/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "util/mesa-sha1.h" #include "anv_private.h" #include "brw_nir.h" #include "anv_nir.h" #include "nir/spirv/nir_spirv.h" /* Needed for SWIZZLE macros */ #include "program/prog_instruction.h" // Shader functions VkResult anv_CreateShaderModule( VkDevice _device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_shader_module *module; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); assert(pCreateInfo->flags == 0); module = anv_alloc2(&device->alloc, pAllocator, sizeof(*module) + pCreateInfo->codeSize, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (module == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); module->nir = NULL; module->size = pCreateInfo->codeSize; memcpy(module->data, pCreateInfo->pCode, module->size); _mesa_sha1_compute(module->data, module->size, module->sha1); *pShaderModule = anv_shader_module_to_handle(module); return VK_SUCCESS; } void anv_DestroyShaderModule( VkDevice _device, VkShaderModule _module, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_shader_module, module, _module); anv_free2(&device->alloc, pAllocator, module); } #define SPIR_V_MAGIC_NUMBER 0x07230203 /* Eventually, this will become part of anv_CreateShader. Unfortunately, * we can't do that yet because we don't have the ability to copy nir. */ static nir_shader * anv_shader_compile_to_nir(struct anv_device *device, struct anv_shader_module *module, const char *entrypoint_name, gl_shader_stage stage, const VkSpecializationInfo *spec_info) { if (strcmp(entrypoint_name, "main") != 0) { anv_finishme("Multiple shaders per module not really supported"); } const struct brw_compiler *compiler = device->instance->physicalDevice.compiler; const nir_shader_compiler_options *nir_options = compiler->glsl_compiler_options[stage].NirOptions; nir_shader *nir; nir_function *entry_point; if (module->nir) { /* Some things such as our meta clear/blit code will give us a NIR * shader directly. In that case, we just ignore the SPIR-V entirely * and just use the NIR shader */ nir = module->nir; nir->options = nir_options; nir_validate_shader(nir); assert(exec_list_length(&nir->functions) == 1); struct exec_node *node = exec_list_get_head(&nir->functions); entry_point = exec_node_data(nir_function, node, node); } else { uint32_t *spirv = (uint32_t *) module->data; assert(spirv[0] == SPIR_V_MAGIC_NUMBER); assert(module->size % 4 == 0); uint32_t num_spec_entries = 0; struct nir_spirv_specialization *spec_entries = NULL; if (spec_info && spec_info->mapEntryCount > 0) { num_spec_entries = spec_info->mapEntryCount; spec_entries = malloc(num_spec_entries * sizeof(*spec_entries)); for (uint32_t i = 0; i < num_spec_entries; i++) { const uint32_t *data = spec_info->pData + spec_info->pMapEntries[i].offset; assert((const void *)(data + 1) <= spec_info->pData + spec_info->dataSize); spec_entries[i].id = spec_info->pMapEntries[i].constantID; spec_entries[i].data = *data; } } entry_point = spirv_to_nir(spirv, module->size / 4, spec_entries, num_spec_entries, stage, entrypoint_name, nir_options); nir = entry_point->shader; assert(nir->stage == stage); nir_validate_shader(nir); free(spec_entries); nir_lower_returns(nir); nir_validate_shader(nir); nir_inline_functions(nir); nir_validate_shader(nir); /* Pick off the single entrypoint that we want */ foreach_list_typed_safe(nir_function, func, node, &nir->functions) { if (func != entry_point) exec_node_remove(&func->node); } assert(exec_list_length(&nir->functions) == 1); entry_point->name = ralloc_strdup(entry_point, "main"); nir_remove_dead_variables(nir, nir_var_shader_in); nir_remove_dead_variables(nir, nir_var_shader_out); nir_remove_dead_variables(nir, nir_var_system_value); nir_validate_shader(nir); nir_lower_outputs_to_temporaries(entry_point->shader, entry_point); nir_lower_system_values(nir); nir_validate_shader(nir); } /* Vulkan uses the separate-shader linking model */ nir->info.separate_shader = true; nir = brw_preprocess_nir(nir, compiler->scalar_stage[stage]); nir_shader_gather_info(nir, entry_point->impl); uint32_t indirect_mask = 0; if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput) indirect_mask |= (1 << nir_var_shader_in); if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp) indirect_mask |= 1 << nir_var_local; nir_lower_indirect_derefs(nir, indirect_mask); return nir; } void anv_DestroyPipeline( VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline); for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { free(pipeline->bindings[s].surface_to_descriptor); free(pipeline->bindings[s].sampler_to_descriptor); } anv_reloc_list_finish(&pipeline->batch_relocs, pAllocator ? pAllocator : &device->alloc); if (pipeline->blend_state.map) anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state); anv_free2(&device->alloc, pAllocator, pipeline); } static const uint32_t vk_to_gen_primitive_type[] = { [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST, [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST, [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN, [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ, [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ, /* [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST] = _3DPRIM_PATCHLIST_1 */ }; static void populate_sampler_prog_key(const struct brw_device_info *devinfo, struct brw_sampler_prog_key_data *key) { /* XXX: Handle texture swizzle on HSW- */ for (int i = 0; i < MAX_SAMPLERS; i++) { /* Assume color sampler, no swizzling. (Works for BDW+) */ key->swizzles[i] = SWIZZLE_XYZW; } } static void populate_vs_prog_key(const struct brw_device_info *devinfo, struct brw_vs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); /* XXX: Handle vertex input work-arounds */ /* XXX: Handle sampler_prog_key */ } static void populate_gs_prog_key(const struct brw_device_info *devinfo, struct brw_gs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); } static void populate_wm_prog_key(const struct brw_device_info *devinfo, const VkGraphicsPipelineCreateInfo *info, const struct anv_graphics_pipeline_create_info *extra, struct brw_wm_prog_key *key) { ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass); memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); /* TODO: Fill out key->input_slots_valid */ /* Vulkan doesn't specify a default */ key->high_quality_derivatives = false; /* XXX Vulkan doesn't appear to specify */ key->clamp_fragment_color = false; /* Vulkan always specifies upper-left coordinates */ key->drawable_height = 0; key->render_to_fbo = false; if (extra && extra->color_attachment_count >= 0) { key->nr_color_regions = extra->color_attachment_count; } else { key->nr_color_regions = render_pass->subpasses[info->subpass].color_count; } key->replicate_alpha = key->nr_color_regions > 1 && info->pMultisampleState && info->pMultisampleState->alphaToCoverageEnable; if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) { /* We should probably pull this out of the shader, but it's fairly * harmless to compute it and then let dead-code take care of it. */ key->persample_shading = info->pMultisampleState->sampleShadingEnable; if (key->persample_shading) key->persample_2x = info->pMultisampleState->rasterizationSamples == 2; key->compute_pos_offset = info->pMultisampleState->sampleShadingEnable; key->compute_sample_id = info->pMultisampleState->sampleShadingEnable; } } static void populate_cs_prog_key(const struct brw_device_info *devinfo, struct brw_cs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); } static nir_shader * anv_pipeline_compile(struct anv_pipeline *pipeline, struct anv_shader_module *module, const char *entrypoint, gl_shader_stage stage, const VkSpecializationInfo *spec_info, struct brw_stage_prog_data *prog_data) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; nir_shader *nir = anv_shader_compile_to_nir(pipeline->device, module, entrypoint, stage, spec_info); if (nir == NULL) return NULL; anv_nir_lower_push_constants(nir, compiler->scalar_stage[stage]); /* Figure out the number of parameters */ prog_data->nr_params = 0; if (nir->num_uniforms > 0) { /* If the shader uses any push constants at all, we'll just give * them the maximum possible number */ prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float); } if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets) prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2; if (nir->info.num_images > 0) prog_data->nr_params += nir->info.num_images * BRW_IMAGE_PARAM_SIZE; if (prog_data->nr_params > 0) { /* XXX: I think we're leaking this */ prog_data->param = (const union gl_constant_value **) malloc(prog_data->nr_params * sizeof(union gl_constant_value *)); /* We now set the param values to be offsets into a * anv_push_constant_data structure. Since the compiler doesn't * actually dereference any of the gl_constant_value pointers in the * params array, it doesn't really matter what we put here. */ struct anv_push_constants *null_data = NULL; if (nir->num_uniforms > 0) { /* Fill out the push constants section of the param array */ for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) prog_data->param[i] = (const union gl_constant_value *) &null_data->client_data[i * sizeof(float)]; } } /* Set up dynamic offsets */ anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data); char surface_usage_mask[256], sampler_usage_mask[256]; zero(surface_usage_mask); zero(sampler_usage_mask); /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */ if (pipeline->layout) anv_nir_apply_pipeline_layout(pipeline, nir, prog_data); /* All binding table offsets provided by apply_pipeline_layout() are * relative to the start of the bindint table (plus MAX_RTS for VS). */ unsigned bias; switch (stage) { case MESA_SHADER_FRAGMENT: bias = MAX_RTS; break; case MESA_SHADER_COMPUTE: bias = 1; break; default: bias = 0; break; } prog_data->binding_table.size_bytes = 0; prog_data->binding_table.texture_start = bias; prog_data->binding_table.ubo_start = bias; prog_data->binding_table.ssbo_start = bias; prog_data->binding_table.image_start = bias; /* Finish the optimization and compilation process */ if (nir->stage == MESA_SHADER_COMPUTE) brw_nir_lower_shared(nir); /* nir_lower_io will only handle the push constants; we need to set this * to the full number of possible uniforms. */ nir->num_uniforms = prog_data->nr_params * 4; return nir; } static void anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline, gl_shader_stage stage, struct brw_stage_prog_data *prog_data) { struct brw_device_info *devinfo = &pipeline->device->info; uint32_t max_threads[] = { [MESA_SHADER_VERTEX] = devinfo->max_vs_threads, [MESA_SHADER_TESS_CTRL] = devinfo->max_hs_threads, [MESA_SHADER_TESS_EVAL] = devinfo->max_ds_threads, [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads, [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads, [MESA_SHADER_COMPUTE] = devinfo->max_cs_threads, }; pipeline->prog_data[stage] = prog_data; pipeline->active_stages |= mesa_to_vk_shader_stage(stage); pipeline->scratch_start[stage] = pipeline->total_scratch; pipeline->total_scratch = align_u32(pipeline->total_scratch, 1024) + prog_data->total_scratch * max_threads[stage]; } static VkResult anv_pipeline_compile_vs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *info, struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data; struct brw_vs_prog_key key; uint32_t kernel; unsigned char sha1[20], *hash; populate_vs_prog_key(&pipeline->device->info, &key); if (module->size > 0) { hash = sha1; anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info); kernel = anv_pipeline_cache_search(cache, hash, prog_data); } else { hash = NULL; } if (module->size == 0 || kernel == NO_KERNEL) { memset(prog_data, 0, sizeof(*prog_data)); nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint, MESA_SHADER_VERTEX, spec_info, &prog_data->base.base); if (nir == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); void *mem_ctx = ralloc_context(NULL); if (module->nir == NULL) ralloc_steal(mem_ctx, nir); prog_data->inputs_read = nir->info.inputs_read; if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ)) pipeline->writes_point_size = true; brw_compute_vue_map(&pipeline->device->info, &prog_data->base.vue_map, nir->info.outputs_written, nir->info.separate_shader); unsigned code_size; const unsigned *shader_code = brw_compile_vs(compiler, NULL, mem_ctx, &key, prog_data, nir, NULL, false, -1, &code_size, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } kernel = anv_pipeline_cache_upload_kernel(cache, hash, shader_code, code_size, prog_data, sizeof(*prog_data)); ralloc_free(mem_ctx); } if (prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) { pipeline->vs_simd8 = kernel; pipeline->vs_vec4 = NO_KERNEL; } else { pipeline->vs_simd8 = NO_KERNEL; pipeline->vs_vec4 = kernel; } anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, &prog_data->base.base); return VK_SUCCESS; } static VkResult anv_pipeline_compile_gs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *info, struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_gs_prog_data *prog_data = &pipeline->gs_prog_data; struct brw_gs_prog_key key; uint32_t kernel; unsigned char sha1[20], *hash; populate_gs_prog_key(&pipeline->device->info, &key); if (module->size > 0) { hash = sha1; anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info); kernel = anv_pipeline_cache_search(cache, hash, prog_data); } else { hash = NULL; } if (module->size == 0 || kernel == NO_KERNEL) { memset(prog_data, 0, sizeof(*prog_data)); nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint, MESA_SHADER_GEOMETRY, spec_info, &prog_data->base.base); if (nir == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); void *mem_ctx = ralloc_context(NULL); if (module->nir == NULL) ralloc_steal(mem_ctx, nir); if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ)) pipeline->writes_point_size = true; brw_compute_vue_map(&pipeline->device->info, &prog_data->base.vue_map, nir->info.outputs_written, nir->info.separate_shader); unsigned code_size; const unsigned *shader_code = brw_compile_gs(compiler, NULL, mem_ctx, &key, prog_data, nir, NULL, -1, &code_size, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } /* TODO: SIMD8 GS */ kernel = anv_pipeline_cache_upload_kernel(cache, hash, shader_code, code_size, prog_data, sizeof(*prog_data)); ralloc_free(mem_ctx); } pipeline->gs_kernel = kernel; anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, &prog_data->base.base); return VK_SUCCESS; } static VkResult anv_pipeline_compile_fs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *info, const struct anv_graphics_pipeline_create_info *extra, struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_wm_prog_data *prog_data = &pipeline->wm_prog_data; struct brw_wm_prog_key key; uint32_t kernel; unsigned char sha1[20], *hash; populate_wm_prog_key(&pipeline->device->info, info, extra, &key); if (pipeline->use_repclear) key.nr_color_regions = 1; if (module->size > 0) { hash = sha1; anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info); kernel = anv_pipeline_cache_search(cache, hash, prog_data); } else { hash = NULL; } if (module->size == 0 || kernel == NO_KERNEL) { memset(prog_data, 0, sizeof(*prog_data)); prog_data->binding_table.render_target_start = 0; nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint, MESA_SHADER_FRAGMENT, spec_info, &prog_data->base); if (nir == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); nir_function_impl *impl = nir_shader_get_entrypoint(nir)->impl; nir_foreach_variable_safe(var, &nir->outputs) { if (var->data.location < FRAG_RESULT_DATA0) continue; unsigned rt = var->data.location - FRAG_RESULT_DATA0; if (rt >= key.nr_color_regions) { var->data.mode = nir_var_local; exec_node_remove(&var->node); exec_list_push_tail(&impl->locals, &var->node); } } void *mem_ctx = ralloc_context(NULL); if (module->nir == NULL) ralloc_steal(mem_ctx, nir); unsigned code_size; const unsigned *shader_code = brw_compile_fs(compiler, NULL, mem_ctx, &key, prog_data, nir, NULL, -1, -1, pipeline->use_repclear, &code_size, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } kernel = anv_pipeline_cache_upload_kernel(cache, hash, shader_code, code_size, prog_data, sizeof(*prog_data)); ralloc_free(mem_ctx); } if (prog_data->no_8) pipeline->ps_simd8 = NO_KERNEL; else pipeline->ps_simd8 = kernel; if (prog_data->no_8 || prog_data->prog_offset_16) { pipeline->ps_simd16 = kernel + prog_data->prog_offset_16; } else { pipeline->ps_simd16 = NO_KERNEL; } pipeline->ps_ksp2 = 0; pipeline->ps_grf_start2 = 0; if (pipeline->ps_simd8 != NO_KERNEL) { pipeline->ps_ksp0 = pipeline->ps_simd8; pipeline->ps_grf_start0 = prog_data->base.dispatch_grf_start_reg; if (pipeline->ps_simd16 != NO_KERNEL) { pipeline->ps_ksp2 = pipeline->ps_simd16; pipeline->ps_grf_start2 = prog_data->dispatch_grf_start_reg_16; } } else if (pipeline->ps_simd16 != NO_KERNEL) { pipeline->ps_ksp0 = pipeline->ps_simd16; pipeline->ps_grf_start0 = prog_data->dispatch_grf_start_reg_16; } anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, &prog_data->base); return VK_SUCCESS; } VkResult anv_pipeline_compile_cs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkComputePipelineCreateInfo *info, struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data; struct brw_cs_prog_key key; uint32_t kernel; unsigned char sha1[20], *hash; populate_cs_prog_key(&pipeline->device->info, &key); if (module->size > 0) { hash = sha1; anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info); kernel = anv_pipeline_cache_search(cache, hash, prog_data); } else { hash = NULL; } if (module->size == 0 || kernel == NO_KERNEL) { memset(prog_data, 0, sizeof(*prog_data)); prog_data->binding_table.work_groups_start = 0; nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint, MESA_SHADER_COMPUTE, spec_info, &prog_data->base); if (nir == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); prog_data->base.total_shared = nir->num_shared; void *mem_ctx = ralloc_context(NULL); if (module->nir == NULL) ralloc_steal(mem_ctx, nir); unsigned code_size; const unsigned *shader_code = brw_compile_cs(compiler, NULL, mem_ctx, &key, prog_data, nir, -1, &code_size, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } kernel = anv_pipeline_cache_upload_kernel(cache, hash, shader_code, code_size, prog_data, sizeof(*prog_data)); ralloc_free(mem_ctx); } pipeline->cs_simd = kernel; anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, &prog_data->base); return VK_SUCCESS; } static void gen7_compute_urb_partition(struct anv_pipeline *pipeline) { const struct brw_device_info *devinfo = &pipeline->device->info; bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT; unsigned vs_size = vs_present ? pipeline->vs_prog_data.base.urb_entry_size : 1; unsigned vs_entry_size_bytes = vs_size * 64; bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT; unsigned gs_size = gs_present ? pipeline->gs_prog_data.base.urb_entry_size : 1; unsigned gs_entry_size_bytes = gs_size * 64; /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS): * * VS Number of URB Entries must be divisible by 8 if the VS URB Entry * Allocation Size is less than 9 512-bit URB entries. * * Similar text exists for GS. */ unsigned vs_granularity = (vs_size < 9) ? 8 : 1; unsigned gs_granularity = (gs_size < 9) ? 8 : 1; /* URB allocations must be done in 8k chunks. */ unsigned chunk_size_bytes = 8192; /* Determine the size of the URB in chunks. */ unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes; /* Reserve space for push constants */ unsigned push_constant_kb; if (pipeline->device->info.gen >= 8) push_constant_kb = 32; else if (pipeline->device->info.is_haswell) push_constant_kb = pipeline->device->info.gt == 3 ? 32 : 16; else push_constant_kb = 16; unsigned push_constant_bytes = push_constant_kb * 1024; unsigned push_constant_chunks = push_constant_bytes / chunk_size_bytes; /* Initially, assign each stage the minimum amount of URB space it needs, * and make a note of how much additional space it "wants" (the amount of * additional space it could actually make use of). */ /* VS has a lower limit on the number of URB entries */ unsigned vs_chunks = ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes, chunk_size_bytes) / chunk_size_bytes; unsigned vs_wants = ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes, chunk_size_bytes) / chunk_size_bytes - vs_chunks; unsigned gs_chunks = 0; unsigned gs_wants = 0; if (gs_present) { /* There are two constraints on the minimum amount of URB space we can * allocate: * * (1) We need room for at least 2 URB entries, since we always operate * the GS in DUAL_OBJECT mode. * * (2) We can't allocate less than nr_gs_entries_granularity. */ gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes, chunk_size_bytes) / chunk_size_bytes; gs_wants = ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes, chunk_size_bytes) / chunk_size_bytes - gs_chunks; } /* There should always be enough URB space to satisfy the minimum * requirements of each stage. */ unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks; assert(total_needs <= urb_chunks); /* Mete out remaining space (if any) in proportion to "wants". */ unsigned total_wants = vs_wants + gs_wants; unsigned remaining_space = urb_chunks - total_needs; if (remaining_space > total_wants) remaining_space = total_wants; if (remaining_space > 0) { unsigned vs_additional = (unsigned) round(vs_wants * (((double) remaining_space) / total_wants)); vs_chunks += vs_additional; remaining_space -= vs_additional; gs_chunks += remaining_space; } /* Sanity check that we haven't over-allocated. */ assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks); /* Finally, compute the number of entries that can fit in the space * allocated to each stage. */ unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes; unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes; /* Since we rounded up when computing *_wants, this may be slightly more * than the maximum allowed amount, so correct for that. */ nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries); nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries); /* Ensure that we program a multiple of the granularity. */ nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity); nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity); /* Finally, sanity check to make sure we have at least the minimum number * of entries needed for each stage. */ assert(nr_vs_entries >= devinfo->urb.min_vs_entries); if (gs_present) assert(nr_gs_entries >= 2); /* Lay out the URB in the following order: * - push constants * - VS * - GS */ pipeline->urb.start[MESA_SHADER_VERTEX] = push_constant_chunks; pipeline->urb.size[MESA_SHADER_VERTEX] = vs_size; pipeline->urb.entries[MESA_SHADER_VERTEX] = nr_vs_entries; pipeline->urb.start[MESA_SHADER_GEOMETRY] = push_constant_chunks + vs_chunks; pipeline->urb.size[MESA_SHADER_GEOMETRY] = gs_size; pipeline->urb.entries[MESA_SHADER_GEOMETRY] = nr_gs_entries; pipeline->urb.start[MESA_SHADER_TESS_CTRL] = push_constant_chunks; pipeline->urb.size[MESA_SHADER_TESS_CTRL] = 1; pipeline->urb.entries[MESA_SHADER_TESS_CTRL] = 0; pipeline->urb.start[MESA_SHADER_TESS_EVAL] = push_constant_chunks; pipeline->urb.size[MESA_SHADER_TESS_EVAL] = 1; pipeline->urb.entries[MESA_SHADER_TESS_EVAL] = 0; const unsigned stages = _mesa_bitcount(pipeline->active_stages & VK_SHADER_STAGE_ALL_GRAPHICS); unsigned size_per_stage = stages ? (push_constant_kb / stages) : 0; unsigned used_kb = 0; /* Broadwell+ and Haswell gt3 require that the push constant sizes be in * units of 2KB. Incidentally, these are the same platforms that have * 32KB worth of push constant space. */ if (push_constant_kb == 32) size_per_stage &= ~1u; for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) { pipeline->urb.push_size[i] = (pipeline->active_stages & (1 << i)) ? size_per_stage : 0; used_kb += pipeline->urb.push_size[i]; assert(used_kb <= push_constant_kb); } pipeline->urb.push_size[MESA_SHADER_FRAGMENT] = push_constant_kb - used_kb; } static void anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL; ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass); struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; pipeline->dynamic_state = default_dynamic_state; if (pCreateInfo->pDynamicState) { /* Remove all of the states that are marked as dynamic */ uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t s = 0; s < count; s++) states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]); } struct anv_dynamic_state *dynamic = &pipeline->dynamic_state; dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) { typed_memcpy(dynamic->viewport.viewports, pCreateInfo->pViewportState->pViewports, pCreateInfo->pViewportState->viewportCount); } dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) { typed_memcpy(dynamic->scissor.scissors, pCreateInfo->pViewportState->pScissors, pCreateInfo->pViewportState->scissorCount); } if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) { assert(pCreateInfo->pRasterizationState); dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; } if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) { assert(pCreateInfo->pRasterizationState); dynamic->depth_bias.bias = pCreateInfo->pRasterizationState->depthBiasConstantFactor; dynamic->depth_bias.clamp = pCreateInfo->pRasterizationState->depthBiasClamp; dynamic->depth_bias.slope = pCreateInfo->pRasterizationState->depthBiasSlopeFactor; } if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) { assert(pCreateInfo->pColorBlendState); typed_memcpy(dynamic->blend_constants, pCreateInfo->pColorBlendState->blendConstants, 4); } /* If there is no depthstencil attachment, then don't read * pDepthStencilState. The Vulkan spec states that pDepthStencilState may * be NULL in this case. Even if pDepthStencilState is non-NULL, there is * no need to override the depthstencil defaults in * anv_pipeline::dynamic_state when there is no depthstencil attachment. * * From the Vulkan spec (20 Oct 2015, git-aa308cb): * * pDepthStencilState [...] may only be NULL if renderPass and subpass * specify a subpass that has no depth/stencil attachment. */ if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) { if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) { assert(pCreateInfo->pDepthStencilState); dynamic->depth_bounds.min = pCreateInfo->pDepthStencilState->minDepthBounds; dynamic->depth_bounds.max = pCreateInfo->pDepthStencilState->maxDepthBounds; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) { assert(pCreateInfo->pDepthStencilState); dynamic->stencil_compare_mask.front = pCreateInfo->pDepthStencilState->front.compareMask; dynamic->stencil_compare_mask.back = pCreateInfo->pDepthStencilState->back.compareMask; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) { assert(pCreateInfo->pDepthStencilState); dynamic->stencil_write_mask.front = pCreateInfo->pDepthStencilState->front.writeMask; dynamic->stencil_write_mask.back = pCreateInfo->pDepthStencilState->back.writeMask; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) { assert(pCreateInfo->pDepthStencilState); dynamic->stencil_reference.front = pCreateInfo->pDepthStencilState->front.reference; dynamic->stencil_reference.back = pCreateInfo->pDepthStencilState->back.reference; } } pipeline->dynamic_state_mask = states; } static void anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info) { struct anv_render_pass *renderpass = NULL; struct anv_subpass *subpass = NULL; /* Assert that all required members of VkGraphicsPipelineCreateInfo are * present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section * 4.2 Graphics Pipeline. */ assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO); renderpass = anv_render_pass_from_handle(info->renderPass); assert(renderpass); if (renderpass != &anv_meta_dummy_renderpass) { assert(info->subpass < renderpass->subpass_count); subpass = &renderpass->subpasses[info->subpass]; } assert(info->stageCount >= 1); assert(info->pVertexInputState); assert(info->pInputAssemblyState); assert(info->pViewportState); assert(info->pRasterizationState); if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) assert(info->pDepthStencilState); if (subpass && subpass->color_count > 0) assert(info->pColorBlendState); for (uint32_t i = 0; i < info->stageCount; ++i) { switch (info->pStages[i].stage) { case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: assert(info->pTessellationState); break; default: break; } } } VkResult anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct anv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *alloc) { VkResult result; anv_validate { anv_pipeline_validate_create_info(pCreateInfo); } if (alloc == NULL) alloc = &device->alloc; pipeline->device = device; pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout); result = anv_reloc_list_init(&pipeline->batch_relocs, alloc); if (result != VK_SUCCESS) return result; pipeline->batch.alloc = alloc; pipeline->batch.next = pipeline->batch.start = pipeline->batch_data; pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data); pipeline->batch.relocs = &pipeline->batch_relocs; anv_pipeline_init_dynamic_state(pipeline, pCreateInfo); if (pCreateInfo->pTessellationState) anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO"); pipeline->use_repclear = extra && extra->use_repclear; pipeline->writes_point_size = false; /* When we free the pipeline, we detect stages based on the NULL status * of various prog_data pointers. Make them NULL by default. */ memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data)); memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start)); memset(pipeline->bindings, 0, sizeof(pipeline->bindings)); pipeline->vs_simd8 = NO_KERNEL; pipeline->vs_vec4 = NO_KERNEL; pipeline->gs_kernel = NO_KERNEL; pipeline->ps_ksp0 = NO_KERNEL; pipeline->active_stages = 0; pipeline->total_scratch = 0; for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->pStages[i].module); switch (pCreateInfo->pStages[i].stage) { case VK_SHADER_STAGE_VERTEX_BIT: anv_pipeline_compile_vs(pipeline, cache, pCreateInfo, module, pCreateInfo->pStages[i].pName, pCreateInfo->pStages[i].pSpecializationInfo); break; case VK_SHADER_STAGE_GEOMETRY_BIT: anv_pipeline_compile_gs(pipeline, cache, pCreateInfo, module, pCreateInfo->pStages[i].pName, pCreateInfo->pStages[i].pSpecializationInfo); break; case VK_SHADER_STAGE_FRAGMENT_BIT: anv_pipeline_compile_fs(pipeline, cache, pCreateInfo, extra, module, pCreateInfo->pStages[i].pName, pCreateInfo->pStages[i].pSpecializationInfo); break; default: anv_finishme("Unsupported shader stage"); } } if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) { /* Vertex is only optional if disable_vs is set */ assert(extra->disable_vs); memset(&pipeline->vs_prog_data, 0, sizeof(pipeline->vs_prog_data)); } gen7_compute_urb_partition(pipeline); const VkPipelineVertexInputStateCreateInfo *vi_info = pCreateInfo->pVertexInputState; uint64_t inputs_read; if (extra && extra->disable_vs) { /* If the VS is disabled, just assume the user knows what they're * doing and apply the layout blindly. This can only come from * meta, so this *should* be safe. */ inputs_read = ~0ull; } else { inputs_read = pipeline->vs_prog_data.inputs_read; } pipeline->vb_used = 0; for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription *desc = &vi_info->pVertexAttributeDescriptions[i]; if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location))) pipeline->vb_used |= 1 << desc->binding; } for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *desc = &vi_info->pVertexBindingDescriptions[i]; pipeline->binding_stride[desc->binding] = desc->stride; /* Step rate is programmed per vertex element (attribute), not * binding. Set up a map of which bindings step per instance, for * reference by vertex element setup. */ switch (desc->inputRate) { default: case VK_VERTEX_INPUT_RATE_VERTEX: pipeline->instancing_enable[desc->binding] = false; break; case VK_VERTEX_INPUT_RATE_INSTANCE: pipeline->instancing_enable[desc->binding] = true; break; } } const VkPipelineInputAssemblyStateCreateInfo *ia_info = pCreateInfo->pInputAssemblyState; pipeline->primitive_restart = ia_info->primitiveRestartEnable; pipeline->topology = vk_to_gen_primitive_type[ia_info->topology]; if (extra && extra->use_rectlist) pipeline->topology = _3DPRIM_RECTLIST; while (anv_block_pool_size(&device->scratch_block_pool) < pipeline->total_scratch) anv_block_pool_alloc(&device->scratch_block_pool); return VK_SUCCESS; } VkResult anv_graphics_pipeline_create( VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct anv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache); if (cache == NULL) cache = &device->default_pipeline_cache; switch (device->info.gen) { case 7: if (device->info.is_haswell) return gen75_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline); else return gen7_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline); case 8: return gen8_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline); case 9: return gen9_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline); default: unreachable("unsupported gen\n"); } } VkResult anv_CreateGraphicsPipelines( VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { result = anv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator, &pPipelines[i]); if (result != VK_SUCCESS) { for (unsigned j = 0; j < i; j++) { anv_DestroyPipeline(_device, pPipelines[j], pAllocator); } return result; } } return VK_SUCCESS; } static VkResult anv_compute_pipeline_create( VkDevice _device, VkPipelineCache _cache, const VkComputePipelineCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipeline) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache); if (cache == NULL) cache = &device->default_pipeline_cache; switch (device->info.gen) { case 7: if (device->info.is_haswell) return gen75_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline); else return gen7_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline); case 8: return gen8_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline); case 9: return gen9_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline); default: unreachable("unsupported gen\n"); } } VkResult anv_CreateComputePipelines( VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { result = anv_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); if (result != VK_SUCCESS) { for (unsigned j = 0; j < i; j++) { anv_DestroyPipeline(_device, pPipelines[j], pAllocator); } return result; } } return VK_SUCCESS; }