/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** * This file implements VkQueue, VkFence, and VkSemaphore */ #include #include #include #include "anv_private.h" #include "util/vk_util.h" #include "genxml/gen7_pack.h" VkResult anv_device_execbuf(struct anv_device *device, struct drm_i915_gem_execbuffer2 *execbuf, struct anv_bo **execbuf_bos) { int ret = anv_gem_execbuffer(device, execbuf); if (ret != 0) { /* We don't know the real error. */ device->lost = true; return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m"); } struct drm_i915_gem_exec_object2 *objects = (void *)(uintptr_t)execbuf->buffers_ptr; for (uint32_t k = 0; k < execbuf->buffer_count; k++) execbuf_bos[k]->offset = objects[k].offset; return VK_SUCCESS; } VkResult anv_device_submit_simple_batch(struct anv_device *device, struct anv_batch *batch) { struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 exec2_objects[1]; struct anv_bo bo, *exec_bos[1]; VkResult result = VK_SUCCESS; uint32_t size; /* Kernel driver requires 8 byte aligned batch length */ size = align_u32(batch->next - batch->start, 8); result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size); if (result != VK_SUCCESS) return result; memcpy(bo.map, batch->start, size); if (!device->info.has_llc) anv_flush_range(bo.map, size); exec_bos[0] = &bo; exec2_objects[0].handle = bo.gem_handle; exec2_objects[0].relocation_count = 0; exec2_objects[0].relocs_ptr = 0; exec2_objects[0].alignment = 0; exec2_objects[0].offset = bo.offset; exec2_objects[0].flags = 0; exec2_objects[0].rsvd1 = 0; exec2_objects[0].rsvd2 = 0; execbuf.buffers_ptr = (uintptr_t) exec2_objects; execbuf.buffer_count = 1; execbuf.batch_start_offset = 0; execbuf.batch_len = size; execbuf.cliprects_ptr = 0; execbuf.num_cliprects = 0; execbuf.DR1 = 0; execbuf.DR4 = 0; execbuf.flags = I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER; execbuf.rsvd1 = device->context_id; execbuf.rsvd2 = 0; result = anv_device_execbuf(device, &execbuf, exec_bos); if (result != VK_SUCCESS) goto fail; result = anv_device_wait(device, &bo, INT64_MAX); fail: anv_bo_pool_free(&device->batch_bo_pool, &bo); return result; } VkResult anv_QueueSubmit( VkQueue _queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence _fence) { ANV_FROM_HANDLE(anv_queue, queue, _queue); ANV_FROM_HANDLE(anv_fence, fence, _fence); struct anv_device *device = queue->device; /* Query for device status prior to submitting. Technically, we don't need * to do this. However, if we have a client that's submitting piles of * garbage, we would rather break as early as possible to keep the GPU * hanging contained. If we don't check here, we'll either be waiting for * the kernel to kick us or we'll have to wait until the client waits on a * fence before we actually know whether or not we've hung. */ VkResult result = anv_device_query_status(device); if (result != VK_SUCCESS) return result; /* We lock around QueueSubmit for three main reasons: * * 1) When a block pool is resized, we create a new gem handle with a * different size and, in the case of surface states, possibly a * different center offset but we re-use the same anv_bo struct when * we do so. If this happens in the middle of setting up an execbuf, * we could end up with our list of BOs out of sync with our list of * gem handles. * * 2) The algorithm we use for building the list of unique buffers isn't * thread-safe. While the client is supposed to syncronize around * QueueSubmit, this would be extremely difficult to debug if it ever * came up in the wild due to a broken app. It's better to play it * safe and just lock around QueueSubmit. * * 3) The anv_cmd_buffer_execbuf function may perform relocations in * userspace. Due to the fact that the surface state buffer is shared * between batches, we can't afford to have that happen from multiple * threads at the same time. Even though the user is supposed to * ensure this doesn't happen, we play it safe as in (2) above. * * Since the only other things that ever take the device lock such as block * pool resize only rarely happen, this will almost never be contended so * taking a lock isn't really an expensive operation in this case. */ pthread_mutex_lock(&device->mutex); for (uint32_t i = 0; i < submitCount; i++) { for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pSubmits[i].pCommandBuffers[j]); assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); assert(!anv_batch_has_error(&cmd_buffer->batch)); const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL; uint32_t num_in_semaphores = 0, num_out_semaphores = 0; if (j == 0) { /* Only the first batch gets the in semaphores */ in_semaphores = pSubmits[i].pWaitSemaphores; num_in_semaphores = pSubmits[i].waitSemaphoreCount; } if (j == pSubmits[i].commandBufferCount - 1) { /* Only the last batch gets the out semaphores */ out_semaphores = pSubmits[i].pSignalSemaphores; num_out_semaphores = pSubmits[i].signalSemaphoreCount; } result = anv_cmd_buffer_execbuf(device, cmd_buffer, in_semaphores, num_in_semaphores, out_semaphores, num_out_semaphores); if (result != VK_SUCCESS) goto out; } } if (fence) { struct anv_bo *fence_bo = &fence->bo; result = anv_device_execbuf(device, &fence->execbuf, &fence_bo); if (result != VK_SUCCESS) goto out; /* Update the fence and wake up any waiters */ assert(fence->state == ANV_FENCE_STATE_RESET); fence->state = ANV_FENCE_STATE_SUBMITTED; pthread_cond_broadcast(&device->queue_submit); } out: if (result != VK_SUCCESS) { /* In the case that something has gone wrong we may end up with an * inconsistent state from which it may not be trivial to recover. * For example, we might have computed address relocations and * any future attempt to re-submit this job will need to know about * this and avoid computing relocation addresses again. * * To avoid this sort of issues, we assume that if something was * wrong during submission we must already be in a really bad situation * anyway (such us being out of memory) and return * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to * submit the same job again to this device. */ result = vk_errorf(VK_ERROR_DEVICE_LOST, "vkQueueSubmit() failed"); device->lost = true; /* If we return VK_ERROR_DEVICE LOST here, we need to ensure that * vkWaitForFences() and vkGetFenceStatus() return a valid result * (VK_SUCCESS or VK_ERROR_DEVICE_LOST) in a finite amount of time. * Setting the fence status to SIGNALED ensures this will happen in * any case. */ if (fence) fence->state = ANV_FENCE_STATE_SIGNALED; } pthread_mutex_unlock(&device->mutex); return result; } VkResult anv_QueueWaitIdle( VkQueue _queue) { ANV_FROM_HANDLE(anv_queue, queue, _queue); return anv_DeviceWaitIdle(anv_device_to_handle(queue->device)); } VkResult anv_CreateFence( VkDevice _device, const VkFenceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFence* pFence) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_bo fence_bo; struct anv_fence *fence; struct anv_batch batch; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO); result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096); if (result != VK_SUCCESS) return result; /* Fences are small. Just store the CPU data structure in the BO. */ fence = fence_bo.map; fence->bo = fence_bo; /* Place the batch after the CPU data but on its own cache line. */ const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE); batch.next = batch.start = fence->bo.map + batch_offset; batch.end = fence->bo.map + fence->bo.size; anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe); anv_batch_emit(&batch, GEN7_MI_NOOP, noop); if (!device->info.has_llc) { assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0); assert(batch.next - batch.start <= CACHELINE_SIZE); __builtin_ia32_mfence(); __builtin_ia32_clflush(batch.start); } fence->exec2_objects[0].handle = fence->bo.gem_handle; fence->exec2_objects[0].relocation_count = 0; fence->exec2_objects[0].relocs_ptr = 0; fence->exec2_objects[0].alignment = 0; fence->exec2_objects[0].offset = fence->bo.offset; fence->exec2_objects[0].flags = 0; fence->exec2_objects[0].rsvd1 = 0; fence->exec2_objects[0].rsvd2 = 0; fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects; fence->execbuf.buffer_count = 1; fence->execbuf.batch_start_offset = batch.start - fence->bo.map; fence->execbuf.batch_len = batch.next - batch.start; fence->execbuf.cliprects_ptr = 0; fence->execbuf.num_cliprects = 0; fence->execbuf.DR1 = 0; fence->execbuf.DR4 = 0; fence->execbuf.flags = I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER; fence->execbuf.rsvd1 = device->context_id; fence->execbuf.rsvd2 = 0; if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) { fence->state = ANV_FENCE_STATE_SIGNALED; } else { fence->state = ANV_FENCE_STATE_RESET; } *pFence = anv_fence_to_handle(fence); return VK_SUCCESS; } void anv_DestroyFence( VkDevice _device, VkFence _fence, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_fence, fence, _fence); if (!fence) return; assert(fence->bo.map == fence); anv_bo_pool_free(&device->batch_bo_pool, &fence->bo); } VkResult anv_ResetFences( VkDevice _device, uint32_t fenceCount, const VkFence* pFences) { for (uint32_t i = 0; i < fenceCount; i++) { ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); fence->state = ANV_FENCE_STATE_RESET; } return VK_SUCCESS; } VkResult anv_GetFenceStatus( VkDevice _device, VkFence _fence) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_fence, fence, _fence); if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; switch (fence->state) { case ANV_FENCE_STATE_RESET: /* If it hasn't even been sent off to the GPU yet, it's not ready */ return VK_NOT_READY; case ANV_FENCE_STATE_SIGNALED: /* It's been signaled, return success */ return VK_SUCCESS; case ANV_FENCE_STATE_SUBMITTED: { VkResult result = anv_device_bo_busy(device, &fence->bo); if (result == VK_SUCCESS) { fence->state = ANV_FENCE_STATE_SIGNALED; return VK_SUCCESS; } else { return result; } } default: unreachable("Invalid fence status"); } } #define NSEC_PER_SEC 1000000000 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1) VkResult anv_WaitForFences( VkDevice _device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t _timeout) { ANV_FROM_HANDLE(anv_device, device, _device); int ret; if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed * to block indefinitely timeouts <= 0. Unfortunately, this was broken * for a couple of kernel releases. Since there's no way to know * whether or not the kernel we're using is one of the broken ones, the * best we can do is to clamp the timeout to INT64_MAX. This limits the * maximum timeout from 584 years to 292 years - likely not a big deal. */ int64_t timeout = MIN2(_timeout, INT64_MAX); VkResult result = VK_SUCCESS; uint32_t pending_fences = fenceCount; while (pending_fences) { pending_fences = 0; bool signaled_fences = false; for (uint32_t i = 0; i < fenceCount; i++) { ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); switch (fence->state) { case ANV_FENCE_STATE_RESET: /* This fence hasn't been submitted yet, we'll catch it the next * time around. Yes, this may mean we dead-loop but, short of * lots of locking and a condition variable, there's not much that * we can do about that. */ pending_fences++; continue; case ANV_FENCE_STATE_SIGNALED: /* This fence is not pending. If waitAll isn't set, we can return * early. Otherwise, we have to keep going. */ if (!waitAll) { result = VK_SUCCESS; goto done; } continue; case ANV_FENCE_STATE_SUBMITTED: /* These are the fences we really care about. Go ahead and wait * on it until we hit a timeout. */ result = anv_device_wait(device, &fence->bo, timeout); switch (result) { case VK_SUCCESS: fence->state = ANV_FENCE_STATE_SIGNALED; signaled_fences = true; if (!waitAll) goto done; break; case VK_TIMEOUT: goto done; default: return result; } } } if (pending_fences && !signaled_fences) { /* If we've hit this then someone decided to vkWaitForFences before * they've actually submitted any of them to a queue. This is a * fairly pessimal case, so it's ok to lock here and use a standard * pthreads condition variable. */ pthread_mutex_lock(&device->mutex); /* It's possible that some of the fences have changed state since the * last time we checked. Now that we have the lock, check for * pending fences again and don't wait if it's changed. */ uint32_t now_pending_fences = 0; for (uint32_t i = 0; i < fenceCount; i++) { ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); if (fence->state == ANV_FENCE_STATE_RESET) now_pending_fences++; } assert(now_pending_fences <= pending_fences); if (now_pending_fences == pending_fences) { struct timespec before; clock_gettime(CLOCK_MONOTONIC, &before); uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC; uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) + (timeout / NSEC_PER_SEC); abs_nsec %= NSEC_PER_SEC; /* Avoid roll-over in tv_sec on 32-bit systems if the user * provided timeout is UINT64_MAX */ struct timespec abstime; abstime.tv_nsec = abs_nsec; abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec)); ret = pthread_cond_timedwait(&device->queue_submit, &device->mutex, &abstime); assert(ret != EINVAL); struct timespec after; clock_gettime(CLOCK_MONOTONIC, &after); uint64_t time_elapsed = ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) - ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec); if (time_elapsed >= timeout) { pthread_mutex_unlock(&device->mutex); result = VK_TIMEOUT; goto done; } timeout -= time_elapsed; } pthread_mutex_unlock(&device->mutex); } } done: if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; return result; } // Queue semaphore functions VkResult anv_CreateSemaphore( VkDevice _device, const VkSemaphoreCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSemaphore* pSemaphore) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_semaphore *semaphore; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO); semaphore = vk_alloc2(&device->alloc, pAllocator, sizeof(*semaphore), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (semaphore == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); const VkExportSemaphoreCreateInfoKHX *export = vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO_KHX); VkExternalSemaphoreHandleTypeFlagsKHX handleTypes = export ? export->handleTypes : 0; if (handleTypes == 0) { /* The DRM execbuffer ioctl always execute in-oder so long as you stay * on the same ring. Since we don't expose the blit engine as a DMA * queue, a dummy no-op semaphore is a perfectly valid implementation. */ semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DUMMY; } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX) { assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX); semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO; VkResult result = anv_bo_cache_alloc(device, &device->bo_cache, 4096, &semaphore->permanent.bo); if (result != VK_SUCCESS) { vk_free2(&device->alloc, pAllocator, semaphore); return result; } /* If we're going to use this as a fence, we need to *not* have the * EXEC_OBJECT_ASYNC bit set. */ assert(!(semaphore->permanent.bo->flags & EXEC_OBJECT_ASYNC)); } else { assert(!"Unknown handle type"); vk_free2(&device->alloc, pAllocator, semaphore); return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX); } semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE; *pSemaphore = anv_semaphore_to_handle(semaphore); return VK_SUCCESS; } static void anv_semaphore_impl_cleanup(struct anv_device *device, struct anv_semaphore_impl *impl) { switch (impl->type) { case ANV_SEMAPHORE_TYPE_NONE: case ANV_SEMAPHORE_TYPE_DUMMY: /* Dummy. Nothing to do */ return; case ANV_SEMAPHORE_TYPE_BO: anv_bo_cache_release(device, &device->bo_cache, impl->bo); return; } unreachable("Invalid semaphore type"); } void anv_DestroySemaphore( VkDevice _device, VkSemaphore _semaphore, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore); if (semaphore == NULL) return; anv_semaphore_impl_cleanup(device, &semaphore->temporary); anv_semaphore_impl_cleanup(device, &semaphore->permanent); vk_free2(&device->alloc, pAllocator, semaphore); } void anv_GetPhysicalDeviceExternalSemaphorePropertiesKHX( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfoKHX* pExternalSemaphoreInfo, VkExternalSemaphorePropertiesKHX* pExternalSemaphoreProperties) { switch (pExternalSemaphoreInfo->handleType) { case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX: pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX; pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX; pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHX | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHX; break; default: pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0; pExternalSemaphoreProperties->compatibleHandleTypes = 0; pExternalSemaphoreProperties->externalSemaphoreFeatures = 0; } } VkResult anv_ImportSemaphoreFdKHX( VkDevice _device, const VkImportSemaphoreFdInfoKHX* pImportSemaphoreFdInfo) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore); switch (pImportSemaphoreFdInfo->handleType) { case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX: { struct anv_bo *bo; VkResult result = anv_bo_cache_import(device, &device->bo_cache, pImportSemaphoreFdInfo->fd, 4096, &bo); if (result != VK_SUCCESS) return result; /* If we're going to use this as a fence, we need to *not* have the * EXEC_OBJECT_ASYNC bit set. */ assert(!(bo->flags & EXEC_OBJECT_ASYNC)); anv_semaphore_impl_cleanup(device, &semaphore->permanent); semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO; semaphore->permanent.bo = bo; return VK_SUCCESS; } default: return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX); } } VkResult anv_GetSemaphoreFdKHX( VkDevice _device, VkSemaphore _semaphore, VkExternalSemaphoreHandleTypeFlagBitsKHX handleType, int* pFd) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore); switch (semaphore->permanent.type) { case ANV_SEMAPHORE_TYPE_BO: return anv_bo_cache_export(device, &device->bo_cache, semaphore->permanent.bo, pFd); default: return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX); } return VK_SUCCESS; }