/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#include "util/mesa-sha1.h"
#include "common/gen_l3_config.h"
#include "anv_private.h"
#include "brw_nir.h"
#include "anv_nir.h"
#include "spirv/nir_spirv.h"

/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"

// Shader functions

VkResult anv_CreateShaderModule(
    VkDevice                                    _device,
    const VkShaderModuleCreateInfo*             pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkShaderModule*                             pShaderModule)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_shader_module *module;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
   assert(pCreateInfo->flags == 0);

   module = vk_alloc2(&device->alloc, pAllocator,
                       sizeof(*module) + pCreateInfo->codeSize, 8,
                       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (module == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   module->size = pCreateInfo->codeSize;
   memcpy(module->data, pCreateInfo->pCode, module->size);

   _mesa_sha1_compute(module->data, module->size, module->sha1);

   *pShaderModule = anv_shader_module_to_handle(module);

   return VK_SUCCESS;
}

void anv_DestroyShaderModule(
    VkDevice                                    _device,
    VkShaderModule                              _module,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_shader_module, module, _module);

   if (!module)
      return;

   vk_free2(&device->alloc, pAllocator, module);
}

#define SPIR_V_MAGIC_NUMBER 0x07230203

/* Eventually, this will become part of anv_CreateShader.  Unfortunately,
 * we can't do that yet because we don't have the ability to copy nir.
 */
static nir_shader *
anv_shader_compile_to_nir(struct anv_device *device,
                          struct anv_shader_module *module,
                          const char *entrypoint_name,
                          gl_shader_stage stage,
                          const VkSpecializationInfo *spec_info)
{
   if (strcmp(entrypoint_name, "main") != 0) {
      anv_finishme("Multiple shaders per module not really supported");
   }

   const struct brw_compiler *compiler =
      device->instance->physicalDevice.compiler;
   const nir_shader_compiler_options *nir_options =
      compiler->glsl_compiler_options[stage].NirOptions;

   uint32_t *spirv = (uint32_t *) module->data;
   assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
   assert(module->size % 4 == 0);

   uint32_t num_spec_entries = 0;
   struct nir_spirv_specialization *spec_entries = NULL;
   if (spec_info && spec_info->mapEntryCount > 0) {
      num_spec_entries = spec_info->mapEntryCount;
      spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
      for (uint32_t i = 0; i < num_spec_entries; i++) {
         VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
         const void *data = spec_info->pData + entry.offset;
         assert(data + entry.size <= spec_info->pData + spec_info->dataSize);

         spec_entries[i].id = spec_info->pMapEntries[i].constantID;
         if (spec_info->dataSize == 8)
            spec_entries[i].data64 = *(const uint64_t *)data;
         else
            spec_entries[i].data32 = *(const uint32_t *)data;
      }
   }

   const struct nir_spirv_supported_extensions supported_ext = {
      .float64 = device->instance->physicalDevice.info.gen >= 8,
      .tessellation = true,
      .draw_parameters = true,
      .image_write_without_format = true,
   };

   nir_function *entry_point =
      spirv_to_nir(spirv, module->size / 4,
                   spec_entries, num_spec_entries,
                   stage, entrypoint_name, &supported_ext, nir_options);
   nir_shader *nir = entry_point->shader;
   assert(nir->stage == stage);
   nir_validate_shader(nir);

   free(spec_entries);

   /* We have to lower away local constant initializers right before we
    * inline functions.  That way they get properly initialized at the top
    * of the function and not at the top of its caller.
    */
   NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
   NIR_PASS_V(nir, nir_lower_returns);
   NIR_PASS_V(nir, nir_inline_functions);

   /* Pick off the single entrypoint that we want */
   foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
      if (func != entry_point)
         exec_node_remove(&func->node);
   }
   assert(exec_list_length(&nir->functions) == 1);
   entry_point->name = ralloc_strdup(entry_point, "main");

   NIR_PASS_V(nir, nir_remove_dead_variables,
              nir_var_shader_in | nir_var_shader_out | nir_var_system_value);

   if (stage == MESA_SHADER_FRAGMENT)
      NIR_PASS_V(nir, nir_lower_wpos_center);

   /* Now that we've deleted all but the main function, we can go ahead and
    * lower the rest of the constant initializers.
    */
   NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
   NIR_PASS_V(nir, nir_propagate_invariant);
   NIR_PASS_V(nir, nir_lower_io_to_temporaries,
              entry_point->impl, true, false);
   NIR_PASS_V(nir, nir_lower_system_values);

   /* Vulkan uses the separate-shader linking model */
   nir->info->separate_shader = true;

   nir = brw_preprocess_nir(compiler, nir);

   NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);

   if (stage == MESA_SHADER_FRAGMENT)
      NIR_PASS_V(nir, anv_nir_lower_input_attachments);

   nir_shader_gather_info(nir, entry_point->impl);

   return nir;
}

void anv_DestroyPipeline(
    VkDevice                                    _device,
    VkPipeline                                  _pipeline,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);

   if (!pipeline)
      return;

   anv_reloc_list_finish(&pipeline->batch_relocs,
                         pAllocator ? pAllocator : &device->alloc);
   if (pipeline->blend_state.map)
      anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);

   for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
      if (pipeline->shaders[s])
         anv_shader_bin_unref(device, pipeline->shaders[s]);
   }

   vk_free2(&device->alloc, pAllocator, pipeline);
}

static const uint32_t vk_to_gen_primitive_type[] = {
   [VK_PRIMITIVE_TOPOLOGY_POINT_LIST]                    = _3DPRIM_POINTLIST,
   [VK_PRIMITIVE_TOPOLOGY_LINE_LIST]                     = _3DPRIM_LINELIST,
   [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP]                    = _3DPRIM_LINESTRIP,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST]                 = _3DPRIM_TRILIST,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP]                = _3DPRIM_TRISTRIP,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN]                  = _3DPRIM_TRIFAN,
   [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY]      = _3DPRIM_LINELIST_ADJ,
   [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY]     = _3DPRIM_LINESTRIP_ADJ,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY]  = _3DPRIM_TRILIST_ADJ,
   [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};

static void
populate_sampler_prog_key(const struct gen_device_info *devinfo,
                          struct brw_sampler_prog_key_data *key)
{
   /* Almost all multisampled textures are compressed.  The only time when we
    * don't compress a multisampled texture is for 16x MSAA with a surface
    * width greater than 8k which is a bit of an edge case.  Since the sampler
    * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
    * to tell the compiler to always assume compression.
    */
   key->compressed_multisample_layout_mask = ~0;

   /* SkyLake added support for 16x MSAA.  With this came a new message for
    * reading from a 16x MSAA surface with compression.  The new message was
    * needed because now the MCS data is 64 bits instead of 32 or lower as is
    * the case for 8x, 4x, and 2x.  The key->msaa_16 bit-field controls which
    * message we use.  Fortunately, the 16x message works for 8x, 4x, and 2x
    * so we can just use it unconditionally.  This may not be quite as
    * efficient but it saves us from recompiling.
    */
   if (devinfo->gen >= 9)
      key->msaa_16 = ~0;

   /* XXX: Handle texture swizzle on HSW- */
   for (int i = 0; i < MAX_SAMPLERS; i++) {
      /* Assume color sampler, no swizzling. (Works for BDW+) */
      key->swizzles[i] = SWIZZLE_XYZW;
   }
}

static void
populate_vs_prog_key(const struct gen_device_info *devinfo,
                     struct brw_vs_prog_key *key)
{
   memset(key, 0, sizeof(*key));

   populate_sampler_prog_key(devinfo, &key->tex);

   /* XXX: Handle vertex input work-arounds */

   /* XXX: Handle sampler_prog_key */
}

static void
populate_gs_prog_key(const struct gen_device_info *devinfo,
                     struct brw_gs_prog_key *key)
{
   memset(key, 0, sizeof(*key));

   populate_sampler_prog_key(devinfo, &key->tex);
}

static void
populate_wm_prog_key(const struct anv_pipeline *pipeline,
                     const VkGraphicsPipelineCreateInfo *info,
                     struct brw_wm_prog_key *key)
{
   const struct gen_device_info *devinfo = &pipeline->device->info;
   ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);

   memset(key, 0, sizeof(*key));

   populate_sampler_prog_key(devinfo, &key->tex);

   /* TODO: we could set this to 0 based on the information in nir_shader, but
    * this function is called before spirv_to_nir. */
   const struct brw_vue_map *vue_map =
      &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
   key->input_slots_valid = vue_map->slots_valid;

   /* Vulkan doesn't specify a default */
   key->high_quality_derivatives = false;

   /* XXX Vulkan doesn't appear to specify */
   key->clamp_fragment_color = false;

   key->nr_color_regions =
      render_pass->subpasses[info->subpass].color_count;

   key->replicate_alpha = key->nr_color_regions > 1 &&
                          info->pMultisampleState &&
                          info->pMultisampleState->alphaToCoverageEnable;

   if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
      /* We should probably pull this out of the shader, but it's fairly
       * harmless to compute it and then let dead-code take care of it.
       */
      key->persample_interp =
         (info->pMultisampleState->minSampleShading *
          info->pMultisampleState->rasterizationSamples) > 1;
      key->multisample_fbo = true;
   }
}

static void
populate_cs_prog_key(const struct gen_device_info *devinfo,
                     struct brw_cs_prog_key *key)
{
   memset(key, 0, sizeof(*key));

   populate_sampler_prog_key(devinfo, &key->tex);
}

static nir_shader *
anv_pipeline_compile(struct anv_pipeline *pipeline,
                     struct anv_shader_module *module,
                     const char *entrypoint,
                     gl_shader_stage stage,
                     const VkSpecializationInfo *spec_info,
                     struct brw_stage_prog_data *prog_data,
                     struct anv_pipeline_bind_map *map)
{
   nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
                                               module, entrypoint, stage,
                                               spec_info);
   if (nir == NULL)
      return NULL;

   NIR_PASS_V(nir, anv_nir_lower_push_constants);

   /* Figure out the number of parameters */
   prog_data->nr_params = 0;

   if (nir->num_uniforms > 0) {
      /* If the shader uses any push constants at all, we'll just give
       * them the maximum possible number
       */
      assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
      prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
   }

   if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
      prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;

   if (nir->info->num_images > 0) {
      prog_data->nr_params += nir->info->num_images * BRW_IMAGE_PARAM_SIZE;
      pipeline->needs_data_cache = true;
   }

   if (stage == MESA_SHADER_COMPUTE)
      ((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
         prog_data->nr_params++; /* The CS Thread ID uniform */

   if (nir->info->num_ssbos > 0)
      pipeline->needs_data_cache = true;

   if (prog_data->nr_params > 0) {
      /* XXX: I think we're leaking this */
      prog_data->param = (const union gl_constant_value **)
         malloc(prog_data->nr_params * sizeof(union gl_constant_value *));

      /* We now set the param values to be offsets into a
       * anv_push_constant_data structure.  Since the compiler doesn't
       * actually dereference any of the gl_constant_value pointers in the
       * params array, it doesn't really matter what we put here.
       */
      struct anv_push_constants *null_data = NULL;
      if (nir->num_uniforms > 0) {
         /* Fill out the push constants section of the param array */
         for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
            prog_data->param[i] = (const union gl_constant_value *)
               &null_data->client_data[i * sizeof(float)];
      }
   }

   /* Set up dynamic offsets */
   anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);

   /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
   if (pipeline->layout)
      anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);

   /* nir_lower_io will only handle the push constants; we need to set this
    * to the full number of possible uniforms.
    */
   nir->num_uniforms = prog_data->nr_params * 4;

   return nir;
}

static void
anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
{
   prog_data->binding_table.size_bytes = 0;
   prog_data->binding_table.texture_start = bias;
   prog_data->binding_table.gather_texture_start = bias;
   prog_data->binding_table.ubo_start = bias;
   prog_data->binding_table.ssbo_start = bias;
   prog_data->binding_table.image_start = bias;
}

static struct anv_shader_bin *
anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
                           struct anv_pipeline_cache *cache,
                           const void *key_data, uint32_t key_size,
                           const void *kernel_data, uint32_t kernel_size,
                           const struct brw_stage_prog_data *prog_data,
                           uint32_t prog_data_size,
                           const struct anv_pipeline_bind_map *bind_map)
{
   if (cache) {
      return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
                                              kernel_data, kernel_size,
                                              prog_data, prog_data_size,
                                              bind_map);
   } else {
      return anv_shader_bin_create(pipeline->device, key_data, key_size,
                                   kernel_data, kernel_size,
                                   prog_data, prog_data_size,
                                   prog_data->param, bind_map);
   }
}


static void
anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
                                gl_shader_stage stage,
                                struct anv_shader_bin *shader)
{
   pipeline->shaders[stage] = shader;
   pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
}

static VkResult
anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
                        struct anv_pipeline_cache *cache,
                        const VkGraphicsPipelineCreateInfo *info,
                        struct anv_shader_module *module,
                        const char *entrypoint,
                        const VkSpecializationInfo *spec_info)
{
   const struct brw_compiler *compiler =
      pipeline->device->instance->physicalDevice.compiler;
   struct anv_pipeline_bind_map map;
   struct brw_vs_prog_key key;
   struct anv_shader_bin *bin = NULL;
   unsigned char sha1[20];

   populate_vs_prog_key(&pipeline->device->info, &key);

   if (cache) {
      anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
                      pipeline->layout, spec_info);
      bin = anv_pipeline_cache_search(cache, sha1, 20);
   }

   if (bin == NULL) {
      struct brw_vs_prog_data prog_data = { 0, };
      struct anv_pipeline_binding surface_to_descriptor[256];
      struct anv_pipeline_binding sampler_to_descriptor[256];

      map = (struct anv_pipeline_bind_map) {
         .surface_to_descriptor = surface_to_descriptor,
         .sampler_to_descriptor = sampler_to_descriptor
      };

      nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
                                             MESA_SHADER_VERTEX, spec_info,
                                             &prog_data.base.base, &map);
      if (nir == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      anv_fill_binding_table(&prog_data.base.base, 0);

      void *mem_ctx = ralloc_context(NULL);

      ralloc_steal(mem_ctx, nir);

      prog_data.inputs_read = nir->info->inputs_read;
      prog_data.double_inputs_read = nir->info->double_inputs_read;

      brw_compute_vue_map(&pipeline->device->info,
                          &prog_data.base.vue_map,
                          nir->info->outputs_written,
                          nir->info->separate_shader);

      unsigned code_size;
      const unsigned *shader_code =
         brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
                        NULL, false, -1, &code_size, NULL);
      if (shader_code == NULL) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
                                       shader_code, code_size,
                                       &prog_data.base.base, sizeof(prog_data),
                                       &map);
      if (!bin) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      ralloc_free(mem_ctx);
   }

   anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);

   return VK_SUCCESS;
}

static void
merge_tess_info(struct shader_info *tes_info,
                const struct shader_info *tcs_info)
{
   /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
    *
    *    "PointMode. Controls generation of points rather than triangles
    *     or lines. This functionality defaults to disabled, and is
    *     enabled if either shader stage includes the execution mode.
    *
    * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
    * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
    * and OutputVertices, it says:
    *
    *    "One mode must be set in at least one of the tessellation
    *     shader stages."
    *
    * So, the fields can be set in either the TCS or TES, but they must
    * agree if set in both.  Our backend looks at TES, so bitwise-or in
    * the values from the TCS.
    */
   assert(tcs_info->tess.tcs_vertices_out == 0 ||
          tes_info->tess.tcs_vertices_out == 0 ||
          tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
   tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;

   assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
          tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
          tcs_info->tess.spacing == tes_info->tess.spacing);
   tes_info->tess.spacing |= tcs_info->tess.spacing;

   tes_info->tess.ccw |= tcs_info->tess.ccw;
   tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}

static VkResult
anv_pipeline_compile_tcs_tes(struct anv_pipeline *pipeline,
                             struct anv_pipeline_cache *cache,
                             const VkGraphicsPipelineCreateInfo *info,
                             struct anv_shader_module *tcs_module,
                             const char *tcs_entrypoint,
                             const VkSpecializationInfo *tcs_spec_info,
                             struct anv_shader_module *tes_module,
                             const char *tes_entrypoint,
                             const VkSpecializationInfo *tes_spec_info)
{
   const struct gen_device_info *devinfo = &pipeline->device->info;
   const struct brw_compiler *compiler =
      pipeline->device->instance->physicalDevice.compiler;
   struct anv_pipeline_bind_map tcs_map;
   struct anv_pipeline_bind_map tes_map;
   struct brw_tcs_prog_key tcs_key = { 0, };
   struct brw_tes_prog_key tes_key = { 0, };
   struct anv_shader_bin *tcs_bin = NULL;
   struct anv_shader_bin *tes_bin = NULL;
   unsigned char tcs_sha1[40];
   unsigned char tes_sha1[40];

   populate_sampler_prog_key(&pipeline->device->info, &tcs_key.tex);
   populate_sampler_prog_key(&pipeline->device->info, &tes_key.tex);
   tcs_key.input_vertices = info->pTessellationState->patchControlPoints;

   if (cache) {
      anv_hash_shader(tcs_sha1, &tcs_key, sizeof(tcs_key), tcs_module,
                      tcs_entrypoint, pipeline->layout, tcs_spec_info);
      anv_hash_shader(tes_sha1, &tes_key, sizeof(tes_key), tes_module,
                      tes_entrypoint, pipeline->layout, tes_spec_info);
      memcpy(&tcs_sha1[20], tes_sha1, 20);
      memcpy(&tes_sha1[20], tcs_sha1, 20);
      tcs_bin = anv_pipeline_cache_search(cache, tcs_sha1, sizeof(tcs_sha1));
      tes_bin = anv_pipeline_cache_search(cache, tes_sha1, sizeof(tes_sha1));
   }

   if (tcs_bin == NULL || tes_bin == NULL) {
      struct brw_tcs_prog_data tcs_prog_data = { 0, };
      struct brw_tes_prog_data tes_prog_data = { 0, };
      struct anv_pipeline_binding tcs_surface_to_descriptor[256];
      struct anv_pipeline_binding tcs_sampler_to_descriptor[256];
      struct anv_pipeline_binding tes_surface_to_descriptor[256];
      struct anv_pipeline_binding tes_sampler_to_descriptor[256];

      tcs_map = (struct anv_pipeline_bind_map) {
         .surface_to_descriptor = tcs_surface_to_descriptor,
         .sampler_to_descriptor = tcs_sampler_to_descriptor
      };
      tes_map = (struct anv_pipeline_bind_map) {
         .surface_to_descriptor = tes_surface_to_descriptor,
         .sampler_to_descriptor = tes_sampler_to_descriptor
      };

      nir_shader *tcs_nir =
         anv_pipeline_compile(pipeline, tcs_module, tcs_entrypoint,
                              MESA_SHADER_TESS_CTRL, tcs_spec_info,
                              &tcs_prog_data.base.base, &tcs_map);
      nir_shader *tes_nir =
         anv_pipeline_compile(pipeline, tes_module, tes_entrypoint,
                              MESA_SHADER_TESS_EVAL, tes_spec_info,
                              &tes_prog_data.base.base, &tes_map);
      if (tcs_nir == NULL || tes_nir == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      nir_lower_tes_patch_vertices(tes_nir,
                                   tcs_nir->info->tess.tcs_vertices_out);

      /* Copy TCS info into the TES info */
      merge_tess_info(tes_nir->info, tcs_nir->info);

      anv_fill_binding_table(&tcs_prog_data.base.base, 0);
      anv_fill_binding_table(&tes_prog_data.base.base, 0);

      void *mem_ctx = ralloc_context(NULL);

      ralloc_steal(mem_ctx, tcs_nir);
      ralloc_steal(mem_ctx, tes_nir);

      /* Whacking the key after cache lookup is a bit sketchy, but all of
       * this comes from the SPIR-V, which is part of the hash used for the
       * pipeline cache.  So it should be safe.
       */
      tcs_key.tes_primitive_mode = tes_nir->info->tess.primitive_mode;
      tcs_key.outputs_written = tcs_nir->info->outputs_written;
      tcs_key.patch_outputs_written = tcs_nir->info->patch_outputs_written;
      tcs_key.quads_workaround =
         devinfo->gen < 9 &&
         tes_nir->info->tess.primitive_mode == 7 /* GL_QUADS */ &&
         tes_nir->info->tess.spacing == TESS_SPACING_EQUAL;

      tes_key.inputs_read = tcs_key.outputs_written;
      tes_key.patch_inputs_read = tcs_key.patch_outputs_written;

      unsigned code_size;
      const int shader_time_index = -1;
      const unsigned *shader_code;

      shader_code =
         brw_compile_tcs(compiler, NULL, mem_ctx, &tcs_key, &tcs_prog_data,
                         tcs_nir, shader_time_index, &code_size, NULL);
      if (shader_code == NULL) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      tcs_bin = anv_pipeline_upload_kernel(pipeline, cache,
                                           tcs_sha1, sizeof(tcs_sha1),
                                           shader_code, code_size,
                                           &tcs_prog_data.base.base,
                                           sizeof(tcs_prog_data),
                                           &tcs_map);
      if (!tcs_bin) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      shader_code =
         brw_compile_tes(compiler, NULL, mem_ctx, &tes_key,
                         &tcs_prog_data.base.vue_map, &tes_prog_data, tes_nir,
                         NULL, shader_time_index, &code_size, NULL);
      if (shader_code == NULL) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      tes_bin = anv_pipeline_upload_kernel(pipeline, cache,
                                           tes_sha1, sizeof(tes_sha1),
                                           shader_code, code_size,
                                           &tes_prog_data.base.base,
                                           sizeof(tes_prog_data),
                                           &tes_map);
      if (!tes_bin) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      ralloc_free(mem_ctx);
   }

   anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
   anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);

   return VK_SUCCESS;
}

static VkResult
anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
                        struct anv_pipeline_cache *cache,
                        const VkGraphicsPipelineCreateInfo *info,
                        struct anv_shader_module *module,
                        const char *entrypoint,
                        const VkSpecializationInfo *spec_info)
{
   const struct brw_compiler *compiler =
      pipeline->device->instance->physicalDevice.compiler;
   struct anv_pipeline_bind_map map;
   struct brw_gs_prog_key key;
   struct anv_shader_bin *bin = NULL;
   unsigned char sha1[20];

   populate_gs_prog_key(&pipeline->device->info, &key);

   if (cache) {
      anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
                      pipeline->layout, spec_info);
      bin = anv_pipeline_cache_search(cache, sha1, 20);
   }

   if (bin == NULL) {
      struct brw_gs_prog_data prog_data = { 0, };
      struct anv_pipeline_binding surface_to_descriptor[256];
      struct anv_pipeline_binding sampler_to_descriptor[256];

      map = (struct anv_pipeline_bind_map) {
         .surface_to_descriptor = surface_to_descriptor,
         .sampler_to_descriptor = sampler_to_descriptor
      };

      nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
                                             MESA_SHADER_GEOMETRY, spec_info,
                                             &prog_data.base.base, &map);
      if (nir == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      anv_fill_binding_table(&prog_data.base.base, 0);

      void *mem_ctx = ralloc_context(NULL);

      ralloc_steal(mem_ctx, nir);

      brw_compute_vue_map(&pipeline->device->info,
                          &prog_data.base.vue_map,
                          nir->info->outputs_written,
                          nir->info->separate_shader);

      unsigned code_size;
      const unsigned *shader_code =
         brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
                        NULL, -1, &code_size, NULL);
      if (shader_code == NULL) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      /* TODO: SIMD8 GS */
      bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
                                       shader_code, code_size,
                                       &prog_data.base.base, sizeof(prog_data),
                                       &map);
      if (!bin) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      ralloc_free(mem_ctx);
   }

   anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);

   return VK_SUCCESS;
}

static VkResult
anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
                        struct anv_pipeline_cache *cache,
                        const VkGraphicsPipelineCreateInfo *info,
                        struct anv_shader_module *module,
                        const char *entrypoint,
                        const VkSpecializationInfo *spec_info)
{
   const struct brw_compiler *compiler =
      pipeline->device->instance->physicalDevice.compiler;
   struct anv_pipeline_bind_map map;
   struct brw_wm_prog_key key;
   struct anv_shader_bin *bin = NULL;
   unsigned char sha1[20];

   populate_wm_prog_key(pipeline, info, &key);

   if (cache) {
      anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
                      pipeline->layout, spec_info);
      bin = anv_pipeline_cache_search(cache, sha1, 20);
   }

   if (bin == NULL) {
      struct brw_wm_prog_data prog_data = { 0, };
      struct anv_pipeline_binding surface_to_descriptor[256];
      struct anv_pipeline_binding sampler_to_descriptor[256];

      map = (struct anv_pipeline_bind_map) {
         .surface_to_descriptor = surface_to_descriptor + 8,
         .sampler_to_descriptor = sampler_to_descriptor
      };

      nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
                                             MESA_SHADER_FRAGMENT, spec_info,
                                             &prog_data.base, &map);
      if (nir == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      unsigned num_rts = 0;
      struct anv_pipeline_binding rt_bindings[8];
      nir_function_impl *impl = nir_shader_get_entrypoint(nir);
      nir_foreach_variable_safe(var, &nir->outputs) {
         if (var->data.location < FRAG_RESULT_DATA0)
            continue;

         unsigned rt = var->data.location - FRAG_RESULT_DATA0;
         if (rt >= key.nr_color_regions) {
            /* Out-of-bounds, throw it away */
            var->data.mode = nir_var_local;
            exec_node_remove(&var->node);
            exec_list_push_tail(&impl->locals, &var->node);
            continue;
         }

         /* Give it a new, compacted, location */
         var->data.location = FRAG_RESULT_DATA0 + num_rts;

         unsigned array_len =
            glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
         assert(num_rts + array_len <= 8);

         for (unsigned i = 0; i < array_len; i++) {
            rt_bindings[num_rts + i] = (struct anv_pipeline_binding) {
               .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
               .binding = 0,
               .index = rt + i,
            };
         }

         num_rts += array_len;
      }

      if (num_rts == 0) {
         /* If we have no render targets, we need a null render target */
         rt_bindings[0] = (struct anv_pipeline_binding) {
            .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
            .binding = 0,
            .index = UINT8_MAX,
         };
         num_rts = 1;
      }

      assert(num_rts <= 8);
      map.surface_to_descriptor -= num_rts;
      map.surface_count += num_rts;
      assert(map.surface_count <= 256);
      memcpy(map.surface_to_descriptor, rt_bindings,
             num_rts * sizeof(*rt_bindings));

      anv_fill_binding_table(&prog_data.base, num_rts);

      void *mem_ctx = ralloc_context(NULL);

      ralloc_steal(mem_ctx, nir);

      unsigned code_size;
      const unsigned *shader_code =
         brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
                        NULL, -1, -1, true, false, NULL, &code_size, NULL);
      if (shader_code == NULL) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
                                       shader_code, code_size,
                                       &prog_data.base, sizeof(prog_data),
                                       &map);
      if (!bin) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      ralloc_free(mem_ctx);
   }

   anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);

   return VK_SUCCESS;
}

VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
                        struct anv_pipeline_cache *cache,
                        const VkComputePipelineCreateInfo *info,
                        struct anv_shader_module *module,
                        const char *entrypoint,
                        const VkSpecializationInfo *spec_info)
{
   const struct brw_compiler *compiler =
      pipeline->device->instance->physicalDevice.compiler;
   struct anv_pipeline_bind_map map;
   struct brw_cs_prog_key key;
   struct anv_shader_bin *bin = NULL;
   unsigned char sha1[20];

   populate_cs_prog_key(&pipeline->device->info, &key);

   if (cache) {
      anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
                      pipeline->layout, spec_info);
      bin = anv_pipeline_cache_search(cache, sha1, 20);
   }

   if (bin == NULL) {
      struct brw_cs_prog_data prog_data = { 0, };
      struct anv_pipeline_binding surface_to_descriptor[256];
      struct anv_pipeline_binding sampler_to_descriptor[256];

      map = (struct anv_pipeline_bind_map) {
         .surface_to_descriptor = surface_to_descriptor,
         .sampler_to_descriptor = sampler_to_descriptor
      };

      nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
                                             MESA_SHADER_COMPUTE, spec_info,
                                             &prog_data.base, &map);
      if (nir == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      anv_fill_binding_table(&prog_data.base, 1);

      void *mem_ctx = ralloc_context(NULL);

      ralloc_steal(mem_ctx, nir);

      unsigned code_size;
      const unsigned *shader_code =
         brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
                        -1, &code_size, NULL);
      if (shader_code == NULL) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
                                       shader_code, code_size,
                                       &prog_data.base, sizeof(prog_data),
                                       &map);
      if (!bin) {
         ralloc_free(mem_ctx);
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      }

      ralloc_free(mem_ctx);
   }

   anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);

   return VK_SUCCESS;
}

/**
 * Copy pipeline state not marked as dynamic.
 * Dynamic state is pipeline state which hasn't been provided at pipeline
 * creation time, but is dynamically provided afterwards using various
 * vkCmdSet* functions.
 *
 * The set of state considered "non_dynamic" is determined by the pieces of
 * state that have their corresponding VkDynamicState enums omitted from
 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
 *
 * @param[out] pipeline    Destination non_dynamic state.
 * @param[in]  pCreateInfo Source of non_dynamic state to be copied.
 */
static void
copy_non_dynamic_state(struct anv_pipeline *pipeline,
                       const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
   anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
   ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
   struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];

   pipeline->dynamic_state = default_dynamic_state;

   if (pCreateInfo->pDynamicState) {
      /* Remove all of the states that are marked as dynamic */
      uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
      for (uint32_t s = 0; s < count; s++)
         states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
   }

   struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;

   /* Section 9.2 of the Vulkan 1.0.15 spec says:
    *
    *    pViewportState is [...] NULL if the pipeline
    *    has rasterization disabled.
    */
   if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
      assert(pCreateInfo->pViewportState);

      dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
      if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
         typed_memcpy(dynamic->viewport.viewports,
                     pCreateInfo->pViewportState->pViewports,
                     pCreateInfo->pViewportState->viewportCount);
      }

      dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
      if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
         typed_memcpy(dynamic->scissor.scissors,
                     pCreateInfo->pViewportState->pScissors,
                     pCreateInfo->pViewportState->scissorCount);
      }
   }

   if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
      assert(pCreateInfo->pRasterizationState);
      dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
   }

   if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
      assert(pCreateInfo->pRasterizationState);
      dynamic->depth_bias.bias =
         pCreateInfo->pRasterizationState->depthBiasConstantFactor;
      dynamic->depth_bias.clamp =
         pCreateInfo->pRasterizationState->depthBiasClamp;
      dynamic->depth_bias.slope =
         pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
   }

   /* Section 9.2 of the Vulkan 1.0.15 spec says:
    *
    *    pColorBlendState is [...] NULL if the pipeline has rasterization
    *    disabled or if the subpass of the render pass the pipeline is
    *    created against does not use any color attachments.
    */
   bool uses_color_att = false;
   for (unsigned i = 0; i < subpass->color_count; ++i) {
      if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
         uses_color_att = true;
         break;
      }
   }

   if (uses_color_att &&
       !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
      assert(pCreateInfo->pColorBlendState);

      if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
         typed_memcpy(dynamic->blend_constants,
                     pCreateInfo->pColorBlendState->blendConstants, 4);
   }

   /* If there is no depthstencil attachment, then don't read
    * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
    * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
    * no need to override the depthstencil defaults in
    * anv_pipeline::dynamic_state when there is no depthstencil attachment.
    *
    * Section 9.2 of the Vulkan 1.0.15 spec says:
    *
    *    pDepthStencilState is [...] NULL if the pipeline has rasterization
    *    disabled or if the subpass of the render pass the pipeline is created
    *    against does not use a depth/stencil attachment.
    */
   if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
       subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
      assert(pCreateInfo->pDepthStencilState);

      if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
         dynamic->depth_bounds.min =
            pCreateInfo->pDepthStencilState->minDepthBounds;
         dynamic->depth_bounds.max =
            pCreateInfo->pDepthStencilState->maxDepthBounds;
      }

      if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
         dynamic->stencil_compare_mask.front =
            pCreateInfo->pDepthStencilState->front.compareMask;
         dynamic->stencil_compare_mask.back =
            pCreateInfo->pDepthStencilState->back.compareMask;
      }

      if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
         dynamic->stencil_write_mask.front =
            pCreateInfo->pDepthStencilState->front.writeMask;
         dynamic->stencil_write_mask.back =
            pCreateInfo->pDepthStencilState->back.writeMask;
      }

      if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
         dynamic->stencil_reference.front =
            pCreateInfo->pDepthStencilState->front.reference;
         dynamic->stencil_reference.back =
            pCreateInfo->pDepthStencilState->back.reference;
      }
   }

   pipeline->dynamic_state_mask = states;
}

static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
   struct anv_render_pass *renderpass = NULL;
   struct anv_subpass *subpass = NULL;

   /* Assert that all required members of VkGraphicsPipelineCreateInfo are
    * present.  See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
    */
   assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);

   renderpass = anv_render_pass_from_handle(info->renderPass);
   assert(renderpass);

   assert(info->subpass < renderpass->subpass_count);
   subpass = &renderpass->subpasses[info->subpass];

   assert(info->stageCount >= 1);
   assert(info->pVertexInputState);
   assert(info->pInputAssemblyState);
   assert(info->pRasterizationState);
   if (!info->pRasterizationState->rasterizerDiscardEnable) {
      assert(info->pViewportState);
      assert(info->pMultisampleState);

      if (subpass && subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED)
         assert(info->pDepthStencilState);

      if (subpass && subpass->color_count > 0)
         assert(info->pColorBlendState);
   }

   for (uint32_t i = 0; i < info->stageCount; ++i) {
      switch (info->pStages[i].stage) {
      case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
      case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
         assert(info->pTessellationState);
         break;
      default:
         break;
      }
   }
}

/**
 * Calculate the desired L3 partitioning based on the current state of the
 * pipeline.  For now this simply returns the conservative defaults calculated
 * by get_default_l3_weights(), but we could probably do better by gathering
 * more statistics from the pipeline state (e.g. guess of expected URB usage
 * and bound surfaces), or by using feed-back from performance counters.
 */
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
   const struct gen_device_info *devinfo = &pipeline->device->info;

   const struct gen_l3_weights w =
      gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);

   pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
   pipeline->urb.total_size =
      gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
}

VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
                  struct anv_device *device,
                  struct anv_pipeline_cache *cache,
                  const VkGraphicsPipelineCreateInfo *pCreateInfo,
                  const VkAllocationCallbacks *alloc)
{
   VkResult result;

   anv_validate {
      anv_pipeline_validate_create_info(pCreateInfo);
   }

   if (alloc == NULL)
      alloc = &device->alloc;

   pipeline->device = device;
   pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);

   result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
   if (result != VK_SUCCESS)
      return result;

   pipeline->batch.alloc = alloc;
   pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
   pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
   pipeline->batch.relocs = &pipeline->batch_relocs;

   copy_non_dynamic_state(pipeline, pCreateInfo);
   pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
                                  pCreateInfo->pRasterizationState->depthClampEnable;

   pipeline->needs_data_cache = false;

   /* When we free the pipeline, we detect stages based on the NULL status
    * of various prog_data pointers.  Make them NULL by default.
    */
   memset(pipeline->shaders, 0, sizeof(pipeline->shaders));

   pipeline->active_stages = 0;

   const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
   struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
   for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
      gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
      pStages[stage] = &pCreateInfo->pStages[i];
      modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
   }

   if (modules[MESA_SHADER_VERTEX]) {
      result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
                                       modules[MESA_SHADER_VERTEX],
                                       pStages[MESA_SHADER_VERTEX]->pName,
                                       pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
      if (result != VK_SUCCESS)
         goto compile_fail;
   }

   if (modules[MESA_SHADER_TESS_EVAL]) {
      anv_pipeline_compile_tcs_tes(pipeline, cache, pCreateInfo,
                                   modules[MESA_SHADER_TESS_CTRL],
                                   pStages[MESA_SHADER_TESS_CTRL]->pName,
                                   pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo,
                                   modules[MESA_SHADER_TESS_EVAL],
                                   pStages[MESA_SHADER_TESS_EVAL]->pName,
                                   pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo);
   }

   if (modules[MESA_SHADER_GEOMETRY]) {
      result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
                                       modules[MESA_SHADER_GEOMETRY],
                                       pStages[MESA_SHADER_GEOMETRY]->pName,
                                       pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
      if (result != VK_SUCCESS)
         goto compile_fail;
   }

   if (modules[MESA_SHADER_FRAGMENT]) {
      result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo,
                                       modules[MESA_SHADER_FRAGMENT],
                                       pStages[MESA_SHADER_FRAGMENT]->pName,
                                       pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
      if (result != VK_SUCCESS)
         goto compile_fail;
   }

   assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);

   anv_pipeline_setup_l3_config(pipeline, false);

   const VkPipelineVertexInputStateCreateInfo *vi_info =
      pCreateInfo->pVertexInputState;

   const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;

   pipeline->vb_used = 0;
   for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
      const VkVertexInputAttributeDescription *desc =
         &vi_info->pVertexAttributeDescriptions[i];

      if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
         pipeline->vb_used |= 1 << desc->binding;
   }

   for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
      const VkVertexInputBindingDescription *desc =
         &vi_info->pVertexBindingDescriptions[i];

      pipeline->binding_stride[desc->binding] = desc->stride;

      /* Step rate is programmed per vertex element (attribute), not
       * binding. Set up a map of which bindings step per instance, for
       * reference by vertex element setup. */
      switch (desc->inputRate) {
      default:
      case VK_VERTEX_INPUT_RATE_VERTEX:
         pipeline->instancing_enable[desc->binding] = false;
         break;
      case VK_VERTEX_INPUT_RATE_INSTANCE:
         pipeline->instancing_enable[desc->binding] = true;
         break;
      }
   }

   const VkPipelineInputAssemblyStateCreateInfo *ia_info =
      pCreateInfo->pInputAssemblyState;
   const VkPipelineTessellationStateCreateInfo *tess_info =
      pCreateInfo->pTessellationState;
   pipeline->primitive_restart = ia_info->primitiveRestartEnable;

   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
      pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
   else
      pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];

   return VK_SUCCESS;

compile_fail:
   for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
      if (pipeline->shaders[s])
         anv_shader_bin_unref(device, pipeline->shaders[s]);
   }

   anv_reloc_list_finish(&pipeline->batch_relocs, alloc);

   return result;
}