/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "anv_nir.h" #include "program/prog_parameter.h" #include "nir/nir_builder.h" struct apply_pipeline_layout_state { nir_shader *shader; nir_builder builder; struct anv_pipeline_layout *layout; bool add_bounds_checks; struct { BITSET_WORD *used; uint8_t *surface_offsets; uint8_t *sampler_offsets; uint8_t *image_offsets; } set[MAX_SETS]; }; static void add_binding(struct apply_pipeline_layout_state *state, uint32_t set, uint32_t binding) { BITSET_SET(state->set[set].used, binding); } static void add_var_binding(struct apply_pipeline_layout_state *state, nir_variable *var) { add_binding(state, var->data.descriptor_set, var->data.binding); } static void get_used_bindings_block(nir_block *block, struct apply_pipeline_layout_state *state) { nir_foreach_instr_safe(instr, block) { switch (instr->type) { case nir_instr_type_intrinsic: { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_vulkan_resource_index: add_binding(state, nir_intrinsic_desc_set(intrin), nir_intrinsic_binding(intrin)); break; case nir_intrinsic_image_load: case nir_intrinsic_image_store: case nir_intrinsic_image_atomic_add: case nir_intrinsic_image_atomic_min: case nir_intrinsic_image_atomic_max: case nir_intrinsic_image_atomic_and: case nir_intrinsic_image_atomic_or: case nir_intrinsic_image_atomic_xor: case nir_intrinsic_image_atomic_exchange: case nir_intrinsic_image_atomic_comp_swap: case nir_intrinsic_image_size: case nir_intrinsic_image_samples: add_var_binding(state, intrin->variables[0]->var); break; default: break; } break; } case nir_instr_type_tex: { nir_tex_instr *tex = nir_instr_as_tex(instr); assert(tex->texture); add_var_binding(state, tex->texture->var); if (tex->sampler) add_var_binding(state, tex->sampler->var); break; } default: continue; } } } static void lower_res_index_intrinsic(nir_intrinsic_instr *intrin, struct apply_pipeline_layout_state *state) { nir_builder *b = &state->builder; b->cursor = nir_before_instr(&intrin->instr); uint32_t set = nir_intrinsic_desc_set(intrin); uint32_t binding = nir_intrinsic_binding(intrin); uint32_t surface_index = state->set[set].surface_offsets[binding]; uint32_t array_size = state->layout->set[set].layout->binding[binding].array_size; nir_const_value *const_array_index = nir_src_as_const_value(intrin->src[0]); nir_ssa_def *block_index; if (const_array_index) { unsigned array_index = const_array_index->u32[0]; array_index = MIN2(array_index, array_size - 1); block_index = nir_imm_int(b, surface_index + array_index); } else { block_index = nir_ssa_for_src(b, intrin->src[0], 1); if (state->add_bounds_checks) block_index = nir_umin(b, block_index, nir_imm_int(b, array_size - 1)); block_index = nir_iadd(b, nir_imm_int(b, surface_index), block_index); } assert(intrin->dest.is_ssa); nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(block_index)); nir_instr_remove(&intrin->instr); } static void lower_res_reindex_intrinsic(nir_intrinsic_instr *intrin, struct apply_pipeline_layout_state *state) { nir_builder *b = &state->builder; /* For us, the resource indices are just indices into the binding table and * array elements are sequential. A resource_reindex just turns into an * add of the two indices. */ assert(intrin->src[0].is_ssa && intrin->src[1].is_ssa); nir_ssa_def *new_index = nir_iadd(b, intrin->src[0].ssa, intrin->src[1].ssa); assert(intrin->dest.is_ssa); nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(new_index)); nir_instr_remove(&intrin->instr); } static void lower_tex_deref(nir_tex_instr *tex, nir_deref_var *deref, unsigned *const_index, unsigned array_size, nir_tex_src_type src_type, bool allow_indirect, struct apply_pipeline_layout_state *state) { nir_builder *b = &state->builder; if (deref->deref.child) { assert(deref->deref.child->deref_type == nir_deref_type_array); nir_deref_array *deref_array = nir_deref_as_array(deref->deref.child); if (deref_array->deref_array_type == nir_deref_array_type_indirect) { /* From VK_KHR_sampler_ycbcr_conversion: * * If sampler Y’CBCR conversion is enabled, the combined image * sampler must be indexed only by constant integral expressions when * aggregated into arrays in shader code, irrespective of the * shaderSampledImageArrayDynamicIndexing feature. */ assert(allow_indirect); nir_ssa_def *index = nir_iadd(b, nir_imm_int(b, deref_array->base_offset), nir_ssa_for_src(b, deref_array->indirect, 1)); if (state->add_bounds_checks) index = nir_umin(b, index, nir_imm_int(b, array_size - 1)); nir_tex_instr_add_src(tex, src_type, nir_src_for_ssa(index)); } else { *const_index += MIN2(deref_array->base_offset, array_size - 1); } } } static void cleanup_tex_deref(nir_tex_instr *tex, nir_deref_var *deref) { if (deref->deref.child == NULL) return; nir_deref_array *deref_array = nir_deref_as_array(deref->deref.child); if (deref_array->deref_array_type != nir_deref_array_type_indirect) return; nir_instr_rewrite_src(&tex->instr, &deref_array->indirect, NIR_SRC_INIT); } static bool has_tex_src_plane(nir_tex_instr *tex) { for (unsigned i = 0; i < tex->num_srcs; i++) { if (tex->src[i].src_type == nir_tex_src_plane) return true; } return false; } static uint32_t extract_tex_src_plane(nir_tex_instr *tex) { unsigned plane = 0; int plane_src_idx = -1; for (unsigned i = 0; i < tex->num_srcs; i++) { if (tex->src[i].src_type == nir_tex_src_plane) { nir_const_value *const_plane = nir_src_as_const_value(tex->src[i].src); /* Our color conversion lowering pass should only ever insert * constants. */ assert(const_plane); plane = const_plane->u32[0]; plane_src_idx = i; } } assert(plane_src_idx >= 0); nir_tex_instr_remove_src(tex, plane_src_idx); return plane; } static void lower_tex(nir_tex_instr *tex, struct apply_pipeline_layout_state *state) { /* No one should have come by and lowered it already */ assert(tex->texture); state->builder.cursor = nir_before_instr(&tex->instr); unsigned set = tex->texture->var->data.descriptor_set; unsigned binding = tex->texture->var->data.binding; unsigned array_size = state->layout->set[set].layout->binding[binding].array_size; bool has_plane = has_tex_src_plane(tex); unsigned plane = has_plane ? extract_tex_src_plane(tex) : 0; tex->texture_index = state->set[set].surface_offsets[binding]; lower_tex_deref(tex, tex->texture, &tex->texture_index, array_size, nir_tex_src_texture_offset, !has_plane, state); tex->texture_index += plane; if (tex->sampler) { unsigned set = tex->sampler->var->data.descriptor_set; unsigned binding = tex->sampler->var->data.binding; unsigned array_size = state->layout->set[set].layout->binding[binding].array_size; tex->sampler_index = state->set[set].sampler_offsets[binding]; lower_tex_deref(tex, tex->sampler, &tex->sampler_index, array_size, nir_tex_src_sampler_offset, !has_plane, state); tex->sampler_index += plane; } /* The backend only ever uses this to mark used surfaces. We don't care * about that little optimization so it just needs to be non-zero. */ tex->texture_array_size = 1; cleanup_tex_deref(tex, tex->texture); if (tex->sampler) cleanup_tex_deref(tex, tex->sampler); tex->texture = NULL; tex->sampler = NULL; } static void apply_pipeline_layout_block(nir_block *block, struct apply_pipeline_layout_state *state) { nir_foreach_instr_safe(instr, block) { switch (instr->type) { case nir_instr_type_intrinsic: { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_vulkan_resource_index: lower_res_index_intrinsic(intrin, state); break; case nir_intrinsic_vulkan_resource_reindex: lower_res_reindex_intrinsic(intrin, state); break; default: break; } break; } case nir_instr_type_tex: lower_tex(nir_instr_as_tex(instr), state); break; default: continue; } } } static void setup_vec4_uniform_value(uint32_t *params, uint32_t offset, unsigned n) { for (unsigned i = 0; i < n; ++i) params[i] = ANV_PARAM_PUSH(offset + i * sizeof(uint32_t)); for (unsigned i = n; i < 4; ++i) params[i] = BRW_PARAM_BUILTIN_ZERO; } void anv_nir_apply_pipeline_layout(struct anv_pipeline *pipeline, struct anv_pipeline_layout *layout, nir_shader *shader, struct brw_stage_prog_data *prog_data, struct anv_pipeline_bind_map *map) { gl_shader_stage stage = shader->info.stage; struct apply_pipeline_layout_state state = { .shader = shader, .layout = layout, .add_bounds_checks = pipeline->device->robust_buffer_access, }; void *mem_ctx = ralloc_context(NULL); for (unsigned s = 0; s < layout->num_sets; s++) { const unsigned count = layout->set[s].layout->binding_count; const unsigned words = BITSET_WORDS(count); state.set[s].used = rzalloc_array(mem_ctx, BITSET_WORD, words); state.set[s].surface_offsets = rzalloc_array(mem_ctx, uint8_t, count); state.set[s].sampler_offsets = rzalloc_array(mem_ctx, uint8_t, count); state.set[s].image_offsets = rzalloc_array(mem_ctx, uint8_t, count); } nir_foreach_function(function, shader) { if (!function->impl) continue; nir_foreach_block(block, function->impl) get_used_bindings_block(block, &state); } for (uint32_t set = 0; set < layout->num_sets; set++) { struct anv_descriptor_set_layout *set_layout = layout->set[set].layout; BITSET_WORD b, _tmp; BITSET_FOREACH_SET(b, _tmp, state.set[set].used, set_layout->binding_count) { if (set_layout->binding[b].stage[stage].surface_index >= 0) { map->surface_count += anv_descriptor_set_binding_layout_get_hw_size(&set_layout->binding[b]); } if (set_layout->binding[b].stage[stage].sampler_index >= 0) { map->sampler_count += anv_descriptor_set_binding_layout_get_hw_size(&set_layout->binding[b]); } if (set_layout->binding[b].stage[stage].image_index >= 0) map->image_count += set_layout->binding[b].array_size; } } unsigned surface = 0; unsigned sampler = 0; unsigned image = 0; for (uint32_t set = 0; set < layout->num_sets; set++) { struct anv_descriptor_set_layout *set_layout = layout->set[set].layout; BITSET_WORD b, _tmp; BITSET_FOREACH_SET(b, _tmp, state.set[set].used, set_layout->binding_count) { struct anv_descriptor_set_binding_layout *binding = &set_layout->binding[b]; if (binding->stage[stage].surface_index >= 0) { state.set[set].surface_offsets[b] = surface; struct anv_sampler **samplers = binding->immutable_samplers; for (unsigned i = 0; i < binding->array_size; i++) { uint8_t planes = samplers ? samplers[i]->n_planes : 1; for (uint8_t p = 0; p < planes; p++) { map->surface_to_descriptor[surface].set = set; map->surface_to_descriptor[surface].binding = b; map->surface_to_descriptor[surface].index = i; map->surface_to_descriptor[surface].plane = p; surface++; } } } if (binding->stage[stage].sampler_index >= 0) { state.set[set].sampler_offsets[b] = sampler; struct anv_sampler **samplers = binding->immutable_samplers; for (unsigned i = 0; i < binding->array_size; i++) { uint8_t planes = samplers ? samplers[i]->n_planes : 1; for (uint8_t p = 0; p < planes; p++) { map->sampler_to_descriptor[sampler].set = set; map->sampler_to_descriptor[sampler].binding = b; map->sampler_to_descriptor[sampler].index = i; map->sampler_to_descriptor[sampler].plane = p; sampler++; } } } if (binding->stage[stage].image_index >= 0) { state.set[set].image_offsets[b] = image; image += binding->array_size; } } } nir_foreach_variable(var, &shader->uniforms) { if (!glsl_type_is_image(var->interface_type)) continue; enum glsl_sampler_dim dim = glsl_get_sampler_dim(var->interface_type); const uint32_t set = var->data.descriptor_set; const uint32_t binding = var->data.binding; const uint32_t array_size = layout->set[set].layout->binding[binding].array_size; if (!BITSET_TEST(state.set[set].used, binding)) continue; struct anv_pipeline_binding *pipe_binding = &map->surface_to_descriptor[state.set[set].surface_offsets[binding]]; for (unsigned i = 0; i < array_size; i++) { assert(pipe_binding[i].set == set); assert(pipe_binding[i].binding == binding); assert(pipe_binding[i].index == i); if (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS) pipe_binding[i].input_attachment_index = var->data.index + i; pipe_binding[i].write_only = var->data.image.write_only; } } nir_foreach_function(function, shader) { if (!function->impl) continue; nir_builder_init(&state.builder, function->impl); nir_foreach_block(block, function->impl) apply_pipeline_layout_block(block, &state); nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance); } if (map->image_count > 0) { assert(map->image_count <= MAX_IMAGES); nir_foreach_variable(var, &shader->uniforms) { if (glsl_type_is_image(var->type) || (glsl_type_is_array(var->type) && glsl_type_is_image(glsl_get_array_element(var->type)))) { /* Images are represented as uniform push constants and the actual * information required for reading/writing to/from the image is * storred in the uniform. */ unsigned set = var->data.descriptor_set; unsigned binding = var->data.binding; unsigned image_index = state.set[set].image_offsets[binding]; var->data.driver_location = shader->num_uniforms + image_index * BRW_IMAGE_PARAM_SIZE * 4; } } uint32_t *param = brw_stage_prog_data_add_params(prog_data, map->image_count * BRW_IMAGE_PARAM_SIZE); struct anv_push_constants *null_data = NULL; const struct brw_image_param *image_param = null_data->images; for (uint32_t i = 0; i < map->image_count; i++) { setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET, (uintptr_t)&image_param->surface_idx, 1); setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET, (uintptr_t)image_param->offset, 2); setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET, (uintptr_t)image_param->size, 3); setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET, (uintptr_t)image_param->stride, 4); setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET, (uintptr_t)image_param->tiling, 3); setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET, (uintptr_t)image_param->swizzling, 2); param += BRW_IMAGE_PARAM_SIZE; image_param ++; } assert(param == prog_data->param + prog_data->nr_params); shader->num_uniforms += map->image_count * BRW_IMAGE_PARAM_SIZE * 4; } ralloc_free(mem_ctx); }