/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "util/mesa-sha1.h" #include "util/os_time.h" #include "common/gen_l3_config.h" #include "anv_private.h" #include "compiler/brw_nir.h" #include "anv_nir.h" #include "nir/nir_xfb_info.h" #include "spirv/nir_spirv.h" #include "vk_util.h" /* Needed for SWIZZLE macros */ #include "program/prog_instruction.h" // Shader functions VkResult anv_CreateShaderModule( VkDevice _device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_shader_module *module; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); assert(pCreateInfo->flags == 0); module = vk_alloc2(&device->alloc, pAllocator, sizeof(*module) + pCreateInfo->codeSize, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (module == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); module->size = pCreateInfo->codeSize; memcpy(module->data, pCreateInfo->pCode, module->size); _mesa_sha1_compute(module->data, module->size, module->sha1); *pShaderModule = anv_shader_module_to_handle(module); return VK_SUCCESS; } void anv_DestroyShaderModule( VkDevice _device, VkShaderModule _module, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_shader_module, module, _module); if (!module) return; vk_free2(&device->alloc, pAllocator, module); } #define SPIR_V_MAGIC_NUMBER 0x07230203 static const uint64_t stage_to_debug[] = { [MESA_SHADER_VERTEX] = DEBUG_VS, [MESA_SHADER_TESS_CTRL] = DEBUG_TCS, [MESA_SHADER_TESS_EVAL] = DEBUG_TES, [MESA_SHADER_GEOMETRY] = DEBUG_GS, [MESA_SHADER_FRAGMENT] = DEBUG_WM, [MESA_SHADER_COMPUTE] = DEBUG_CS, }; /* Eventually, this will become part of anv_CreateShader. Unfortunately, * we can't do that yet because we don't have the ability to copy nir. */ static nir_shader * anv_shader_compile_to_nir(struct anv_device *device, void *mem_ctx, const struct anv_shader_module *module, const char *entrypoint_name, gl_shader_stage stage, const VkSpecializationInfo *spec_info) { const struct anv_physical_device *pdevice = &device->instance->physicalDevice; const struct brw_compiler *compiler = pdevice->compiler; const nir_shader_compiler_options *nir_options = compiler->glsl_compiler_options[stage].NirOptions; uint32_t *spirv = (uint32_t *) module->data; assert(spirv[0] == SPIR_V_MAGIC_NUMBER); assert(module->size % 4 == 0); uint32_t num_spec_entries = 0; struct nir_spirv_specialization *spec_entries = NULL; if (spec_info && spec_info->mapEntryCount > 0) { num_spec_entries = spec_info->mapEntryCount; spec_entries = malloc(num_spec_entries * sizeof(*spec_entries)); for (uint32_t i = 0; i < num_spec_entries; i++) { VkSpecializationMapEntry entry = spec_info->pMapEntries[i]; const void *data = spec_info->pData + entry.offset; assert(data + entry.size <= spec_info->pData + spec_info->dataSize); spec_entries[i].id = spec_info->pMapEntries[i].constantID; if (spec_info->dataSize == 8) spec_entries[i].data64 = *(const uint64_t *)data; else spec_entries[i].data32 = *(const uint32_t *)data; } } struct spirv_to_nir_options spirv_options = { .lower_workgroup_access_to_offsets = true, .caps = { .derivative_group = true, .descriptor_array_dynamic_indexing = true, .descriptor_array_non_uniform_indexing = true, .descriptor_indexing = true, .device_group = true, .draw_parameters = true, .float16 = pdevice->info.gen >= 8, .float64 = pdevice->info.gen >= 8, .fragment_shader_sample_interlock = pdevice->info.gen >= 9, .fragment_shader_pixel_interlock = pdevice->info.gen >= 9, .geometry_streams = true, .image_write_without_format = true, .int8 = pdevice->info.gen >= 8, .int16 = pdevice->info.gen >= 8, .int64 = pdevice->info.gen >= 8, .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin, .min_lod = true, .multiview = true, .physical_storage_buffer_address = pdevice->has_a64_buffer_access, .post_depth_coverage = pdevice->info.gen >= 9, .runtime_descriptor_array = true, .shader_viewport_index_layer = true, .stencil_export = pdevice->info.gen >= 9, .storage_8bit = pdevice->info.gen >= 8, .storage_16bit = pdevice->info.gen >= 8, .subgroup_arithmetic = true, .subgroup_basic = true, .subgroup_ballot = true, .subgroup_quad = true, .subgroup_shuffle = true, .subgroup_vote = true, .tessellation = true, .transform_feedback = pdevice->info.gen >= 8, .variable_pointers = true, }, .ubo_addr_format = nir_address_format_32bit_index_offset, .ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access), .phys_ssbo_addr_format = nir_address_format_64bit_global, .push_const_addr_format = nir_address_format_logical, /* TODO: Consider changing this to an address format that has the NULL * pointer equals to 0. That might be a better format to play nice * with certain code / code generators. */ .shared_addr_format = nir_address_format_32bit_offset, }; nir_shader *nir = spirv_to_nir(spirv, module->size / 4, spec_entries, num_spec_entries, stage, entrypoint_name, &spirv_options, nir_options); assert(nir->info.stage == stage); nir_validate_shader(nir, "after spirv_to_nir"); ralloc_steal(mem_ctx, nir); free(spec_entries); if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) { fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n", gl_shader_stage_name(stage)); nir_print_shader(nir, stderr); } /* We have to lower away local constant initializers right before we * inline functions. That way they get properly initialized at the top * of the function and not at the top of its caller. */ NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp); NIR_PASS_V(nir, nir_lower_returns); NIR_PASS_V(nir, nir_inline_functions); NIR_PASS_V(nir, nir_opt_deref); /* Pick off the single entrypoint that we want */ foreach_list_typed_safe(nir_function, func, node, &nir->functions) { if (!func->is_entrypoint) exec_node_remove(&func->node); } assert(exec_list_length(&nir->functions) == 1); /* Now that we've deleted all but the main function, we can go ahead and * lower the rest of the constant initializers. We do this here so that * nir_remove_dead_variables and split_per_member_structs below see the * corresponding stores. */ NIR_PASS_V(nir, nir_lower_constant_initializers, ~0); /* Split member structs. We do this before lower_io_to_temporaries so that * it doesn't lower system values to temporaries by accident. */ NIR_PASS_V(nir, nir_split_var_copies); NIR_PASS_V(nir, nir_split_per_member_structs); NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_in | nir_var_shader_out | nir_var_system_value); NIR_PASS_V(nir, nir_propagate_invariant); NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false); NIR_PASS_V(nir, nir_lower_frexp); /* Vulkan uses the separate-shader linking model */ nir->info.separate_shader = true; brw_preprocess_nir(compiler, nir, NULL); return nir; } void anv_DestroyPipeline( VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline); if (!pipeline) return; anv_reloc_list_finish(&pipeline->batch_relocs, pAllocator ? pAllocator : &device->alloc); if (pipeline->blend_state.map) anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state); for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { if (pipeline->shaders[s]) anv_shader_bin_unref(device, pipeline->shaders[s]); } vk_free2(&device->alloc, pAllocator, pipeline); } static const uint32_t vk_to_gen_primitive_type[] = { [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST, [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST, [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN, [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ, [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ, }; static void populate_sampler_prog_key(const struct gen_device_info *devinfo, struct brw_sampler_prog_key_data *key) { /* Almost all multisampled textures are compressed. The only time when we * don't compress a multisampled texture is for 16x MSAA with a surface * width greater than 8k which is a bit of an edge case. Since the sampler * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe * to tell the compiler to always assume compression. */ key->compressed_multisample_layout_mask = ~0; /* SkyLake added support for 16x MSAA. With this came a new message for * reading from a 16x MSAA surface with compression. The new message was * needed because now the MCS data is 64 bits instead of 32 or lower as is * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x * so we can just use it unconditionally. This may not be quite as * efficient but it saves us from recompiling. */ if (devinfo->gen >= 9) key->msaa_16 = ~0; /* XXX: Handle texture swizzle on HSW- */ for (int i = 0; i < MAX_SAMPLERS; i++) { /* Assume color sampler, no swizzling. (Works for BDW+) */ key->swizzles[i] = SWIZZLE_XYZW; } } static void populate_vs_prog_key(const struct gen_device_info *devinfo, struct brw_vs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); /* XXX: Handle vertex input work-arounds */ /* XXX: Handle sampler_prog_key */ } static void populate_tcs_prog_key(const struct gen_device_info *devinfo, unsigned input_vertices, struct brw_tcs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); key->input_vertices = input_vertices; } static void populate_tes_prog_key(const struct gen_device_info *devinfo, struct brw_tes_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); } static void populate_gs_prog_key(const struct gen_device_info *devinfo, struct brw_gs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); } static void populate_wm_prog_key(const struct gen_device_info *devinfo, const struct anv_subpass *subpass, const VkPipelineMultisampleStateCreateInfo *ms_info, struct brw_wm_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); /* We set this to 0 here and set to the actual value before we call * brw_compile_fs. */ key->input_slots_valid = 0; /* Vulkan doesn't specify a default */ key->high_quality_derivatives = false; /* XXX Vulkan doesn't appear to specify */ key->clamp_fragment_color = false; assert(subpass->color_count <= MAX_RTS); for (uint32_t i = 0; i < subpass->color_count; i++) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) key->color_outputs_valid |= (1 << i); } key->nr_color_regions = util_bitcount(key->color_outputs_valid); /* To reduce possible shader recompilations we would need to know if * there is a SampleMask output variable to compute if we should emit * code to workaround the issue that hardware disables alpha to coverage * when there is SampleMask output. */ key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable; /* Vulkan doesn't support fixed-function alpha test */ key->alpha_test_replicate_alpha = false; if (ms_info) { /* We should probably pull this out of the shader, but it's fairly * harmless to compute it and then let dead-code take care of it. */ if (ms_info->rasterizationSamples > 1) { key->persample_interp = ms_info->sampleShadingEnable && (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1; key->multisample_fbo = true; } key->frag_coord_adds_sample_pos = key->persample_interp; } } static void populate_cs_prog_key(const struct gen_device_info *devinfo, struct brw_cs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); } struct anv_pipeline_stage { gl_shader_stage stage; const struct anv_shader_module *module; const char *entrypoint; const VkSpecializationInfo *spec_info; unsigned char shader_sha1[20]; union brw_any_prog_key key; struct { gl_shader_stage stage; unsigned char sha1[20]; } cache_key; nir_shader *nir; struct anv_pipeline_binding surface_to_descriptor[256]; struct anv_pipeline_binding sampler_to_descriptor[256]; struct anv_pipeline_bind_map bind_map; union brw_any_prog_data prog_data; VkPipelineCreationFeedbackEXT feedback; }; static void anv_pipeline_hash_shader(const struct anv_shader_module *module, const char *entrypoint, gl_shader_stage stage, const VkSpecializationInfo *spec_info, unsigned char *sha1_out) { struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1)); _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint)); _mesa_sha1_update(&ctx, &stage, sizeof(stage)); if (spec_info) { _mesa_sha1_update(&ctx, spec_info->pMapEntries, spec_info->mapEntryCount * sizeof(*spec_info->pMapEntries)); _mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize); } _mesa_sha1_final(&ctx, sha1_out); } static void anv_pipeline_hash_graphics(struct anv_pipeline *pipeline, struct anv_pipeline_layout *layout, struct anv_pipeline_stage *stages, unsigned char *sha1_out) { struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask, sizeof(pipeline->subpass->view_mask)); if (layout) _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1)); const bool rba = pipeline->device->robust_buffer_access; _mesa_sha1_update(&ctx, &rba, sizeof(rba)); for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { if (stages[s].entrypoint) { _mesa_sha1_update(&ctx, stages[s].shader_sha1, sizeof(stages[s].shader_sha1)); _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s)); } } _mesa_sha1_final(&ctx, sha1_out); } static void anv_pipeline_hash_compute(struct anv_pipeline *pipeline, struct anv_pipeline_layout *layout, struct anv_pipeline_stage *stage, unsigned char *sha1_out) { struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); if (layout) _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1)); const bool rba = pipeline->device->robust_buffer_access; _mesa_sha1_update(&ctx, &rba, sizeof(rba)); _mesa_sha1_update(&ctx, stage->shader_sha1, sizeof(stage->shader_sha1)); _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs)); _mesa_sha1_final(&ctx, sha1_out); } static nir_shader * anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, void *mem_ctx, struct anv_pipeline_stage *stage) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; const nir_shader_compiler_options *nir_options = compiler->glsl_compiler_options[stage->stage].NirOptions; nir_shader *nir; nir = anv_device_search_for_nir(pipeline->device, cache, nir_options, stage->shader_sha1, mem_ctx); if (nir) { assert(nir->info.stage == stage->stage); return nir; } nir = anv_shader_compile_to_nir(pipeline->device, mem_ctx, stage->module, stage->entrypoint, stage->stage, stage->spec_info); if (nir) { anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1); return nir; } return NULL; } static void anv_pipeline_lower_nir(struct anv_pipeline *pipeline, void *mem_ctx, struct anv_pipeline_stage *stage, struct anv_pipeline_layout *layout) { const struct anv_physical_device *pdevice = &pipeline->device->instance->physicalDevice; const struct brw_compiler *compiler = pdevice->compiler; struct brw_stage_prog_data *prog_data = &stage->prog_data.base; nir_shader *nir = stage->nir; if (nir->info.stage == MESA_SHADER_FRAGMENT) { NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable); NIR_PASS_V(nir, anv_nir_lower_input_attachments); } NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout); NIR_PASS_V(nir, anv_nir_lower_push_constants); if (nir->info.stage != MESA_SHADER_COMPUTE) NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask); if (nir->info.stage == MESA_SHADER_COMPUTE) prog_data->total_shared = nir->num_shared; nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); if (nir->num_uniforms > 0) { assert(prog_data->nr_params == 0); /* If the shader uses any push constants at all, we'll just give * them the maximum possible number */ assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE); nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE; prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float); prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params); /* We now set the param values to be offsets into a * anv_push_constant_data structure. Since the compiler doesn't * actually dereference any of the gl_constant_value pointers in the * params array, it doesn't really matter what we put here. */ struct anv_push_constants *null_data = NULL; /* Fill out the push constants section of the param array */ for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) { prog_data->param[i] = ANV_PARAM_PUSH( (uintptr_t)&null_data->client_data[i * sizeof(float)]); } } if (nir->info.num_ssbos > 0 || nir->info.num_images > 0) pipeline->needs_data_cache = true; NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo); NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global, nir_address_format_64bit_global); /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */ if (layout) { anv_nir_apply_pipeline_layout(pdevice, pipeline->device->robust_buffer_access, layout, nir, prog_data, &stage->bind_map); NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo, nir_address_format_32bit_index_offset); NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo, anv_nir_ssbo_addr_format(pdevice, pipeline->device->robust_buffer_access)); NIR_PASS_V(nir, nir_opt_constant_folding); /* We don't support non-uniform UBOs and non-uniform SSBO access is * handled naturally by falling back to A64 messages. */ NIR_PASS_V(nir, nir_lower_non_uniform_access, nir_lower_non_uniform_texture_access | nir_lower_non_uniform_image_access); } if (nir->info.stage != MESA_SHADER_COMPUTE) brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges); assert(nir->num_uniforms == prog_data->nr_params * 4); stage->nir = nir; } static void anv_pipeline_link_vs(const struct brw_compiler *compiler, struct anv_pipeline_stage *vs_stage, struct anv_pipeline_stage *next_stage) { if (next_stage) brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir); } static const unsigned * anv_pipeline_compile_vs(const struct brw_compiler *compiler, void *mem_ctx, struct anv_device *device, struct anv_pipeline_stage *vs_stage) { brw_compute_vue_map(compiler->devinfo, &vs_stage->prog_data.vs.base.vue_map, vs_stage->nir->info.outputs_written, vs_stage->nir->info.separate_shader); return brw_compile_vs(compiler, device, mem_ctx, &vs_stage->key.vs, &vs_stage->prog_data.vs, vs_stage->nir, -1, NULL); } static void merge_tess_info(struct shader_info *tes_info, const struct shader_info *tcs_info) { /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says: * * "PointMode. Controls generation of points rather than triangles * or lines. This functionality defaults to disabled, and is * enabled if either shader stage includes the execution mode. * * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw, * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd, * and OutputVertices, it says: * * "One mode must be set in at least one of the tessellation * shader stages." * * So, the fields can be set in either the TCS or TES, but they must * agree if set in both. Our backend looks at TES, so bitwise-or in * the values from the TCS. */ assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 || tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out); tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out; assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tcs_info->tess.spacing == tes_info->tess.spacing); tes_info->tess.spacing |= tcs_info->tess.spacing; assert(tcs_info->tess.primitive_mode == 0 || tes_info->tess.primitive_mode == 0 || tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode); tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode; tes_info->tess.ccw |= tcs_info->tess.ccw; tes_info->tess.point_mode |= tcs_info->tess.point_mode; } static void anv_pipeline_link_tcs(const struct brw_compiler *compiler, struct anv_pipeline_stage *tcs_stage, struct anv_pipeline_stage *tes_stage) { assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL); brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir); nir_lower_patch_vertices(tes_stage->nir, tcs_stage->nir->info.tess.tcs_vertices_out, NULL); /* Copy TCS info into the TES info */ merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info); /* Whacking the key after cache lookup is a bit sketchy, but all of * this comes from the SPIR-V, which is part of the hash used for the * pipeline cache. So it should be safe. */ tcs_stage->key.tcs.tes_primitive_mode = tes_stage->nir->info.tess.primitive_mode; tcs_stage->key.tcs.quads_workaround = compiler->devinfo->gen < 9 && tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ && tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL; } static const unsigned * anv_pipeline_compile_tcs(const struct brw_compiler *compiler, void *mem_ctx, struct anv_device *device, struct anv_pipeline_stage *tcs_stage, struct anv_pipeline_stage *prev_stage) { tcs_stage->key.tcs.outputs_written = tcs_stage->nir->info.outputs_written; tcs_stage->key.tcs.patch_outputs_written = tcs_stage->nir->info.patch_outputs_written; return brw_compile_tcs(compiler, device, mem_ctx, &tcs_stage->key.tcs, &tcs_stage->prog_data.tcs, tcs_stage->nir, -1, NULL); } static void anv_pipeline_link_tes(const struct brw_compiler *compiler, struct anv_pipeline_stage *tes_stage, struct anv_pipeline_stage *next_stage) { if (next_stage) brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir); } static const unsigned * anv_pipeline_compile_tes(const struct brw_compiler *compiler, void *mem_ctx, struct anv_device *device, struct anv_pipeline_stage *tes_stage, struct anv_pipeline_stage *tcs_stage) { tes_stage->key.tes.inputs_read = tcs_stage->nir->info.outputs_written; tes_stage->key.tes.patch_inputs_read = tcs_stage->nir->info.patch_outputs_written; return brw_compile_tes(compiler, device, mem_ctx, &tes_stage->key.tes, &tcs_stage->prog_data.tcs.base.vue_map, &tes_stage->prog_data.tes, tes_stage->nir, NULL, -1, NULL); } static void anv_pipeline_link_gs(const struct brw_compiler *compiler, struct anv_pipeline_stage *gs_stage, struct anv_pipeline_stage *next_stage) { if (next_stage) brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir); } static const unsigned * anv_pipeline_compile_gs(const struct brw_compiler *compiler, void *mem_ctx, struct anv_device *device, struct anv_pipeline_stage *gs_stage, struct anv_pipeline_stage *prev_stage) { brw_compute_vue_map(compiler->devinfo, &gs_stage->prog_data.gs.base.vue_map, gs_stage->nir->info.outputs_written, gs_stage->nir->info.separate_shader); return brw_compile_gs(compiler, device, mem_ctx, &gs_stage->key.gs, &gs_stage->prog_data.gs, gs_stage->nir, NULL, -1, NULL); } static void anv_pipeline_link_fs(const struct brw_compiler *compiler, struct anv_pipeline_stage *stage) { unsigned num_rts = 0; const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1; struct anv_pipeline_binding rt_bindings[max_rt]; nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir); int rt_to_bindings[max_rt]; memset(rt_to_bindings, -1, sizeof(rt_to_bindings)); bool rt_used[max_rt]; memset(rt_used, 0, sizeof(rt_used)); /* Flag used render targets */ nir_foreach_variable_safe(var, &stage->nir->outputs) { if (var->data.location < FRAG_RESULT_DATA0) continue; const unsigned rt = var->data.location - FRAG_RESULT_DATA0; /* Out-of-bounds */ if (rt >= MAX_RTS) continue; const unsigned array_len = glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1; assert(rt + array_len <= max_rt); /* Unused */ if (!(stage->key.wm.color_outputs_valid & BITFIELD_RANGE(rt, array_len))) { /* If this is the RT at location 0 and we have alpha to coverage * enabled we will have to create a null RT for it, so mark it as * used. */ if (rt > 0 || !stage->key.wm.alpha_to_coverage) continue; } for (unsigned i = 0; i < array_len; i++) rt_used[rt + i] = true; } /* Set new, compacted, location */ for (unsigned i = 0; i < max_rt; i++) { if (!rt_used[i]) continue; rt_to_bindings[i] = num_rts; if (stage->key.wm.color_outputs_valid & (1 << i)) { rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) { .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS, .binding = 0, .index = i, }; } else { /* Setup a null render target */ rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) { .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS, .binding = 0, .index = UINT32_MAX, }; } num_rts++; } bool deleted_output = false; nir_foreach_variable_safe(var, &stage->nir->outputs) { if (var->data.location < FRAG_RESULT_DATA0) continue; const unsigned rt = var->data.location - FRAG_RESULT_DATA0; if (rt >= MAX_RTS || !rt_used[rt]) { /* Unused or out-of-bounds, throw it away, unless it is the first * RT and we have alpha to coverage enabled. */ deleted_output = true; var->data.mode = nir_var_function_temp; exec_node_remove(&var->node); exec_list_push_tail(&impl->locals, &var->node); continue; } /* Give it the new location */ assert(rt_to_bindings[rt] != -1); var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0; } if (deleted_output) nir_fixup_deref_modes(stage->nir); if (num_rts == 0) { /* If we have no render targets, we need a null render target */ rt_bindings[0] = (struct anv_pipeline_binding) { .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS, .binding = 0, .index = UINT32_MAX, }; num_rts = 1; } /* Now that we've determined the actual number of render targets, adjust * the key accordingly. */ stage->key.wm.nr_color_regions = num_rts; stage->key.wm.color_outputs_valid = (1 << num_rts) - 1; assert(num_rts <= max_rt); assert(stage->bind_map.surface_count == 0); typed_memcpy(stage->bind_map.surface_to_descriptor, rt_bindings, num_rts); stage->bind_map.surface_count += num_rts; } static const unsigned * anv_pipeline_compile_fs(const struct brw_compiler *compiler, void *mem_ctx, struct anv_device *device, struct anv_pipeline_stage *fs_stage, struct anv_pipeline_stage *prev_stage) { /* TODO: we could set this to 0 based on the information in nir_shader, but * we need this before we call spirv_to_nir. */ assert(prev_stage); fs_stage->key.wm.input_slots_valid = prev_stage->prog_data.vue.vue_map.slots_valid; const unsigned *code = brw_compile_fs(compiler, device, mem_ctx, &fs_stage->key.wm, &fs_stage->prog_data.wm, fs_stage->nir, NULL, -1, -1, -1, true, false, NULL, NULL); if (fs_stage->key.wm.nr_color_regions == 0 && !fs_stage->prog_data.wm.has_side_effects && !fs_stage->prog_data.wm.uses_kill && fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF && !fs_stage->prog_data.wm.computed_stencil) { /* This fragment shader has no outputs and no side effects. Go ahead * and return the code pointer so we don't accidentally think the * compile failed but zero out prog_data which will set program_size to * zero and disable the stage. */ memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data)); } return code; } static VkResult anv_pipeline_compile_graphics(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *info) { VkPipelineCreationFeedbackEXT pipeline_feedback = { .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT, }; int64_t pipeline_start = os_time_get_nano(); const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {}; pipeline->active_stages = 0; VkResult result; for (uint32_t i = 0; i < info->stageCount; i++) { const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i]; gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage); pipeline->active_stages |= sinfo->stage; int64_t stage_start = os_time_get_nano(); stages[stage].stage = stage; stages[stage].module = anv_shader_module_from_handle(sinfo->module); stages[stage].entrypoint = sinfo->pName; stages[stage].spec_info = sinfo->pSpecializationInfo; anv_pipeline_hash_shader(stages[stage].module, stages[stage].entrypoint, stage, stages[stage].spec_info, stages[stage].shader_sha1); const struct gen_device_info *devinfo = &pipeline->device->info; switch (stage) { case MESA_SHADER_VERTEX: populate_vs_prog_key(devinfo, &stages[stage].key.vs); break; case MESA_SHADER_TESS_CTRL: populate_tcs_prog_key(devinfo, info->pTessellationState->patchControlPoints, &stages[stage].key.tcs); break; case MESA_SHADER_TESS_EVAL: populate_tes_prog_key(devinfo, &stages[stage].key.tes); break; case MESA_SHADER_GEOMETRY: populate_gs_prog_key(devinfo, &stages[stage].key.gs); break; case MESA_SHADER_FRAGMENT: populate_wm_prog_key(devinfo, pipeline->subpass, info->pMultisampleState, &stages[stage].key.wm); break; default: unreachable("Invalid graphics shader stage"); } stages[stage].feedback.duration += os_time_get_nano() - stage_start; stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT; } if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT; assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT); ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout); unsigned char sha1[20]; anv_pipeline_hash_graphics(pipeline, layout, stages, sha1); unsigned found = 0; unsigned cache_hits = 0; for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { if (!stages[s].entrypoint) continue; int64_t stage_start = os_time_get_nano(); stages[s].cache_key.stage = s; memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1)); bool cache_hit; struct anv_shader_bin *bin = anv_device_search_for_kernel(pipeline->device, cache, &stages[s].cache_key, sizeof(stages[s].cache_key), &cache_hit); if (bin) { found++; pipeline->shaders[s] = bin; } if (cache_hit) { cache_hits++; stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT; } stages[s].feedback.duration += os_time_get_nano() - stage_start; } if (found == __builtin_popcount(pipeline->active_stages)) { if (cache_hits == found) { pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT; } /* We found all our shaders in the cache. We're done. */ goto done; } else if (found > 0) { /* We found some but not all of our shaders. This shouldn't happen * most of the time but it can if we have a partially populated * pipeline cache. */ assert(found < __builtin_popcount(pipeline->active_stages)); vk_debug_report(&pipeline->device->instance->debug_report_callbacks, VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, (uint64_t)(uintptr_t)cache, 0, 0, "anv", "Found a partial pipeline in the cache. This is " "most likely caused by an incomplete pipeline cache " "import or export"); /* We're going to have to recompile anyway, so just throw away our * references to the shaders in the cache. We'll get them out of the * cache again as part of the compilation process. */ for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { stages[s].feedback.flags = 0; if (pipeline->shaders[s]) { anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]); pipeline->shaders[s] = NULL; } } } void *pipeline_ctx = ralloc_context(NULL); for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { if (!stages[s].entrypoint) continue; int64_t stage_start = os_time_get_nano(); assert(stages[s].stage == s); assert(pipeline->shaders[s] == NULL); stages[s].bind_map = (struct anv_pipeline_bind_map) { .surface_to_descriptor = stages[s].surface_to_descriptor, .sampler_to_descriptor = stages[s].sampler_to_descriptor }; stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache, pipeline_ctx, &stages[s]); if (stages[s].nir == NULL) { result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); goto fail; } stages[s].feedback.duration += os_time_get_nano() - stage_start; } /* Walk backwards to link */ struct anv_pipeline_stage *next_stage = NULL; for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) { if (!stages[s].entrypoint) continue; switch (s) { case MESA_SHADER_VERTEX: anv_pipeline_link_vs(compiler, &stages[s], next_stage); break; case MESA_SHADER_TESS_CTRL: anv_pipeline_link_tcs(compiler, &stages[s], next_stage); break; case MESA_SHADER_TESS_EVAL: anv_pipeline_link_tes(compiler, &stages[s], next_stage); break; case MESA_SHADER_GEOMETRY: anv_pipeline_link_gs(compiler, &stages[s], next_stage); break; case MESA_SHADER_FRAGMENT: anv_pipeline_link_fs(compiler, &stages[s]); break; default: unreachable("Invalid graphics shader stage"); } next_stage = &stages[s]; } struct anv_pipeline_stage *prev_stage = NULL; for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { if (!stages[s].entrypoint) continue; int64_t stage_start = os_time_get_nano(); void *stage_ctx = ralloc_context(NULL); nir_xfb_info *xfb_info = NULL; if (s == MESA_SHADER_VERTEX || s == MESA_SHADER_TESS_EVAL || s == MESA_SHADER_GEOMETRY) xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx); anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout); const unsigned *code; switch (s) { case MESA_SHADER_VERTEX: code = anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device, &stages[s]); break; case MESA_SHADER_TESS_CTRL: code = anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device, &stages[s], prev_stage); break; case MESA_SHADER_TESS_EVAL: code = anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device, &stages[s], prev_stage); break; case MESA_SHADER_GEOMETRY: code = anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device, &stages[s], prev_stage); break; case MESA_SHADER_FRAGMENT: code = anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device, &stages[s], prev_stage); break; default: unreachable("Invalid graphics shader stage"); } if (code == NULL) { ralloc_free(stage_ctx); result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); goto fail; } struct anv_shader_bin *bin = anv_device_upload_kernel(pipeline->device, cache, &stages[s].cache_key, sizeof(stages[s].cache_key), code, stages[s].prog_data.base.program_size, stages[s].nir->constant_data, stages[s].nir->constant_data_size, &stages[s].prog_data.base, brw_prog_data_size(s), xfb_info, &stages[s].bind_map); if (!bin) { ralloc_free(stage_ctx); result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); goto fail; } pipeline->shaders[s] = bin; ralloc_free(stage_ctx); stages[s].feedback.duration += os_time_get_nano() - stage_start; prev_stage = &stages[s]; } ralloc_free(pipeline_ctx); done: if (pipeline->shaders[MESA_SHADER_FRAGMENT] && pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) { /* This can happen if we decided to implicitly disable the fragment * shader. See anv_pipeline_compile_fs(). */ anv_shader_bin_unref(pipeline->device, pipeline->shaders[MESA_SHADER_FRAGMENT]); pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL; pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT; } pipeline_feedback.duration = os_time_get_nano() - pipeline_start; const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback = vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT); if (create_feedback) { *create_feedback->pPipelineCreationFeedback = pipeline_feedback; assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount); for (uint32_t i = 0; i < info->stageCount; i++) { gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage); create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback; } } return VK_SUCCESS; fail: ralloc_free(pipeline_ctx); for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { if (pipeline->shaders[s]) anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]); } return result; } VkResult anv_pipeline_compile_cs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkComputePipelineCreateInfo *info, const struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { VkPipelineCreationFeedbackEXT pipeline_feedback = { .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT, }; int64_t pipeline_start = os_time_get_nano(); const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct anv_pipeline_stage stage = { .stage = MESA_SHADER_COMPUTE, .module = module, .entrypoint = entrypoint, .spec_info = spec_info, .cache_key = { .stage = MESA_SHADER_COMPUTE, }, .feedback = { .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT, }, }; anv_pipeline_hash_shader(stage.module, stage.entrypoint, MESA_SHADER_COMPUTE, stage.spec_info, stage.shader_sha1); struct anv_shader_bin *bin = NULL; populate_cs_prog_key(&pipeline->device->info, &stage.key.cs); ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout); anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1); bool cache_hit; bin = anv_device_search_for_kernel(pipeline->device, cache, &stage.cache_key, sizeof(stage.cache_key), &cache_hit); if (bin == NULL) { int64_t stage_start = os_time_get_nano(); stage.bind_map = (struct anv_pipeline_bind_map) { .surface_to_descriptor = stage.surface_to_descriptor, .sampler_to_descriptor = stage.sampler_to_descriptor }; /* Set up a binding for the gl_NumWorkGroups */ stage.bind_map.surface_count = 1; stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) { .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS, }; void *mem_ctx = ralloc_context(NULL); stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage); if (stage.nir == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout); NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id, &stage.prog_data.cs); const unsigned *shader_code = brw_compile_cs(compiler, pipeline->device, mem_ctx, &stage.key.cs, &stage.prog_data.cs, stage.nir, -1, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } const unsigned code_size = stage.prog_data.base.program_size; bin = anv_device_upload_kernel(pipeline->device, cache, &stage.cache_key, sizeof(stage.cache_key), shader_code, code_size, stage.nir->constant_data, stage.nir->constant_data_size, &stage.prog_data.base, sizeof(stage.prog_data.cs), NULL, &stage.bind_map); if (!bin) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } ralloc_free(mem_ctx); stage.feedback.duration = os_time_get_nano() - stage_start; } if (cache_hit) { stage.feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT; pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT; } pipeline_feedback.duration = os_time_get_nano() - pipeline_start; const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback = vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT); if (create_feedback) { *create_feedback->pPipelineCreationFeedback = pipeline_feedback; assert(create_feedback->pipelineStageCreationFeedbackCount == 1); create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback; } pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT; pipeline->shaders[MESA_SHADER_COMPUTE] = bin; return VK_SUCCESS; } /** * Copy pipeline state not marked as dynamic. * Dynamic state is pipeline state which hasn't been provided at pipeline * creation time, but is dynamically provided afterwards using various * vkCmdSet* functions. * * The set of state considered "non_dynamic" is determined by the pieces of * state that have their corresponding VkDynamicState enums omitted from * VkPipelineDynamicStateCreateInfo::pDynamicStates. * * @param[out] pipeline Destination non_dynamic state. * @param[in] pCreateInfo Source of non_dynamic state to be copied. */ static void copy_non_dynamic_state(struct anv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL; struct anv_subpass *subpass = pipeline->subpass; pipeline->dynamic_state = default_dynamic_state; if (pCreateInfo->pDynamicState) { /* Remove all of the states that are marked as dynamic */ uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t s = 0; s < count; s++) states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]); } struct anv_dynamic_state *dynamic = &pipeline->dynamic_state; /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pViewportState is [...] NULL if the pipeline * has rasterization disabled. */ if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) { assert(pCreateInfo->pViewportState); dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) { typed_memcpy(dynamic->viewport.viewports, pCreateInfo->pViewportState->pViewports, pCreateInfo->pViewportState->viewportCount); } dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) { typed_memcpy(dynamic->scissor.scissors, pCreateInfo->pViewportState->pScissors, pCreateInfo->pViewportState->scissorCount); } } if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) { assert(pCreateInfo->pRasterizationState); dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; } if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) { assert(pCreateInfo->pRasterizationState); dynamic->depth_bias.bias = pCreateInfo->pRasterizationState->depthBiasConstantFactor; dynamic->depth_bias.clamp = pCreateInfo->pRasterizationState->depthBiasClamp; dynamic->depth_bias.slope = pCreateInfo->pRasterizationState->depthBiasSlopeFactor; } /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pColorBlendState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is * created against does not use any color attachments. */ bool uses_color_att = false; for (unsigned i = 0; i < subpass->color_count; ++i) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) { uses_color_att = true; break; } } if (uses_color_att && !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) { assert(pCreateInfo->pColorBlendState); if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) typed_memcpy(dynamic->blend_constants, pCreateInfo->pColorBlendState->blendConstants, 4); } /* If there is no depthstencil attachment, then don't read * pDepthStencilState. The Vulkan spec states that pDepthStencilState may * be NULL in this case. Even if pDepthStencilState is non-NULL, there is * no need to override the depthstencil defaults in * anv_pipeline::dynamic_state when there is no depthstencil attachment. * * Section 9.2 of the Vulkan 1.0.15 spec says: * * pDepthStencilState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is created * against does not use a depth/stencil attachment. */ if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable && subpass->depth_stencil_attachment) { assert(pCreateInfo->pDepthStencilState); if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) { dynamic->depth_bounds.min = pCreateInfo->pDepthStencilState->minDepthBounds; dynamic->depth_bounds.max = pCreateInfo->pDepthStencilState->maxDepthBounds; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) { dynamic->stencil_compare_mask.front = pCreateInfo->pDepthStencilState->front.compareMask; dynamic->stencil_compare_mask.back = pCreateInfo->pDepthStencilState->back.compareMask; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) { dynamic->stencil_write_mask.front = pCreateInfo->pDepthStencilState->front.writeMask; dynamic->stencil_write_mask.back = pCreateInfo->pDepthStencilState->back.writeMask; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) { dynamic->stencil_reference.front = pCreateInfo->pDepthStencilState->front.reference; dynamic->stencil_reference.back = pCreateInfo->pDepthStencilState->back.reference; } } pipeline->dynamic_state_mask = states; } static void anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info) { #ifdef DEBUG struct anv_render_pass *renderpass = NULL; struct anv_subpass *subpass = NULL; /* Assert that all required members of VkGraphicsPipelineCreateInfo are * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines. */ assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO); renderpass = anv_render_pass_from_handle(info->renderPass); assert(renderpass); assert(info->subpass < renderpass->subpass_count); subpass = &renderpass->subpasses[info->subpass]; assert(info->stageCount >= 1); assert(info->pVertexInputState); assert(info->pInputAssemblyState); assert(info->pRasterizationState); if (!info->pRasterizationState->rasterizerDiscardEnable) { assert(info->pViewportState); assert(info->pMultisampleState); if (subpass && subpass->depth_stencil_attachment) assert(info->pDepthStencilState); if (subpass && subpass->color_count > 0) { bool all_color_unused = true; for (int i = 0; i < subpass->color_count; i++) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) all_color_unused = false; } /* pColorBlendState is ignored if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is * created against does not use any color attachments. */ assert(info->pColorBlendState || all_color_unused); } } for (uint32_t i = 0; i < info->stageCount; ++i) { switch (info->pStages[i].stage) { case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: assert(info->pTessellationState); break; default: break; } } #endif } /** * Calculate the desired L3 partitioning based on the current state of the * pipeline. For now this simply returns the conservative defaults calculated * by get_default_l3_weights(), but we could probably do better by gathering * more statistics from the pipeline state (e.g. guess of expected URB usage * and bound surfaces), or by using feed-back from performance counters. */ void anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm) { const struct gen_device_info *devinfo = &pipeline->device->info; const struct gen_l3_weights w = gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm); pipeline->urb.l3_config = gen_get_l3_config(devinfo, w); pipeline->urb.total_size = gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config); } VkResult anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const VkAllocationCallbacks *alloc) { VkResult result; anv_pipeline_validate_create_info(pCreateInfo); if (alloc == NULL) alloc = &device->alloc; pipeline->device = device; ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass); assert(pCreateInfo->subpass < render_pass->subpass_count); pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass]; result = anv_reloc_list_init(&pipeline->batch_relocs, alloc); if (result != VK_SUCCESS) return result; pipeline->batch.alloc = alloc; pipeline->batch.next = pipeline->batch.start = pipeline->batch_data; pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data); pipeline->batch.relocs = &pipeline->batch_relocs; pipeline->batch.status = VK_SUCCESS; copy_non_dynamic_state(pipeline, pCreateInfo); pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState && pCreateInfo->pRasterizationState->depthClampEnable; /* Previously we enabled depth clipping when !depthClampEnable. * DepthClipStateCreateInfo now makes depth clipping explicit so if the * clipping info is available, use its enable value to determine clipping, * otherwise fallback to the previous !depthClampEnable logic. */ const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info = vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT); pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable; pipeline->sample_shading_enable = pCreateInfo->pMultisampleState && pCreateInfo->pMultisampleState->sampleShadingEnable; pipeline->needs_data_cache = false; /* When we free the pipeline, we detect stages based on the NULL status * of various prog_data pointers. Make them NULL by default. */ memset(pipeline->shaders, 0, sizeof(pipeline->shaders)); result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo); if (result != VK_SUCCESS) { anv_reloc_list_finish(&pipeline->batch_relocs, alloc); return result; } assert(pipeline->shaders[MESA_SHADER_VERTEX]); anv_pipeline_setup_l3_config(pipeline, false); const VkPipelineVertexInputStateCreateInfo *vi_info = pCreateInfo->pVertexInputState; const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read; pipeline->vb_used = 0; for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription *desc = &vi_info->pVertexAttributeDescriptions[i]; if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location))) pipeline->vb_used |= 1 << desc->binding; } for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *desc = &vi_info->pVertexBindingDescriptions[i]; pipeline->vb[desc->binding].stride = desc->stride; /* Step rate is programmed per vertex element (attribute), not * binding. Set up a map of which bindings step per instance, for * reference by vertex element setup. */ switch (desc->inputRate) { default: case VK_VERTEX_INPUT_RATE_VERTEX: pipeline->vb[desc->binding].instanced = false; break; case VK_VERTEX_INPUT_RATE_INSTANCE: pipeline->vb[desc->binding].instanced = true; break; } pipeline->vb[desc->binding].instance_divisor = 1; } const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state = vk_find_struct_const(vi_info->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT); if (vi_div_state) { for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) { const VkVertexInputBindingDivisorDescriptionEXT *desc = &vi_div_state->pVertexBindingDivisors[i]; pipeline->vb[desc->binding].instance_divisor = desc->divisor; } } /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. If the client asks for instancing, we need to multiply * the instance divisor by the number of views ensure that we repeat the * client's per-instance data once for each view. */ if (pipeline->subpass->view_mask) { const uint32_t view_count = anv_subpass_view_count(pipeline->subpass); for (uint32_t vb = 0; vb < MAX_VBS; vb++) { if (pipeline->vb[vb].instanced) pipeline->vb[vb].instance_divisor *= view_count; } } const VkPipelineInputAssemblyStateCreateInfo *ia_info = pCreateInfo->pInputAssemblyState; const VkPipelineTessellationStateCreateInfo *tess_info = pCreateInfo->pTessellationState; pipeline->primitive_restart = ia_info->primitiveRestartEnable; if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints); else pipeline->topology = vk_to_gen_primitive_type[ia_info->topology]; return VK_SUCCESS; }