/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "anv_meta.h" #include "anv_private.h" #include "nir/nir_builder.h" /** * Vertex attributes used by all pipelines. */ struct vertex_attrs { struct anv_vue_header vue_header; float position[2]; /**< 3DPRIM_RECTLIST */ float tex_position[2]; }; static void meta_resolve_save(struct anv_meta_saved_state *saved_state, struct anv_cmd_buffer *cmd_buffer) { anv_meta_save(saved_state, cmd_buffer, (1 << VK_DYNAMIC_STATE_VIEWPORT) | (1 << VK_DYNAMIC_STATE_SCISSOR)); cmd_buffer->state.dynamic.viewport.count = 0; cmd_buffer->state.dynamic.scissor.count = 0; } static void meta_resolve_restore(struct anv_meta_saved_state *saved_state, struct anv_cmd_buffer *cmd_buffer) { anv_meta_restore(saved_state, cmd_buffer); } static VkPipeline * get_pipeline_h(struct anv_device *device, uint32_t samples) { uint32_t i = ffs(samples) - 2; /* log2(samples) - 1 */ assert(samples >= 2); assert(i < ARRAY_SIZE(device->meta_state.resolve.pipelines)); return &device->meta_state.resolve.pipelines[i]; } static nir_shader * build_nir_vs(void) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b; nir_variable *a_position; nir_variable *v_position; nir_variable *a_tex_position; nir_variable *v_tex_position; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL); b.shader->info.name = ralloc_strdup(b.shader, "meta_resolve_vs"); a_position = nir_variable_create(b.shader, nir_var_shader_in, vec4, "a_position"); a_position->data.location = VERT_ATTRIB_GENERIC0; v_position = nir_variable_create(b.shader, nir_var_shader_out, vec4, "gl_Position"); v_position->data.location = VARYING_SLOT_POS; a_tex_position = nir_variable_create(b.shader, nir_var_shader_in, vec4, "a_tex_position"); a_tex_position->data.location = VERT_ATTRIB_GENERIC1; v_tex_position = nir_variable_create(b.shader, nir_var_shader_out, vec4, "v_tex_position"); v_tex_position->data.location = VARYING_SLOT_VAR0; nir_copy_var(&b, v_position, a_position); nir_copy_var(&b, v_tex_position, a_tex_position); return b.shader; } static nir_shader * build_nir_fs(uint32_t num_samples) { const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *sampler2DMS = glsl_sampler_type(GLSL_SAMPLER_DIM_MS, /*is_shadow*/ false, /*is_array*/ false, GLSL_TYPE_FLOAT); nir_builder b; nir_variable *u_tex; /* uniform sampler */ nir_variable *v_position; /* vec4, varying fragment position */ nir_variable *v_tex_position; /* vec4, varying texture coordinate */ nir_variable *f_color; /* vec4, fragment output color */ nir_ssa_def *accum; /* vec4, accumulation of sample values */ nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL); b.shader->info.name = ralloc_asprintf(b.shader, "meta_resolve_fs_samples%02d", num_samples); u_tex = nir_variable_create(b.shader, nir_var_uniform, sampler2DMS, "u_tex"); u_tex->data.descriptor_set = 0; u_tex->data.binding = 0; v_position = nir_variable_create(b.shader, nir_var_shader_in, vec4, "v_position"); v_position->data.location = VARYING_SLOT_POS; v_position->data.origin_upper_left = true; v_tex_position = nir_variable_create(b.shader, nir_var_shader_in, vec4, "v_tex_position"); v_tex_position->data.location = VARYING_SLOT_VAR0; f_color = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); f_color->data.location = FRAG_RESULT_DATA0; accum = nir_imm_vec4(&b, 0, 0, 0, 0); nir_ssa_def *tex_position_ivec = nir_f2i(&b, nir_load_var(&b, v_tex_position)); for (uint32_t i = 0; i < num_samples; ++i) { nir_tex_instr *tex; tex = nir_tex_instr_create(b.shader, /*num_srcs*/ 2); tex->texture = nir_deref_var_create(tex, u_tex); tex->sampler = nir_deref_var_create(tex, u_tex); tex->sampler_dim = GLSL_SAMPLER_DIM_MS; tex->op = nir_texop_txf_ms; tex->src[0].src = nir_src_for_ssa(tex_position_ivec); tex->src[0].src_type = nir_tex_src_coord; tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i)); tex->src[1].src_type = nir_tex_src_ms_index; tex->dest_type = nir_type_float; tex->is_array = false; tex->coord_components = 3; nir_ssa_dest_init(&tex->instr, &tex->dest, /*num_components*/ 4, "tex"); nir_builder_instr_insert(&b, &tex->instr); accum = nir_fadd(&b, accum, &tex->dest.ssa); } accum = nir_fdiv(&b, accum, nir_imm_float(&b, num_samples)); nir_store_var(&b, f_color, accum, /*writemask*/ 4); return b.shader; } static VkResult create_pass(struct anv_device *device) { VkResult result; VkDevice device_h = anv_device_to_handle(device); const VkAllocationCallbacks *alloc = &device->meta_state.alloc; result = anv_CreateRenderPass(device_h, &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */ .samples = 1, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_GENERAL, .finalLayout = VK_IMAGE_LAYOUT_GENERAL, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 1, .pColorAttachments = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = VK_ATTACHMENT_UNUSED, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 0, }, alloc, &device->meta_state.resolve.pass); return result; } static VkResult create_pipeline(struct anv_device *device, uint32_t num_samples, VkShaderModule vs_module_h) { VkResult result; VkDevice device_h = anv_device_to_handle(device); struct anv_shader_module fs_module = { .nir = build_nir_fs(num_samples), }; if (!fs_module.nir) { /* XXX: Need more accurate error */ result = VK_ERROR_OUT_OF_HOST_MEMORY; goto cleanup; } result = anv_graphics_pipeline_create(device_h, VK_NULL_HANDLE, &(VkGraphicsPipelineCreateInfo) { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = (VkPipelineShaderStageCreateInfo[]) { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vs_module_h, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = anv_shader_module_to_handle(&fs_module), .pName = "main", }, }, .pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 1, .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) { { .binding = 0, .stride = sizeof(struct vertex_attrs), .inputRate = VK_VERTEX_INPUT_RATE_VERTEX }, }, .vertexAttributeDescriptionCount = 3, .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) { { /* VUE Header */ .location = 0, .binding = 0, .format = VK_FORMAT_R32G32B32A32_UINT, .offset = offsetof(struct vertex_attrs, vue_header), }, { /* Position */ .location = 1, .binding = 0, .format = VK_FORMAT_R32G32_SFLOAT, .offset = offsetof(struct vertex_attrs, position), }, { /* Texture Coordinate */ .location = 2, .binding = 0, .format = VK_FORMAT_R32G32_SFLOAT, .offset = offsetof(struct vertex_attrs, tex_position), }, }, }, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .depthClampEnable = false, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]) { 0x1 }, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState []) { { .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT, }, }, }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .layout = device->meta_state.resolve.pipeline_layout, .renderPass = device->meta_state.resolve.pass, .subpass = 0, }, &(struct anv_graphics_pipeline_create_info) { .color_attachment_count = -1, .use_repclear = false, .disable_viewport = true, .disable_scissor = true, .disable_vs = true, .use_rectlist = true }, &device->meta_state.alloc, get_pipeline_h(device, num_samples)); if (result != VK_SUCCESS) goto cleanup; goto cleanup; cleanup: ralloc_free(fs_module.nir); return result; } void anv_device_finish_meta_resolve_state(struct anv_device *device) { struct anv_meta_state *state = &device->meta_state; VkDevice device_h = anv_device_to_handle(device); VkRenderPass pass_h = device->meta_state.resolve.pass; VkPipelineLayout pipeline_layout_h = device->meta_state.resolve.pipeline_layout; VkDescriptorSetLayout ds_layout_h = device->meta_state.resolve.ds_layout; const VkAllocationCallbacks *alloc = &device->meta_state.alloc; if (pass_h) ANV_CALL(DestroyRenderPass)(device_h, pass_h, &device->meta_state.alloc); if (pipeline_layout_h) ANV_CALL(DestroyPipelineLayout)(device_h, pipeline_layout_h, alloc); if (ds_layout_h) ANV_CALL(DestroyDescriptorSetLayout)(device_h, ds_layout_h, alloc); for (uint32_t i = 0; i < ARRAY_SIZE(state->resolve.pipelines); ++i) { VkPipeline pipeline_h = state->resolve.pipelines[i]; if (pipeline_h) { ANV_CALL(DestroyPipeline)(device_h, pipeline_h, alloc); } } } VkResult anv_device_init_meta_resolve_state(struct anv_device *device) { VkResult res = VK_SUCCESS; VkDevice device_h = anv_device_to_handle(device); const VkAllocationCallbacks *alloc = &device->meta_state.alloc; const isl_sample_count_mask_t sample_count_mask = isl_device_get_sample_counts(&device->isl_dev); zero(device->meta_state.resolve); struct anv_shader_module vs_module = { .nir = build_nir_vs() }; if (!vs_module.nir) { /* XXX: Need more accurate error */ res = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } VkShaderModule vs_module_h = anv_shader_module_to_handle(&vs_module); res = anv_CreateDescriptorSetLayout(device_h, &(VkDescriptorSetLayoutCreateInfo) { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, }, }, }, alloc, &device->meta_state.resolve.ds_layout); if (res != VK_SUCCESS) goto fail; res = anv_CreatePipelineLayout(device_h, &(VkPipelineLayoutCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = (VkDescriptorSetLayout[]) { device->meta_state.resolve.ds_layout, }, }, alloc, &device->meta_state.resolve.pipeline_layout); if (res != VK_SUCCESS) goto fail; res = create_pass(device); if (res != VK_SUCCESS) goto fail; for (uint32_t i = 0; i < ARRAY_SIZE(device->meta_state.resolve.pipelines); ++i) { uint32_t sample_count = 1 << (1 + i); if (!(sample_count_mask & sample_count)) continue; res = create_pipeline(device, sample_count, vs_module_h); if (res != VK_SUCCESS) goto fail; } goto cleanup; fail: anv_device_finish_meta_resolve_state(device); cleanup: ralloc_free(vs_module.nir); return res; } static void emit_resolve(struct anv_cmd_buffer *cmd_buffer, struct anv_image_view *src_iview, const VkOffset2D *src_offset, struct anv_image_view *dest_iview, const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent) { struct anv_device *device = cmd_buffer->device; VkDevice device_h = anv_device_to_handle(device); VkCommandBuffer cmd_buffer_h = anv_cmd_buffer_to_handle(cmd_buffer); const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; const struct anv_image *src_image = src_iview->image; const struct vertex_attrs vertex_data[3] = { { .vue_header = {0}, .position = { dest_offset->x + resolve_extent->width, dest_offset->y + resolve_extent->height, }, .tex_position = { src_offset->x + resolve_extent->width, src_offset->y + resolve_extent->height, }, }, { .vue_header = {0}, .position = { dest_offset->x, dest_offset->y + resolve_extent->height, }, .tex_position = { src_offset->x, src_offset->y + resolve_extent->height, }, }, { .vue_header = {0}, .position = { dest_offset->x, dest_offset->y, }, .tex_position = { src_offset->x, src_offset->y, }, }, }; struct anv_state vertex_mem = anv_cmd_buffer_emit_dynamic(cmd_buffer, vertex_data, sizeof(vertex_data), 16); struct anv_buffer vertex_buffer = { .device = device, .size = sizeof(vertex_data), .bo = &cmd_buffer->dynamic_state_stream.block_pool->bo, .offset = vertex_mem.offset, }; VkBuffer vertex_buffer_h = anv_buffer_to_handle(&vertex_buffer); anv_CmdBindVertexBuffers(cmd_buffer_h, /*firstBinding*/ 0, /*bindingCount*/ 1, (VkBuffer[]) { vertex_buffer_h }, (VkDeviceSize[]) { 0 }); VkSampler sampler_h; ANV_CALL(CreateSampler)(device_h, &(VkSamplerCreateInfo) { .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, .magFilter = VK_FILTER_NEAREST, .minFilter = VK_FILTER_NEAREST, .mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST, .addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .mipLodBias = 0.0, .anisotropyEnable = false, .compareEnable = false, .minLod = 0.0, .maxLod = 0.0, .unnormalizedCoordinates = false, }, &cmd_buffer->pool->alloc, &sampler_h); VkDescriptorPool desc_pool; anv_CreateDescriptorPool(anv_device_to_handle(device), &(const VkDescriptorPoolCreateInfo) { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .pNext = NULL, .flags = 0, .maxSets = 1, .poolSizeCount = 1, .pPoolSizes = (VkDescriptorPoolSize[]) { { .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = 1 }, } }, &cmd_buffer->pool->alloc, &desc_pool); VkDescriptorSet desc_set_h; anv_AllocateDescriptorSets(device_h, &(VkDescriptorSetAllocateInfo) { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorPool = desc_pool, .descriptorSetCount = 1, .pSetLayouts = (VkDescriptorSetLayout[]) { device->meta_state.resolve.ds_layout, }, }, &desc_set_h); anv_UpdateDescriptorSets(device_h, /*writeCount*/ 1, (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstSet = desc_set_h, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = sampler_h, .imageView = anv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, }, }, }, /*copyCount*/ 0, /*copies */ NULL); ANV_CALL(CmdSetViewport)(cmd_buffer_h, /*firstViewport*/ 0, /*viewportCount*/ 1, (VkViewport[]) { { .x = 0, .y = 0, .width = fb->width, .height = fb->height, .minDepth = 0.0, .maxDepth = 1.0, }, }); ANV_CALL(CmdSetScissor)(cmd_buffer_h, /*firstScissor*/ 0, /*scissorCount*/ 1, (VkRect2D[]) { { .offset = { 0, 0 }, .extent = (VkExtent2D) { fb->width, fb->height }, }, }); VkPipeline pipeline_h = *get_pipeline_h(device, src_image->samples); ANV_FROM_HANDLE(anv_pipeline, pipeline, pipeline_h); if (cmd_buffer->state.pipeline != pipeline) { anv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_h); } anv_CmdBindDescriptorSets(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, device->meta_state.resolve.pipeline_layout, /*firstSet*/ 0, /* setCount */ 1, (VkDescriptorSet[]) { desc_set_h, }, /*copyCount*/ 0, /*copies */ NULL); ANV_CALL(CmdDraw)(cmd_buffer_h, 3, 1, 0, 0); /* All objects below are consumed by the draw call. We may safely destroy * them. */ anv_DestroyDescriptorPool(anv_device_to_handle(device), desc_pool, &cmd_buffer->pool->alloc); anv_DestroySampler(device_h, sampler_h, &cmd_buffer->pool->alloc); } void anv_CmdResolveImage( VkCommandBuffer cmd_buffer_h, VkImage src_image_h, VkImageLayout src_image_layout, VkImage dest_image_h, VkImageLayout dest_image_layout, uint32_t region_count, const VkImageResolve* regions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmd_buffer_h); ANV_FROM_HANDLE(anv_image, src_image, src_image_h); ANV_FROM_HANDLE(anv_image, dest_image, dest_image_h); struct anv_device *device = cmd_buffer->device; struct anv_meta_saved_state state; VkDevice device_h = anv_device_to_handle(device); meta_resolve_save(&state, cmd_buffer); assert(src_image->samples > 1); assert(dest_image->samples == 1); if (src_image->samples >= 16) { /* See commit aa3f9aaf31e9056a255f9e0472ebdfdaa60abe54 for the * glBlitFramebuffer workaround for samples >= 16. */ anv_finishme("vkCmdResolveImage: need interpolation workaround when " "samples >= 16"); } if (src_image->array_size > 1) anv_finishme("vkCmdResolveImage: multisample array images"); for (uint32_t r = 0; r < region_count; ++r) { const VkImageResolve *region = ®ions[r]; /* From the Vulkan 1.0 spec: * * - The aspectMask member of srcSubresource and dstSubresource must * only contain VK_IMAGE_ASPECT_COLOR_BIT * * - The layerCount member of srcSubresource and dstSubresource must * match */ assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount); const uint32_t src_base_layer = anv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); const uint32_t dest_base_layer = anv_meta_get_iview_layer(dest_image, ®ion->dstSubresource, ®ion->dstOffset); /** * From Vulkan 1.0.6 spec: 18.6 Resolving Multisample Images * * extent is the size in texels of the source image to resolve in width, * height and depth. 1D images use only x and width. 2D images use x, y, * width and height. 3D images use x, y, z, width, height and depth. * * srcOffset and dstOffset select the initial x, y, and z offsets in * texels of the sub-regions of the source and destination image data. * extent is the size in texels of the source image to resolve in width, * height and depth. 1D images use only x and width. 2D images use x, y, * width and height. 3D images use x, y, z, width, height and depth. */ const struct VkExtent3D extent = anv_sanitize_image_extent(src_image->type, region->extent); const struct VkOffset3D srcOffset = anv_sanitize_image_offset(src_image->type, region->srcOffset); const struct VkOffset3D dstOffset = anv_sanitize_image_offset(dest_image->type, region->dstOffset); for (uint32_t layer = 0; layer < region->srcSubresource.layerCount; ++layer) { struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = src_image_h, .viewType = anv_meta_get_view_type(src_image), .format = src_image->format->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = src_base_layer + layer, .layerCount = 1, }, }, cmd_buffer, 0, VK_IMAGE_USAGE_SAMPLED_BIT); struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = dest_image_h, .viewType = anv_meta_get_view_type(dest_image), .format = dest_image->format->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_layer + layer, .layerCount = 1, }, }, cmd_buffer, 0, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT); VkFramebuffer fb_h; anv_CreateFramebuffer(device_h, &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { anv_image_view_to_handle(&dest_iview), }, .width = anv_minify(dest_image->extent.width, region->dstSubresource.mipLevel), .height = anv_minify(dest_image->extent.height, region->dstSubresource.mipLevel), .layers = 1 }, &cmd_buffer->pool->alloc, &fb_h); ANV_CALL(CmdBeginRenderPass)(cmd_buffer_h, &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.resolve.pass, .framebuffer = fb_h, .renderArea = { .offset = { dstOffset.x, dstOffset.y, }, .extent = { extent.width, extent.height, } }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); emit_resolve(cmd_buffer, &src_iview, &(VkOffset2D) { .x = srcOffset.x, .y = srcOffset.y, }, &dest_iview, &(VkOffset2D) { .x = dstOffset.x, .y = dstOffset.y, }, &(VkExtent2D) { .width = extent.width, .height = extent.height, }); ANV_CALL(CmdEndRenderPass)(cmd_buffer_h); anv_DestroyFramebuffer(device_h, fb_h, &cmd_buffer->pool->alloc); } } meta_resolve_restore(&state, cmd_buffer); } /** * Emit any needed resolves for the current subpass. */ void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer) { struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; struct anv_subpass *subpass = cmd_buffer->state.subpass; struct anv_meta_saved_state saved_state; /* FINISHME(perf): Skip clears for resolve attachments. * * From the Vulkan 1.0 spec: * * If the first use of an attachment in a render pass is as a resolve * attachment, then the loadOp is effectively ignored as the resolve is * guaranteed to overwrite all pixels in the render area. */ if (!subpass->has_resolve) return; meta_resolve_save(&saved_state, cmd_buffer); for (uint32_t i = 0; i < subpass->color_count; ++i) { uint32_t src_att = subpass->color_attachments[i]; uint32_t dest_att = subpass->resolve_attachments[i]; if (dest_att == VK_ATTACHMENT_UNUSED) continue; struct anv_image_view *src_iview = fb->attachments[src_att]; struct anv_image_view *dest_iview = fb->attachments[dest_att]; struct anv_subpass resolve_subpass = { .color_count = 1, .color_attachments = (uint32_t[]) { dest_att }, .depth_stencil_attachment = VK_ATTACHMENT_UNUSED, }; anv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass); /* Subpass resolves must respect the render area. We can ignore the * render area here because vkCmdBeginRenderPass set the render area * with 3DSTATE_DRAWING_RECTANGLE. * * XXX(chadv): Does the hardware really respect * 3DSTATE_DRAWING_RECTANGLE when draing a 3DPRIM_RECTLIST? */ emit_resolve(cmd_buffer, src_iview, &(VkOffset2D) { 0, 0 }, dest_iview, &(VkOffset2D) { 0, 0 }, &(VkExtent2D) { fb->width, fb->height }); } cmd_buffer->state.subpass = subpass; meta_resolve_restore(&saved_state, cmd_buffer); }