/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "util/mesa-sha1.h" #include "common/gen_l3_config.h" #include "anv_private.h" #include "compiler/brw_nir.h" #include "anv_nir.h" #include "spirv/nir_spirv.h" #include "vk_util.h" /* Needed for SWIZZLE macros */ #include "program/prog_instruction.h" // Shader functions VkResult anv_CreateShaderModule( VkDevice _device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_shader_module *module; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); assert(pCreateInfo->flags == 0); module = vk_alloc2(&device->alloc, pAllocator, sizeof(*module) + pCreateInfo->codeSize, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (module == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); module->size = pCreateInfo->codeSize; memcpy(module->data, pCreateInfo->pCode, module->size); _mesa_sha1_compute(module->data, module->size, module->sha1); *pShaderModule = anv_shader_module_to_handle(module); return VK_SUCCESS; } void anv_DestroyShaderModule( VkDevice _device, VkShaderModule _module, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_shader_module, module, _module); if (!module) return; vk_free2(&device->alloc, pAllocator, module); } #define SPIR_V_MAGIC_NUMBER 0x07230203 static const uint64_t stage_to_debug[] = { [MESA_SHADER_VERTEX] = DEBUG_VS, [MESA_SHADER_TESS_CTRL] = DEBUG_TCS, [MESA_SHADER_TESS_EVAL] = DEBUG_TES, [MESA_SHADER_GEOMETRY] = DEBUG_GS, [MESA_SHADER_FRAGMENT] = DEBUG_WM, [MESA_SHADER_COMPUTE] = DEBUG_CS, }; /* Eventually, this will become part of anv_CreateShader. Unfortunately, * we can't do that yet because we don't have the ability to copy nir. */ static nir_shader * anv_shader_compile_to_nir(struct anv_pipeline *pipeline, void *mem_ctx, struct anv_shader_module *module, const char *entrypoint_name, gl_shader_stage stage, const VkSpecializationInfo *spec_info) { const struct anv_device *device = pipeline->device; const struct brw_compiler *compiler = device->instance->physicalDevice.compiler; const nir_shader_compiler_options *nir_options = compiler->glsl_compiler_options[stage].NirOptions; uint32_t *spirv = (uint32_t *) module->data; assert(spirv[0] == SPIR_V_MAGIC_NUMBER); assert(module->size % 4 == 0); uint32_t num_spec_entries = 0; struct nir_spirv_specialization *spec_entries = NULL; if (spec_info && spec_info->mapEntryCount > 0) { num_spec_entries = spec_info->mapEntryCount; spec_entries = malloc(num_spec_entries * sizeof(*spec_entries)); for (uint32_t i = 0; i < num_spec_entries; i++) { VkSpecializationMapEntry entry = spec_info->pMapEntries[i]; const void *data = spec_info->pData + entry.offset; assert(data + entry.size <= spec_info->pData + spec_info->dataSize); spec_entries[i].id = spec_info->pMapEntries[i].constantID; if (spec_info->dataSize == 8) spec_entries[i].data64 = *(const uint64_t *)data; else spec_entries[i].data32 = *(const uint32_t *)data; } } struct spirv_to_nir_options spirv_options = { .lower_workgroup_access_to_offsets = true, .caps = { .float64 = device->instance->physicalDevice.info.gen >= 8, .int64 = device->instance->physicalDevice.info.gen >= 8, .tessellation = true, .device_group = true, .draw_parameters = true, .image_write_without_format = true, .multiview = true, .variable_pointers = true, .storage_16bit = device->instance->physicalDevice.info.gen >= 8, .int16 = device->instance->physicalDevice.info.gen >= 8, .shader_viewport_index_layer = true, .subgroup_arithmetic = true, .subgroup_basic = true, .subgroup_ballot = true, .subgroup_quad = true, .subgroup_shuffle = true, .subgroup_vote = true, .stencil_export = device->instance->physicalDevice.info.gen >= 9, .storage_8bit = device->instance->physicalDevice.info.gen >= 8, .post_depth_coverage = device->instance->physicalDevice.info.gen >= 9, }, }; nir_function *entry_point = spirv_to_nir(spirv, module->size / 4, spec_entries, num_spec_entries, stage, entrypoint_name, &spirv_options, nir_options); nir_shader *nir = entry_point->shader; assert(nir->info.stage == stage); nir_validate_shader(nir); ralloc_steal(mem_ctx, nir); free(spec_entries); if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) { fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n", gl_shader_stage_name(stage)); nir_print_shader(nir, stderr); } /* We have to lower away local constant initializers right before we * inline functions. That way they get properly initialized at the top * of the function and not at the top of its caller. */ NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local); NIR_PASS_V(nir, nir_lower_returns); NIR_PASS_V(nir, nir_inline_functions); NIR_PASS_V(nir, nir_copy_prop); /* Pick off the single entrypoint that we want */ foreach_list_typed_safe(nir_function, func, node, &nir->functions) { if (func != entry_point) exec_node_remove(&func->node); } assert(exec_list_length(&nir->functions) == 1); entry_point->name = ralloc_strdup(entry_point, "main"); /* Now that we've deleted all but the main function, we can go ahead and * lower the rest of the constant initializers. We do this here so that * nir_remove_dead_variables and split_per_member_structs below see the * corresponding stores. */ NIR_PASS_V(nir, nir_lower_constant_initializers, ~0); /* Split member structs. We do this before lower_io_to_temporaries so that * it doesn't lower system values to temporaries by accident. */ NIR_PASS_V(nir, nir_split_var_copies); NIR_PASS_V(nir, nir_split_per_member_structs); NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_in | nir_var_shader_out | nir_var_system_value); if (stage == MESA_SHADER_FRAGMENT) NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable); NIR_PASS_V(nir, nir_propagate_invariant); NIR_PASS_V(nir, nir_lower_io_to_temporaries, entry_point->impl, true, false); /* Vulkan uses the separate-shader linking model */ nir->info.separate_shader = true; nir = brw_preprocess_nir(compiler, nir); if (stage == MESA_SHADER_FRAGMENT) NIR_PASS_V(nir, anv_nir_lower_input_attachments); return nir; } void anv_DestroyPipeline( VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline); if (!pipeline) return; anv_reloc_list_finish(&pipeline->batch_relocs, pAllocator ? pAllocator : &device->alloc); if (pipeline->blend_state.map) anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state); for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { if (pipeline->shaders[s]) anv_shader_bin_unref(device, pipeline->shaders[s]); } vk_free2(&device->alloc, pAllocator, pipeline); } static const uint32_t vk_to_gen_primitive_type[] = { [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST, [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST, [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN, [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ, [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ, }; static void populate_sampler_prog_key(const struct gen_device_info *devinfo, struct brw_sampler_prog_key_data *key) { /* Almost all multisampled textures are compressed. The only time when we * don't compress a multisampled texture is for 16x MSAA with a surface * width greater than 8k which is a bit of an edge case. Since the sampler * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe * to tell the compiler to always assume compression. */ key->compressed_multisample_layout_mask = ~0; /* SkyLake added support for 16x MSAA. With this came a new message for * reading from a 16x MSAA surface with compression. The new message was * needed because now the MCS data is 64 bits instead of 32 or lower as is * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x * so we can just use it unconditionally. This may not be quite as * efficient but it saves us from recompiling. */ if (devinfo->gen >= 9) key->msaa_16 = ~0; /* XXX: Handle texture swizzle on HSW- */ for (int i = 0; i < MAX_SAMPLERS; i++) { /* Assume color sampler, no swizzling. (Works for BDW+) */ key->swizzles[i] = SWIZZLE_XYZW; } } static void populate_vs_prog_key(const struct gen_device_info *devinfo, struct brw_vs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); /* XXX: Handle vertex input work-arounds */ /* XXX: Handle sampler_prog_key */ } static void populate_gs_prog_key(const struct gen_device_info *devinfo, struct brw_gs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); } static void populate_wm_prog_key(const struct anv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *info, struct brw_wm_prog_key *key) { const struct gen_device_info *devinfo = &pipeline->device->info; memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); /* TODO: we could set this to 0 based on the information in nir_shader, but * this function is called before spirv_to_nir. */ const struct brw_vue_map *vue_map = &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map; key->input_slots_valid = vue_map->slots_valid; /* Vulkan doesn't specify a default */ key->high_quality_derivatives = false; /* XXX Vulkan doesn't appear to specify */ key->clamp_fragment_color = false; assert(pipeline->subpass->color_count <= MAX_RTS); for (uint32_t i = 0; i < pipeline->subpass->color_count; i++) { if (pipeline->subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) key->color_outputs_valid |= (1 << i); } key->nr_color_regions = _mesa_bitcount(key->color_outputs_valid); key->replicate_alpha = key->nr_color_regions > 1 && info->pMultisampleState && info->pMultisampleState->alphaToCoverageEnable; if (info->pMultisampleState) { /* We should probably pull this out of the shader, but it's fairly * harmless to compute it and then let dead-code take care of it. */ if (info->pMultisampleState->rasterizationSamples > 1) { key->persample_interp = (info->pMultisampleState->minSampleShading * info->pMultisampleState->rasterizationSamples) > 1; key->multisample_fbo = true; } key->frag_coord_adds_sample_pos = info->pMultisampleState->sampleShadingEnable; } } static void populate_cs_prog_key(const struct gen_device_info *devinfo, struct brw_cs_prog_key *key) { memset(key, 0, sizeof(*key)); populate_sampler_prog_key(devinfo, &key->tex); } static void anv_pipeline_hash_shader(struct anv_pipeline *pipeline, struct anv_pipeline_layout *layout, struct anv_shader_module *module, const char *entrypoint, gl_shader_stage stage, const VkSpecializationInfo *spec_info, const void *key, size_t key_size, unsigned char *sha1_out) { struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); if (stage != MESA_SHADER_COMPUTE) { _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask, sizeof(pipeline->subpass->view_mask)); } if (layout) _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1)); _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1)); _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint)); _mesa_sha1_update(&ctx, &stage, sizeof(stage)); if (spec_info) { _mesa_sha1_update(&ctx, spec_info->pMapEntries, spec_info->mapEntryCount * sizeof(*spec_info->pMapEntries)); _mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize); } _mesa_sha1_update(&ctx, key, key_size); _mesa_sha1_final(&ctx, sha1_out); } static nir_shader * anv_pipeline_compile(struct anv_pipeline *pipeline, void *mem_ctx, struct anv_pipeline_layout *layout, struct anv_shader_module *module, const char *entrypoint, gl_shader_stage stage, const VkSpecializationInfo *spec_info, struct brw_stage_prog_data *prog_data, struct anv_pipeline_bind_map *map) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; nir_shader *nir = anv_shader_compile_to_nir(pipeline, mem_ctx, module, entrypoint, stage, spec_info); if (nir == NULL) return NULL; NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout); NIR_PASS_V(nir, anv_nir_lower_push_constants); if (stage != MESA_SHADER_COMPUTE) NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask); if (stage == MESA_SHADER_COMPUTE) prog_data->total_shared = nir->num_shared; nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); if (nir->num_uniforms > 0) { assert(prog_data->nr_params == 0); /* If the shader uses any push constants at all, we'll just give * them the maximum possible number */ assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE); nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE; prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float); prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params); /* We now set the param values to be offsets into a * anv_push_constant_data structure. Since the compiler doesn't * actually dereference any of the gl_constant_value pointers in the * params array, it doesn't really matter what we put here. */ struct anv_push_constants *null_data = NULL; /* Fill out the push constants section of the param array */ for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) { prog_data->param[i] = ANV_PARAM_PUSH( (uintptr_t)&null_data->client_data[i * sizeof(float)]); } } if (nir->info.num_ssbos > 0 || nir->info.num_images > 0) pipeline->needs_data_cache = true; /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */ if (layout) anv_nir_apply_pipeline_layout(pipeline, layout, nir, prog_data, map); if (stage != MESA_SHADER_COMPUTE) brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges); assert(nir->num_uniforms == prog_data->nr_params * 4); return nir; } static void anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias) { prog_data->binding_table.size_bytes = 0; prog_data->binding_table.texture_start = bias; prog_data->binding_table.gather_texture_start = bias; prog_data->binding_table.ubo_start = bias; prog_data->binding_table.ssbo_start = bias; prog_data->binding_table.image_start = bias; } static void anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline, gl_shader_stage stage, struct anv_shader_bin *shader) { pipeline->shaders[stage] = shader; } static VkResult anv_pipeline_compile_vs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *info, struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_vs_prog_key key; struct anv_shader_bin *bin = NULL; populate_vs_prog_key(&pipeline->device->info, &key); ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout); unsigned char sha1[20]; anv_pipeline_hash_shader(pipeline, layout, module, entrypoint, MESA_SHADER_VERTEX, spec_info, &key, sizeof(key), sha1); bin = anv_device_search_for_kernel(pipeline->device, cache, sha1, 20); if (bin == NULL) { struct brw_vs_prog_data prog_data = {}; struct anv_pipeline_binding surface_to_descriptor[256]; struct anv_pipeline_binding sampler_to_descriptor[256]; struct anv_pipeline_bind_map map = { .surface_to_descriptor = surface_to_descriptor, .sampler_to_descriptor = sampler_to_descriptor }; void *mem_ctx = ralloc_context(NULL); nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx, layout, module, entrypoint, MESA_SHADER_VERTEX, spec_info, &prog_data.base.base, &map); if (nir == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } anv_fill_binding_table(&prog_data.base.base, 0); brw_compute_vue_map(&pipeline->device->info, &prog_data.base.vue_map, nir->info.outputs_written, nir->info.separate_shader); const unsigned *shader_code = brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir, -1, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } unsigned code_size = prog_data.base.base.program_size; bin = anv_device_upload_kernel(pipeline->device, cache, sha1, 20, shader_code, code_size, nir->constant_data, nir->constant_data_size, &prog_data.base.base, sizeof(prog_data), &map); if (!bin) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } ralloc_free(mem_ctx); } anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin); return VK_SUCCESS; } static void merge_tess_info(struct shader_info *tes_info, const struct shader_info *tcs_info) { /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says: * * "PointMode. Controls generation of points rather than triangles * or lines. This functionality defaults to disabled, and is * enabled if either shader stage includes the execution mode. * * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw, * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd, * and OutputVertices, it says: * * "One mode must be set in at least one of the tessellation * shader stages." * * So, the fields can be set in either the TCS or TES, but they must * agree if set in both. Our backend looks at TES, so bitwise-or in * the values from the TCS. */ assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 || tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out); tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out; assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tcs_info->tess.spacing == tes_info->tess.spacing); tes_info->tess.spacing |= tcs_info->tess.spacing; assert(tcs_info->tess.primitive_mode == 0 || tes_info->tess.primitive_mode == 0 || tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode); tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode; tes_info->tess.ccw |= tcs_info->tess.ccw; tes_info->tess.point_mode |= tcs_info->tess.point_mode; } static VkResult anv_pipeline_compile_tcs_tes(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *info, struct anv_shader_module *tcs_module, const char *tcs_entrypoint, const VkSpecializationInfo *tcs_spec_info, struct anv_shader_module *tes_module, const char *tes_entrypoint, const VkSpecializationInfo *tes_spec_info) { const struct gen_device_info *devinfo = &pipeline->device->info; const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_tcs_prog_key tcs_key = {}; struct brw_tes_prog_key tes_key = {}; struct anv_shader_bin *tcs_bin = NULL; struct anv_shader_bin *tes_bin = NULL; populate_sampler_prog_key(&pipeline->device->info, &tcs_key.tex); populate_sampler_prog_key(&pipeline->device->info, &tes_key.tex); tcs_key.input_vertices = info->pTessellationState->patchControlPoints; ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout); unsigned char tcs_sha1[40]; unsigned char tes_sha1[40]; anv_pipeline_hash_shader(pipeline, layout, tcs_module, tcs_entrypoint, MESA_SHADER_TESS_CTRL, tcs_spec_info, &tcs_key, sizeof(tcs_key), tcs_sha1); anv_pipeline_hash_shader(pipeline, layout, tes_module, tes_entrypoint, MESA_SHADER_TESS_EVAL, tes_spec_info, &tes_key, sizeof(tes_key), tes_sha1); memcpy(&tcs_sha1[20], tes_sha1, 20); memcpy(&tes_sha1[20], tcs_sha1, 20); tcs_bin = anv_device_search_for_kernel(pipeline->device, cache, tcs_sha1, sizeof(tcs_sha1)); tes_bin = anv_device_search_for_kernel(pipeline->device, cache, tes_sha1, sizeof(tes_sha1)); if (tcs_bin == NULL || tes_bin == NULL) { struct brw_tcs_prog_data tcs_prog_data = {}; struct brw_tes_prog_data tes_prog_data = {}; struct anv_pipeline_binding tcs_surface_to_descriptor[256]; struct anv_pipeline_binding tcs_sampler_to_descriptor[256]; struct anv_pipeline_binding tes_surface_to_descriptor[256]; struct anv_pipeline_binding tes_sampler_to_descriptor[256]; struct anv_pipeline_bind_map tcs_map = { .surface_to_descriptor = tcs_surface_to_descriptor, .sampler_to_descriptor = tcs_sampler_to_descriptor }; struct anv_pipeline_bind_map tes_map = { .surface_to_descriptor = tes_surface_to_descriptor, .sampler_to_descriptor = tes_sampler_to_descriptor }; void *mem_ctx = ralloc_context(NULL); nir_shader *tcs_nir = anv_pipeline_compile(pipeline, mem_ctx, layout, tcs_module, tcs_entrypoint, MESA_SHADER_TESS_CTRL, tcs_spec_info, &tcs_prog_data.base.base, &tcs_map); nir_shader *tes_nir = anv_pipeline_compile(pipeline, mem_ctx, layout, tes_module, tes_entrypoint, MESA_SHADER_TESS_EVAL, tes_spec_info, &tes_prog_data.base.base, &tes_map); if (tcs_nir == NULL || tes_nir == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } nir_lower_patch_vertices(tes_nir, tcs_nir->info.tess.tcs_vertices_out, NULL); /* Copy TCS info into the TES info */ merge_tess_info(&tes_nir->info, &tcs_nir->info); anv_fill_binding_table(&tcs_prog_data.base.base, 0); anv_fill_binding_table(&tes_prog_data.base.base, 0); /* Whacking the key after cache lookup is a bit sketchy, but all of * this comes from the SPIR-V, which is part of the hash used for the * pipeline cache. So it should be safe. */ tcs_key.tes_primitive_mode = tes_nir->info.tess.primitive_mode; tcs_key.outputs_written = tcs_nir->info.outputs_written; tcs_key.patch_outputs_written = tcs_nir->info.patch_outputs_written; tcs_key.quads_workaround = devinfo->gen < 9 && tes_nir->info.tess.primitive_mode == 7 /* GL_QUADS */ && tes_nir->info.tess.spacing == TESS_SPACING_EQUAL; tes_key.inputs_read = tcs_key.outputs_written; tes_key.patch_inputs_read = tcs_key.patch_outputs_written; const int shader_time_index = -1; const unsigned *shader_code; shader_code = brw_compile_tcs(compiler, NULL, mem_ctx, &tcs_key, &tcs_prog_data, tcs_nir, shader_time_index, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } unsigned code_size = tcs_prog_data.base.base.program_size; tcs_bin = anv_device_upload_kernel(pipeline->device, cache, tcs_sha1, sizeof(tcs_sha1), shader_code, code_size, tcs_nir->constant_data, tcs_nir->constant_data_size, &tcs_prog_data.base.base, sizeof(tcs_prog_data), &tcs_map); if (!tcs_bin) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } shader_code = brw_compile_tes(compiler, NULL, mem_ctx, &tes_key, &tcs_prog_data.base.vue_map, &tes_prog_data, tes_nir, NULL, shader_time_index, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } code_size = tes_prog_data.base.base.program_size; tes_bin = anv_device_upload_kernel(pipeline->device, cache, tes_sha1, sizeof(tes_sha1), shader_code, code_size, tes_nir->constant_data, tes_nir->constant_data_size, &tes_prog_data.base.base, sizeof(tes_prog_data), &tes_map); if (!tes_bin) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } ralloc_free(mem_ctx); } anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin); anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_EVAL, tes_bin); return VK_SUCCESS; } static VkResult anv_pipeline_compile_gs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *info, struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_gs_prog_key key; struct anv_shader_bin *bin = NULL; populate_gs_prog_key(&pipeline->device->info, &key); ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout); unsigned char sha1[20]; anv_pipeline_hash_shader(pipeline, layout, module, entrypoint, MESA_SHADER_GEOMETRY, spec_info, &key, sizeof(key), sha1); bin = anv_device_search_for_kernel(pipeline->device, cache, sha1, 20); if (bin == NULL) { struct brw_gs_prog_data prog_data = {}; struct anv_pipeline_binding surface_to_descriptor[256]; struct anv_pipeline_binding sampler_to_descriptor[256]; struct anv_pipeline_bind_map map = { .surface_to_descriptor = surface_to_descriptor, .sampler_to_descriptor = sampler_to_descriptor }; void *mem_ctx = ralloc_context(NULL); nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx, layout, module, entrypoint, MESA_SHADER_GEOMETRY, spec_info, &prog_data.base.base, &map); if (nir == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } anv_fill_binding_table(&prog_data.base.base, 0); brw_compute_vue_map(&pipeline->device->info, &prog_data.base.vue_map, nir->info.outputs_written, nir->info.separate_shader); const unsigned *shader_code = brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir, NULL, -1, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } /* TODO: SIMD8 GS */ const unsigned code_size = prog_data.base.base.program_size; bin = anv_device_upload_kernel(pipeline->device, cache, sha1, 20, shader_code, code_size, nir->constant_data, nir->constant_data_size, &prog_data.base.base, sizeof(prog_data), &map); if (!bin) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } ralloc_free(mem_ctx); } anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin); return VK_SUCCESS; } static VkResult anv_pipeline_compile_fs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *info, struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_wm_prog_key key; struct anv_shader_bin *bin = NULL; populate_wm_prog_key(pipeline, info, &key); ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout); unsigned char sha1[20]; anv_pipeline_hash_shader(pipeline, layout, module, entrypoint, MESA_SHADER_FRAGMENT, spec_info, &key, sizeof(key), sha1); bin = anv_device_search_for_kernel(pipeline->device, cache, sha1, 20); if (bin == NULL) { struct brw_wm_prog_data prog_data = {}; struct anv_pipeline_binding surface_to_descriptor[256]; struct anv_pipeline_binding sampler_to_descriptor[256]; struct anv_pipeline_bind_map map = { .surface_to_descriptor = surface_to_descriptor + 8, .sampler_to_descriptor = sampler_to_descriptor }; void *mem_ctx = ralloc_context(NULL); nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx, layout, module, entrypoint, MESA_SHADER_FRAGMENT, spec_info, &prog_data.base, &map); if (nir == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } unsigned num_rts = 0; const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1; struct anv_pipeline_binding rt_bindings[max_rt]; nir_function_impl *impl = nir_shader_get_entrypoint(nir); int rt_to_bindings[max_rt]; memset(rt_to_bindings, -1, sizeof(rt_to_bindings)); bool rt_used[max_rt]; memset(rt_used, 0, sizeof(rt_used)); /* Flag used render targets */ nir_foreach_variable_safe(var, &nir->outputs) { if (var->data.location < FRAG_RESULT_DATA0) continue; const unsigned rt = var->data.location - FRAG_RESULT_DATA0; /* Unused or out-of-bounds */ if (rt >= MAX_RTS || !(key.color_outputs_valid & (1 << rt))) continue; const unsigned array_len = glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1; assert(rt + array_len <= max_rt); for (unsigned i = 0; i < array_len; i++) rt_used[rt + i] = true; } /* Set new, compacted, location */ for (unsigned i = 0; i < max_rt; i++) { if (!rt_used[i]) continue; rt_to_bindings[i] = num_rts; rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) { .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS, .binding = 0, .index = i, }; num_rts++; } bool deleted_output = false; nir_foreach_variable_safe(var, &nir->outputs) { if (var->data.location < FRAG_RESULT_DATA0) continue; const unsigned rt = var->data.location - FRAG_RESULT_DATA0; if (rt >= MAX_RTS || !(key.color_outputs_valid & (1 << rt))) { /* Unused or out-of-bounds, throw it away */ deleted_output = true; var->data.mode = nir_var_local; exec_node_remove(&var->node); exec_list_push_tail(&impl->locals, &var->node); continue; } /* Give it the new location */ assert(rt_to_bindings[rt] != -1); var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0; } if (deleted_output) nir_fixup_deref_modes(nir); if (num_rts == 0) { /* If we have no render targets, we need a null render target */ rt_bindings[0] = (struct anv_pipeline_binding) { .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS, .binding = 0, .index = UINT32_MAX, }; num_rts = 1; } /* Now that we've determined the actual number of render targets, adjust * the key accordingly. */ key.nr_color_regions = num_rts; key.color_outputs_valid = (1 << num_rts) - 1; assert(num_rts <= max_rt); map.surface_to_descriptor -= num_rts; map.surface_count += num_rts; assert(map.surface_count <= 256); memcpy(map.surface_to_descriptor, rt_bindings, num_rts * sizeof(*rt_bindings)); anv_fill_binding_table(&prog_data.base, num_rts); const unsigned *shader_code = brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir, NULL, -1, -1, -1, true, false, NULL, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } unsigned code_size = prog_data.base.program_size; bin = anv_device_upload_kernel(pipeline->device, cache, sha1, 20, shader_code, code_size, nir->constant_data, nir->constant_data_size, &prog_data.base, sizeof(prog_data), &map); if (!bin) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } ralloc_free(mem_ctx); } anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin); return VK_SUCCESS; } VkResult anv_pipeline_compile_cs(struct anv_pipeline *pipeline, struct anv_pipeline_cache *cache, const VkComputePipelineCreateInfo *info, struct anv_shader_module *module, const char *entrypoint, const VkSpecializationInfo *spec_info) { const struct brw_compiler *compiler = pipeline->device->instance->physicalDevice.compiler; struct brw_cs_prog_key key; struct anv_shader_bin *bin = NULL; populate_cs_prog_key(&pipeline->device->info, &key); ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout); unsigned char sha1[20]; anv_pipeline_hash_shader(pipeline, layout, module, entrypoint, MESA_SHADER_COMPUTE, spec_info, &key, sizeof(key), sha1); bin = anv_device_search_for_kernel(pipeline->device, cache, sha1, 20); if (bin == NULL) { struct brw_cs_prog_data prog_data = {}; struct anv_pipeline_binding surface_to_descriptor[256]; struct anv_pipeline_binding sampler_to_descriptor[256]; struct anv_pipeline_bind_map map = { .surface_to_descriptor = surface_to_descriptor, .sampler_to_descriptor = sampler_to_descriptor }; void *mem_ctx = ralloc_context(NULL); nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx, layout, module, entrypoint, MESA_SHADER_COMPUTE, spec_info, &prog_data.base, &map); if (nir == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } NIR_PASS_V(nir, anv_nir_add_base_work_group_id, &prog_data); anv_fill_binding_table(&prog_data.base, 1); const unsigned *shader_code = brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir, -1, NULL); if (shader_code == NULL) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } const unsigned code_size = prog_data.base.program_size; bin = anv_device_upload_kernel(pipeline->device, cache, sha1, 20, shader_code, code_size, nir->constant_data, nir->constant_data_size, &prog_data.base, sizeof(prog_data), &map); if (!bin) { ralloc_free(mem_ctx); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } ralloc_free(mem_ctx); } anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin); return VK_SUCCESS; } /** * Copy pipeline state not marked as dynamic. * Dynamic state is pipeline state which hasn't been provided at pipeline * creation time, but is dynamically provided afterwards using various * vkCmdSet* functions. * * The set of state considered "non_dynamic" is determined by the pieces of * state that have their corresponding VkDynamicState enums omitted from * VkPipelineDynamicStateCreateInfo::pDynamicStates. * * @param[out] pipeline Destination non_dynamic state. * @param[in] pCreateInfo Source of non_dynamic state to be copied. */ static void copy_non_dynamic_state(struct anv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL; struct anv_subpass *subpass = pipeline->subpass; pipeline->dynamic_state = default_dynamic_state; if (pCreateInfo->pDynamicState) { /* Remove all of the states that are marked as dynamic */ uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t s = 0; s < count; s++) states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]); } struct anv_dynamic_state *dynamic = &pipeline->dynamic_state; /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pViewportState is [...] NULL if the pipeline * has rasterization disabled. */ if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) { assert(pCreateInfo->pViewportState); dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) { typed_memcpy(dynamic->viewport.viewports, pCreateInfo->pViewportState->pViewports, pCreateInfo->pViewportState->viewportCount); } dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) { typed_memcpy(dynamic->scissor.scissors, pCreateInfo->pViewportState->pScissors, pCreateInfo->pViewportState->scissorCount); } } if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) { assert(pCreateInfo->pRasterizationState); dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; } if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) { assert(pCreateInfo->pRasterizationState); dynamic->depth_bias.bias = pCreateInfo->pRasterizationState->depthBiasConstantFactor; dynamic->depth_bias.clamp = pCreateInfo->pRasterizationState->depthBiasClamp; dynamic->depth_bias.slope = pCreateInfo->pRasterizationState->depthBiasSlopeFactor; } /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pColorBlendState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is * created against does not use any color attachments. */ bool uses_color_att = false; for (unsigned i = 0; i < subpass->color_count; ++i) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) { uses_color_att = true; break; } } if (uses_color_att && !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) { assert(pCreateInfo->pColorBlendState); if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) typed_memcpy(dynamic->blend_constants, pCreateInfo->pColorBlendState->blendConstants, 4); } /* If there is no depthstencil attachment, then don't read * pDepthStencilState. The Vulkan spec states that pDepthStencilState may * be NULL in this case. Even if pDepthStencilState is non-NULL, there is * no need to override the depthstencil defaults in * anv_pipeline::dynamic_state when there is no depthstencil attachment. * * Section 9.2 of the Vulkan 1.0.15 spec says: * * pDepthStencilState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is created * against does not use a depth/stencil attachment. */ if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable && subpass->depth_stencil_attachment) { assert(pCreateInfo->pDepthStencilState); if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) { dynamic->depth_bounds.min = pCreateInfo->pDepthStencilState->minDepthBounds; dynamic->depth_bounds.max = pCreateInfo->pDepthStencilState->maxDepthBounds; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) { dynamic->stencil_compare_mask.front = pCreateInfo->pDepthStencilState->front.compareMask; dynamic->stencil_compare_mask.back = pCreateInfo->pDepthStencilState->back.compareMask; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) { dynamic->stencil_write_mask.front = pCreateInfo->pDepthStencilState->front.writeMask; dynamic->stencil_write_mask.back = pCreateInfo->pDepthStencilState->back.writeMask; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) { dynamic->stencil_reference.front = pCreateInfo->pDepthStencilState->front.reference; dynamic->stencil_reference.back = pCreateInfo->pDepthStencilState->back.reference; } } pipeline->dynamic_state_mask = states; } static void anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info) { #ifdef DEBUG struct anv_render_pass *renderpass = NULL; struct anv_subpass *subpass = NULL; /* Assert that all required members of VkGraphicsPipelineCreateInfo are * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines. */ assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO); renderpass = anv_render_pass_from_handle(info->renderPass); assert(renderpass); assert(info->subpass < renderpass->subpass_count); subpass = &renderpass->subpasses[info->subpass]; assert(info->stageCount >= 1); assert(info->pVertexInputState); assert(info->pInputAssemblyState); assert(info->pRasterizationState); if (!info->pRasterizationState->rasterizerDiscardEnable) { assert(info->pViewportState); assert(info->pMultisampleState); if (subpass && subpass->depth_stencil_attachment) assert(info->pDepthStencilState); if (subpass && subpass->color_count > 0) { bool all_color_unused = true; for (int i = 0; i < subpass->color_count; i++) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) all_color_unused = false; } /* pColorBlendState is ignored if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is * created against does not use any color attachments. */ assert(info->pColorBlendState || all_color_unused); } } for (uint32_t i = 0; i < info->stageCount; ++i) { switch (info->pStages[i].stage) { case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: assert(info->pTessellationState); break; default: break; } } #endif } /** * Calculate the desired L3 partitioning based on the current state of the * pipeline. For now this simply returns the conservative defaults calculated * by get_default_l3_weights(), but we could probably do better by gathering * more statistics from the pipeline state (e.g. guess of expected URB usage * and bound surfaces), or by using feed-back from performance counters. */ void anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm) { const struct gen_device_info *devinfo = &pipeline->device->info; const struct gen_l3_weights w = gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm); pipeline->urb.l3_config = gen_get_l3_config(devinfo, w); pipeline->urb.total_size = gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config); } VkResult anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device, struct anv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const VkAllocationCallbacks *alloc) { VkResult result; anv_pipeline_validate_create_info(pCreateInfo); if (alloc == NULL) alloc = &device->alloc; pipeline->device = device; ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass); assert(pCreateInfo->subpass < render_pass->subpass_count); pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass]; result = anv_reloc_list_init(&pipeline->batch_relocs, alloc); if (result != VK_SUCCESS) return result; pipeline->batch.alloc = alloc; pipeline->batch.next = pipeline->batch.start = pipeline->batch_data; pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data); pipeline->batch.relocs = &pipeline->batch_relocs; pipeline->batch.status = VK_SUCCESS; copy_non_dynamic_state(pipeline, pCreateInfo); pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState && pCreateInfo->pRasterizationState->depthClampEnable; pipeline->sample_shading_enable = pCreateInfo->pMultisampleState && pCreateInfo->pMultisampleState->sampleShadingEnable; pipeline->needs_data_cache = false; /* When we free the pipeline, we detect stages based on the NULL status * of various prog_data pointers. Make them NULL by default. */ memset(pipeline->shaders, 0, sizeof(pipeline->shaders)); pipeline->active_stages = 0; const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = {}; struct anv_shader_module *modules[MESA_SHADER_STAGES] = {}; for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { VkShaderStageFlagBits vk_stage = pCreateInfo->pStages[i].stage; gl_shader_stage stage = vk_to_mesa_shader_stage(vk_stage); pStages[stage] = &pCreateInfo->pStages[i]; modules[stage] = anv_shader_module_from_handle(pStages[stage]->module); pipeline->active_stages |= vk_stage; } if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT; assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT); if (modules[MESA_SHADER_VERTEX]) { result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo, modules[MESA_SHADER_VERTEX], pStages[MESA_SHADER_VERTEX]->pName, pStages[MESA_SHADER_VERTEX]->pSpecializationInfo); if (result != VK_SUCCESS) goto compile_fail; } if (modules[MESA_SHADER_TESS_EVAL]) { result = anv_pipeline_compile_tcs_tes(pipeline, cache, pCreateInfo, modules[MESA_SHADER_TESS_CTRL], pStages[MESA_SHADER_TESS_CTRL]->pName, pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo, modules[MESA_SHADER_TESS_EVAL], pStages[MESA_SHADER_TESS_EVAL]->pName, pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo); if (result != VK_SUCCESS) goto compile_fail; } if (modules[MESA_SHADER_GEOMETRY]) { result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo, modules[MESA_SHADER_GEOMETRY], pStages[MESA_SHADER_GEOMETRY]->pName, pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo); if (result != VK_SUCCESS) goto compile_fail; } if (modules[MESA_SHADER_FRAGMENT]) { result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo, modules[MESA_SHADER_FRAGMENT], pStages[MESA_SHADER_FRAGMENT]->pName, pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo); if (result != VK_SUCCESS) goto compile_fail; } assert(pipeline->shaders[MESA_SHADER_VERTEX]); anv_pipeline_setup_l3_config(pipeline, false); const VkPipelineVertexInputStateCreateInfo *vi_info = pCreateInfo->pVertexInputState; const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read; pipeline->vb_used = 0; for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription *desc = &vi_info->pVertexAttributeDescriptions[i]; if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location))) pipeline->vb_used |= 1 << desc->binding; } for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *desc = &vi_info->pVertexBindingDescriptions[i]; pipeline->vb[desc->binding].stride = desc->stride; /* Step rate is programmed per vertex element (attribute), not * binding. Set up a map of which bindings step per instance, for * reference by vertex element setup. */ switch (desc->inputRate) { default: case VK_VERTEX_INPUT_RATE_VERTEX: pipeline->vb[desc->binding].instanced = false; break; case VK_VERTEX_INPUT_RATE_INSTANCE: pipeline->vb[desc->binding].instanced = true; break; } pipeline->vb[desc->binding].instance_divisor = 1; } const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state = vk_find_struct_const(vi_info->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT); if (vi_div_state) { for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) { const VkVertexInputBindingDivisorDescriptionEXT *desc = &vi_div_state->pVertexBindingDivisors[i]; pipeline->vb[desc->binding].instance_divisor = desc->divisor; } } /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. If the client asks for instancing, we need to multiply * the instance divisor by the number of views ensure that we repeat the * client's per-instance data once for each view. */ if (pipeline->subpass->view_mask) { const uint32_t view_count = anv_subpass_view_count(pipeline->subpass); for (uint32_t vb = 0; vb < MAX_VBS; vb++) { if (pipeline->vb[vb].instanced) pipeline->vb[vb].instance_divisor *= view_count; } } const VkPipelineInputAssemblyStateCreateInfo *ia_info = pCreateInfo->pInputAssemblyState; const VkPipelineTessellationStateCreateInfo *tess_info = pCreateInfo->pTessellationState; pipeline->primitive_restart = ia_info->primitiveRestartEnable; if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints); else pipeline->topology = vk_to_gen_primitive_type[ia_info->topology]; return VK_SUCCESS; compile_fail: for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { if (pipeline->shaders[s]) anv_shader_bin_unref(device, pipeline->shaders[s]); } anv_reloc_list_finish(&pipeline->batch_relocs, alloc); return result; }