constant_regs, #if !GEN_IS_HASWELL .ConstantURBEntryReadOffset = 0, #endif .BarrierEnable = cs_prog_data->uses_barrier, .SharedLocalMemorySize = slm_size, .NumberofThreadsinGPGPUThreadGroup = pipeline->cs_thread_width_max); const uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), .InterfaceDescriptorTotalLength = size, .InterfaceDescriptorDataStartAddress = state.offset); return VK_SUCCESS; } static void emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), .RegisterOffset = reg, .DataDWord = imm); } #define GEN7_L3SQCREG1 0xb010 #define GEN7_L3CNTLREG2 0xb020 #define GEN7_L3CNTLREG3 0xb024 static void config_l3(struct anv_cmd_buffer *cmd_buffer, bool enable_slm) { /* References for GL state: * * - commits e307cfa..228d5a3 * - src/mesa/drivers/dri/i965/gen7_l3_state.c */ uint32_t l3c2_val = enable_slm ? /* All = 0 ways; URB = 16 ways; DC and RO = 16; SLM = 1 */ /*0x02040021*/0x010000a1 : /* All = 0 ways; URB = 32 ways; DC = 0; RO = 32; SLM = 0 */ /*0x04080040*/0x02000030; bool changed = cmd_buffer->state.current_l3_config != l3c2_val; if (changed) { /* According to the hardware docs, the L3 partitioning can only be changed * while the pipeline is completely drained and the caches are flushed, * which involves a first PIPE_CONTROL flush which stalls the pipeline and * initiates invalidation of the relevant caches... */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), .TextureCacheInvalidationEnable = true, .ConstantCacheInvalidationEnable = true, .InstructionCacheInvalidateEnable = true, .DCFlushEnable = true, .PostSyncOperation = NoWrite, .CommandStreamerStallEnable = true); /* ...followed by a second stalling flush which guarantees that * invalidation is complete when the L3 configuration registers are * modified. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), .DCFlushEnable = true, .PostSyncOperation = NoWrite, .CommandStreamerStallEnable = true); anv_finishme("write GEN7_L3SQCREG1"); emit_lri(&cmd_buffer->batch, GEN7_L3CNTLREG2, l3c2_val); emit_lri(&cmd_buffer->batch, GEN7_L3CNTLREG3, enable_slm ? 0x00040810 : 0x00040410); cmd_buffer->state.current_l3_config = l3c2_val; } } void genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; VkResult result; assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT); bool needs_slm = pipeline->cs_prog_data.base.total_shared > 0; config_l3(cmd_buffer, needs_slm); if (cmd_buffer->state.current_pipeline != GPGPU) { anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), .PipelineSelection = GPGPU); cmd_buffer->state.current_pipeline = GPGPU; } if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) || (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) { /* FIXME: figure out descriptors for gen7 */ result = flush_compute_descriptor_set(cmd_buffer); assert(result == VK_SUCCESS); cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; } cmd_buffer->state.compute_dirty = 0; } void genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.pipeline; uint32_t *p; uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used; assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0); genX(flush_pipeline_select_3d)(cmd_buffer); if (vb_emit) { const uint32_t num_buffers = __builtin_popcount(vb_emit); const uint32_t num_dwords = 1 + num_buffers * 4; p = anv_batch_emitn(&cmd_buffer->batch, num_dwords, GENX(3DSTATE_VERTEX_BUFFERS)); uint32_t vb, i = 0; for_each_bit(vb, vb_emit) { struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer; uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset; struct GENX(VERTEX_BUFFER_STATE) state = { .VertexBufferIndex = vb, .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA, .VertexBufferMemoryObjectControlState = GENX(MOCS), .AddressModifyEnable = true, .BufferPitch = pipeline->binding_stride[vb], .BufferStartingAddress = { buffer->bo, buffer->offset + offset }, .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1}, .InstanceDataStepRate = 1 }; GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state); i++; } } if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) { /* If somebody compiled a pipeline after starting a command buffer the * scratch bo may have grown since we started this cmd buffer (and * emitted STATE_BASE_ADDRESS). If we're binding that pipeline now, * reemit STATE_BASE_ADDRESS so that we use the bigger scratch bo. */ if (cmd_buffer->state.scratch_size < pipeline->total_scratch) gen7_cmd_buffer_emit_state_base_address(cmd_buffer); anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS: * * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to * the next 3DPRIMITIVE command after programming the * 3DSTATE_PUSH_CONSTANT_ALLOC_VS" * * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of * pipeline setup, we need to dirty push constants. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; } if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT || cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) { /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1: * * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth * stall needs to be sent just prior to any 3DSTATE_VS, * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS, * 3DSTATE_BINDING_TABLE_POINTER_VS, * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one * PIPE_CONTROL needs to be sent before any combination of VS * associated 3DSTATE." */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), .DepthStallEnable = true, .PostSyncOperation = WriteImmediateData, .Address = { &cmd_buffer->device->workaround_bo, 0 }); } uint32_t dirty = 0; if (cmd_buffer->state.descriptors_dirty) { dirty = gen7_cmd_buffer_flush_descriptor_sets(cmd_buffer); gen7_cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty); } if (cmd_buffer->state.push_constants_dirty) cmd_buffer_flush_push_constants(cmd_buffer); /* We use the gen8 state here because it only contains the additional * min/max fields and, since they occur at the end of the packet and * don't change the stride, they work on gen7 too. */ if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) gen8_cmd_buffer_emit_viewport(cmd_buffer); if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) gen7_cmd_buffer_emit_scissor(cmd_buffer); if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_RENDER_TARGETS | ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)) { const struct anv_image_view *iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); const struct anv_image *image = iview ? iview->image : NULL; const struct anv_format *anv_format = iview ? anv_format_for_vk_format(iview->vk_format) : NULL; const bool has_depth = iview && anv_format->has_depth; const uint32_t depth_format = has_depth ? isl_surf_get_depth_format(&cmd_buffer->device->isl_dev, &image->depth_surface.isl) : D16_UNORM; uint32_t sf_dw[GENX(3DSTATE_SF_length)]; struct GENX(3DSTATE_SF) sf = { GENX(3DSTATE_SF_header), .DepthBufferSurfaceFormat = depth_format, .LineWidth = cmd_buffer->state.dynamic.line_width, .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias, .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope, .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp }; GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf); anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gen7.sf); } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) { struct anv_dynamic_state *d = &cmd_buffer->state.dynamic; struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, GENX(COLOR_CALC_STATE_length) * 4, 64); struct GENX(COLOR_CALC_STATE) cc = { .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0], .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1], .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2], .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3], .StencilReferenceValue = d->stencil_reference.front & 0xff, .BackFaceStencilReferenceValue = d->stencil_reference.back & 0xff, }; GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc); if (!cmd_buffer->device->info.has_llc) anv_state_clflush(cc_state); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), .ColorCalcStatePointer = cc_state.offset); } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_RENDER_TARGETS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) { uint32_t depth_stencil_dw[GENX(DEPTH_STENCIL_STATE_length)]; struct anv_dynamic_state *d = &cmd_buffer->state.dynamic; struct GENX(DEPTH_STENCIL_STATE) depth_stencil = { .StencilTestMask = d->stencil_compare_mask.front & 0xff, .StencilWriteMask = d->stencil_write_mask.front & 0xff, .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff, .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff, }; GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil); struct anv_state ds_state = anv_cmd_buffer_merge_dynamic(cmd_buffer, depth_stencil_dw, pipeline->gen7.depth_stencil_state, GENX(DEPTH_STENCIL_STATE_length), 64); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), .PointertoDEPTH_STENCIL_STATE = ds_state.offset); } if (cmd_buffer->state.gen7.index_buffer && cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_INDEX_BUFFER)) { struct anv_buffer *buffer = cmd_buffer->state.gen7.index_buffer; uint32_t offset = cmd_buffer->state.gen7.index_offset; #if GEN_IS_HASWELL anv_batch_emit(&cmd_buffer->batch, GEN75_3DSTATE_VF, .IndexedDrawCutIndexEnable = pipeline->primitive_restart, .CutIndex = cmd_buffer->state.restart_index); #endif anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), #if !GEN_IS_HASWELL .CutIndexEnable = pipeline->primitive_restart, #endif .IndexFormat = cmd_buffer->state.gen7.index_type, .MemoryObjectControlState = GENX(MOCS), .BufferStartingAddress = { buffer->bo, buffer->offset + offset }, .BufferEndingAddress = { buffer->bo, buffer->offset + buffer->size }); } cmd_buffer->state.vb_dirty &= ~vb_emit; cmd_buffer->state.dirty = 0; } void genX(CmdSetEvent)( VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { stub(); } void genX(CmdResetEvent)( VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { stub(); } void genX(CmdWaitEvents)( VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { stub(); }