/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "anv_meta.h" #include "nir/nir_builder.h" static VkFormat vk_format_for_size(int bs) { /* The choice of UNORM and UINT formats is very intentional here. Most of * the time, we want to use a UINT format to avoid any rounding error in * the blit. For stencil blits, R8_UINT is required by the hardware. * (It's the only format allowed in conjunction with W-tiling.) Also we * intentionally use the 4-channel formats whenever we can. This is so * that, when we do a RGB <-> RGBX copy, the two formats will line up even * though one of them is 3/4 the size of the other. The choice of UNORM * vs. UINT is also very intentional because Haswell doesn't handle 8 or * 16-bit RGB UINT formats at all so we have to use UNORM there. * Fortunately, the only time we should ever use two different formats in * the table below is for RGB -> RGBA blits and so we will never have any * UNORM/UINT mismatch. */ switch (bs) { case 1: return VK_FORMAT_R8_UINT; case 2: return VK_FORMAT_R8G8_UINT; case 3: return VK_FORMAT_R8G8B8_UNORM; case 4: return VK_FORMAT_R8G8B8A8_UNORM; case 6: return VK_FORMAT_R16G16B16_UNORM; case 8: return VK_FORMAT_R16G16B16A16_UNORM; case 12: return VK_FORMAT_R32G32B32_UINT; case 16: return VK_FORMAT_R32G32B32A32_UINT; default: unreachable("Invalid format block size"); } } static void create_iview(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_blit2d_surf *surf, struct anv_meta_blit2d_rect *rect, VkImageUsageFlags usage, VkImage *img, struct anv_image_view *iview) { struct isl_tile_info tile_info; isl_tiling_get_info(&cmd_buffer->device->isl_dev, surf->tiling, surf->bs, &tile_info); const unsigned tile_width_px = tile_info.width > surf->bs ? tile_info.width / surf->bs : 1; uint32_t *rect_y = (usage == VK_IMAGE_USAGE_SAMPLED_BIT) ? &rect->src_y : &rect->dst_y; uint32_t *rect_x = (usage == VK_IMAGE_USAGE_SAMPLED_BIT) ? &rect->src_x : &rect->dst_x; /* Define the shared state among all created image views */ const VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = vk_format_for_size(surf->bs), .extent = { .width = rect->width + (*rect_x) % tile_width_px, .height = rect->height + (*rect_y) % tile_info.height, .depth = 1, }, .mipLevels = 1, .arrayLayers = 1, .samples = 1, .tiling = surf->tiling == ISL_TILING_LINEAR ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL, .usage = usage, }; /* Create the VkImage that is bound to the surface's memory. */ anv_image_create(anv_device_to_handle(cmd_buffer->device), &(struct anv_image_create_info) { .vk_info = &image_info, .isl_tiling_flags = 1 << surf->tiling, .stride = surf->pitch, }, &cmd_buffer->pool->alloc, img); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ anv_image_from_handle(*img)->bo = surf->bo; anv_image_from_handle(*img)->offset = surf->base_offset; /* Create a VkImageView that starts at the tile aligned offset closest * to the provided x/y offset into the surface. */ uint32_t img_o = 0; isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev, &anv_image_from_handle(*img)-> color_surface.isl, *rect_x, *rect_y, &img_o, rect_x, rect_y); anv_image_view_init(iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = *img, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = image_info.format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 }, }, cmd_buffer, img_o, usage); } static void meta_emit_blit2d(struct anv_cmd_buffer *cmd_buffer, struct anv_image_view *src_iview, VkOffset3D src_offset, struct anv_image_view *dest_iview, VkOffset3D dest_offset, VkExtent3D extent) { struct anv_device *device = cmd_buffer->device; struct blit_vb_data { float pos[2]; float tex_coord[3]; } *vb_data; unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data); struct anv_state vb_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16); memset(vb_state.map, 0, sizeof(struct anv_vue_header)); vb_data = vb_state.map + sizeof(struct anv_vue_header); vb_data[0] = (struct blit_vb_data) { .pos = { dest_offset.x + extent.width, dest_offset.y + extent.height, }, .tex_coord = { src_offset.x + extent.width, src_offset.y + extent.height, src_offset.z, }, }; vb_data[1] = (struct blit_vb_data) { .pos = { dest_offset.x, dest_offset.y + extent.height, }, .tex_coord = { src_offset.x, src_offset.y + extent.height, src_offset.z, }, }; vb_data[2] = (struct blit_vb_data) { .pos = { dest_offset.x, dest_offset.y, }, .tex_coord = { src_offset.x, src_offset.y, src_offset.z, }, }; anv_state_clflush(vb_state); struct anv_buffer vertex_buffer = { .device = device, .size = vb_size, .bo = &device->dynamic_state_block_pool.bo, .offset = vb_state.offset, }; anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2, (VkBuffer[]) { anv_buffer_to_handle(&vertex_buffer), anv_buffer_to_handle(&vertex_buffer) }, (VkDeviceSize[]) { 0, sizeof(struct anv_vue_header), }); VkDescriptorPool desc_pool; anv_CreateDescriptorPool(anv_device_to_handle(device), &(const VkDescriptorPoolCreateInfo) { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .pNext = NULL, .flags = 0, .maxSets = 1, .poolSizeCount = 1, .pPoolSizes = (VkDescriptorPoolSize[]) { { .type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .descriptorCount = 1 }, } }, &cmd_buffer->pool->alloc, &desc_pool); VkDescriptorSet set; anv_AllocateDescriptorSets(anv_device_to_handle(device), &(VkDescriptorSetAllocateInfo) { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorPool = desc_pool, .descriptorSetCount = 1, .pSetLayouts = &device->meta_state.blit2d.ds_layout }, &set); anv_UpdateDescriptorSets(anv_device_to_handle(device), 1, /* writeCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstSet = set, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = NULL, .imageView = anv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }, 0, NULL); VkFramebuffer fb; anv_CreateFramebuffer(anv_device_to_handle(device), &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { anv_image_view_to_handle(dest_iview), }, .width = dest_iview->extent.width, .height = dest_iview->extent.height, .layers = 1 }, &cmd_buffer->pool->alloc, &fb); ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.blit2d.render_pass, .framebuffer = fb, .renderArea = { .offset = { dest_offset.x, dest_offset.y }, .extent = { extent.width, extent.height }, }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); VkPipeline pipeline = device->meta_state.blit2d.pipeline_2d_src; if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) { anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); } anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) { .x = 0.0f, .y = 0.0f, .width = dest_iview->extent.width, .height = dest_iview->extent.height, .minDepth = 0.0f, .maxDepth = 1.0f, }); anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, device->meta_state.blit2d.pipeline_layout, 0, 1, &set, 0, NULL); ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer)); /* At the point where we emit the draw call, all data from the * descriptor sets, etc. has been used. We are free to delete it. */ anv_DestroyDescriptorPool(anv_device_to_handle(device), desc_pool, &cmd_buffer->pool->alloc); anv_DestroyFramebuffer(anv_device_to_handle(device), fb, &cmd_buffer->pool->alloc); } void anv_meta_end_blit2d(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_saved_state *save) { anv_meta_restore(save, cmd_buffer); } void anv_meta_begin_blit2d(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_saved_state *save) { anv_meta_save(save, cmd_buffer, (1 << VK_DYNAMIC_STATE_VIEWPORT)); } void anv_meta_blit2d(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_blit2d_surf *src, struct anv_meta_blit2d_surf *dst, unsigned num_rects, struct anv_meta_blit2d_rect *rects) { VkDevice vk_device = anv_device_to_handle(cmd_buffer->device); VkImageUsageFlags src_usage = VK_IMAGE_USAGE_SAMPLED_BIT; VkImageUsageFlags dst_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; for (unsigned r = 0; r < num_rects; ++r) { VkImage src_img; VkImage dst_img; struct anv_image_view src_iview; struct anv_image_view dst_iview; create_iview(cmd_buffer, src, &rects[r], src_usage, &src_img, &src_iview); create_iview(cmd_buffer, dst, &rects[r], dst_usage, &dst_img, &dst_iview); /* Perform blit */ meta_emit_blit2d(cmd_buffer, &src_iview, (VkOffset3D){rects[r].src_x, rects[r].src_y, 0}, &dst_iview, (VkOffset3D){rects[r].dst_x, rects[r].dst_y, 0}, (VkExtent3D){rects[r].width, rects[r].height, 1}); anv_DestroyImage(vk_device, src_img, &cmd_buffer->pool->alloc); anv_DestroyImage(vk_device, dst_img, &cmd_buffer->pool->alloc); } } static nir_shader * build_nir_vertex_shader(void) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL); b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs"); nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec4, "a_pos"); pos_in->data.location = VERT_ATTRIB_GENERIC0; nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "gl_Position"); pos_out->data.location = VARYING_SLOT_POS; nir_copy_var(&b, pos_out, pos_in); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec4, "a_tex_pos"); tex_pos_in->data.location = VERT_ATTRIB_GENERIC1; nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "v_tex_pos"); tex_pos_out->data.location = VARYING_SLOT_VAR0; tex_pos_out->data.interpolation = INTERP_QUALIFIER_SMOOTH; nir_copy_var(&b, tex_pos_out, tex_pos_in); return b.shader; } static nir_shader * build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim) { const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *vec3 = glsl_vector_type(GLSL_TYPE_FLOAT, 3); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL); b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_fs"); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec3, "v_tex_pos"); tex_pos_in->data.location = VARYING_SLOT_VAR0; nir_ssa_def *const tex_pos = nir_f2i(&b, nir_load_var(&b, tex_pos_in)); const struct glsl_type *sampler_type = glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D, glsl_get_base_type(vec4)); nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); sampler->data.descriptor_set = 0; sampler->data.binding = 0; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 2); tex->sampler_dim = tex_dim; tex->op = nir_texop_txf; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(tex_pos); tex->src[1].src_type = nir_tex_src_lod; tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0)); tex->dest_type = nir_type_float; /* TODO */ tex->is_array = glsl_sampler_type_is_array(sampler_type); tex->coord_components = tex_pos->num_components; tex->texture = nir_deref_var_create(tex, sampler); tex->sampler = NULL; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_DATA0; nir_store_var(&b, color_out, &tex->dest.ssa, 4); return b.shader; } void anv_device_finish_meta_blit2d_state(struct anv_device *device) { anv_DestroyRenderPass(anv_device_to_handle(device), device->meta_state.blit2d.render_pass, &device->meta_state.alloc); anv_DestroyPipeline(anv_device_to_handle(device), device->meta_state.blit2d.pipeline_2d_src, &device->meta_state.alloc); anv_DestroyPipelineLayout(anv_device_to_handle(device), device->meta_state.blit2d.pipeline_layout, &device->meta_state.alloc); anv_DestroyDescriptorSetLayout(anv_device_to_handle(device), device->meta_state.blit2d.ds_layout, &device->meta_state.alloc); } VkResult anv_device_init_meta_blit2d_state(struct anv_device *device) { VkResult result; result = anv_CreateRenderPass(anv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */ .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_GENERAL, .finalLayout = VK_IMAGE_LAYOUT_GENERAL, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 1, .pColorAttachments = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = VK_ATTACHMENT_UNUSED, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .preserveAttachmentCount = 1, .pPreserveAttachments = (uint32_t[]) { 0 }, }, .dependencyCount = 0, }, &device->meta_state.alloc, &device->meta_state.blit2d.render_pass); if (result != VK_SUCCESS) goto fail; /* We don't use a vertex shader for blitting, but instead build and pass * the VUEs directly to the rasterization backend. However, we do need * to provide GLSL source for the vertex shader so that the compiler * does not dead-code our inputs. */ struct anv_shader_module vs = { .nir = build_nir_vertex_shader(), }; struct anv_shader_module fs_2d = { .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D), }; VkPipelineVertexInputStateCreateInfo vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 2, .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) { { .binding = 0, .stride = 0, .inputRate = VK_VERTEX_INPUT_RATE_INSTANCE }, { .binding = 1, .stride = 5 * sizeof(float), .inputRate = VK_VERTEX_INPUT_RATE_VERTEX }, }, .vertexAttributeDescriptionCount = 3, .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) { { /* VUE Header */ .location = 0, .binding = 0, .format = VK_FORMAT_R32G32B32A32_UINT, .offset = 0 }, { /* Position */ .location = 1, .binding = 1, .format = VK_FORMAT_R32G32_SFLOAT, .offset = 0 }, { /* Texture Coordinate */ .location = 2, .binding = 1, .format = VK_FORMAT_R32G32B32_SFLOAT, .offset = 8 } } }; VkDescriptorSetLayoutCreateInfo ds_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL }, } }; result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device), &ds_layout_info, &device->meta_state.alloc, &device->meta_state.blit2d.ds_layout); if (result != VK_SUCCESS) goto fail_render_pass; result = anv_CreatePipelineLayout(anv_device_to_handle(device), &(VkPipelineLayoutCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.blit2d.ds_layout, }, &device->meta_state.alloc, &device->meta_state.blit2d.pipeline_layout); if (result != VK_SUCCESS) goto fail_descriptor_set_layout; VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = anv_shader_module_to_handle(&vs), .pName = "main", .pSpecializationInfo = NULL }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */ .pName = "main", .pSpecializationInfo = NULL }, }; const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = &vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]) { UINT32_MAX }, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState []) { { .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT }, } }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 9, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }, }, .flags = 0, .layout = device->meta_state.blit2d.pipeline_layout, .renderPass = device->meta_state.blit2d.render_pass, .subpass = 0, }; const struct anv_graphics_pipeline_create_info anv_pipeline_info = { .color_attachment_count = -1, .use_repclear = false, .disable_viewport = true, .disable_scissor = true, .disable_vs = true, .use_rectlist = true }; pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d); result = anv_graphics_pipeline_create(anv_device_to_handle(device), VK_NULL_HANDLE, &vk_pipeline_info, &anv_pipeline_info, &device->meta_state.alloc, &device->meta_state.blit2d.pipeline_2d_src); if (result != VK_SUCCESS) goto fail_pipeline_layout; ralloc_free(vs.nir); ralloc_free(fs_2d.nir); return VK_SUCCESS; fail_pipeline_layout: anv_DestroyPipelineLayout(anv_device_to_handle(device), device->meta_state.blit2d.pipeline_layout, &device->meta_state.alloc); fail_descriptor_set_layout: anv_DestroyDescriptorSetLayout(anv_device_to_handle(device), device->meta_state.blit2d.ds_layout, &device->meta_state.alloc); fail_render_pass: anv_DestroyRenderPass(anv_device_to_handle(device), device->meta_state.blit2d.render_pass, &device->meta_state.alloc); ralloc_free(vs.nir); ralloc_free(fs_2d.nir); fail: return result; }