/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "anv_meta.h" static VkFormat vk_format_for_size(int bs) { /* The choice of UNORM and UINT formats is very intentional here. Most of * the time, we want to use a UINT format to avoid any rounding error in * the blit. For stencil blits, R8_UINT is required by the hardware. * (It's the only format allowed in conjunction with W-tiling.) Also we * intentionally use the 4-channel formats whenever we can. This is so * that, when we do a RGB <-> RGBX copy, the two formats will line up even * though one of them is 3/4 the size of the other. The choice of UNORM * vs. UINT is also very intentional because Haswell doesn't handle 8 or * 16-bit RGB UINT formats at all so we have to use UNORM there. * Fortunately, the only time we should ever use two different formats in * the table below is for RGB -> RGBA blits and so we will never have any * UNORM/UINT mismatch. */ switch (bs) { case 1: return VK_FORMAT_R8_UINT; case 2: return VK_FORMAT_R8G8_UINT; case 3: return VK_FORMAT_R8G8B8_UNORM; case 4: return VK_FORMAT_R8G8B8A8_UNORM; case 6: return VK_FORMAT_R16G16B16_UNORM; case 8: return VK_FORMAT_R16G16B16A16_UNORM; case 12: return VK_FORMAT_R32G32B32_UINT; case 16: return VK_FORMAT_R32G32B32A32_UINT; default: unreachable("Invalid format block size"); } } void anv_meta_end_blit2d(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_saved_state *save) { anv_meta_restore(save, cmd_buffer); } void anv_meta_begin_blit2d(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_saved_state *save) { anv_meta_save(save, cmd_buffer, (1 << VK_DYNAMIC_STATE_VIEWPORT)); } void anv_meta_blit2d(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_blit2d_surf *src, struct anv_meta_blit2d_surf *dst, unsigned num_rects, struct anv_meta_blit2d_rect *rects) { VkDevice vk_device = anv_device_to_handle(cmd_buffer->device); VkFormat src_format = vk_format_for_size(src->bs); VkFormat dst_format = vk_format_for_size(dst->bs); VkImageUsageFlags src_usage = VK_IMAGE_USAGE_SAMPLED_BIT; VkImageUsageFlags dst_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; for (unsigned r = 0; r < num_rects; ++r) { /* Create VkImages */ VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = 0, /* TEMPLATE */ .extent = { .width = 0, /* TEMPLATE */ .height = 0, /* TEMPLATE */ .depth = 1, }, .mipLevels = 1, .arrayLayers = 1, .samples = 1, .tiling = 0, /* TEMPLATE */ .usage = 0, /* TEMPLATE */ }; struct anv_image_create_info anv_image_info = { .vk_info = &image_info, .isl_tiling_flags = 0, /* TEMPLATE */ }; /* The image height is the rect height + src/dst y-offset from the * tile-aligned base address. */ struct isl_tile_info tile_info; anv_image_info.isl_tiling_flags = 1 << src->tiling; image_info.tiling = anv_image_info.isl_tiling_flags == ISL_TILING_LINEAR_BIT ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL; image_info.usage = src_usage; image_info.format = src_format, isl_tiling_get_info(&cmd_buffer->device->isl_dev, src->tiling, src->bs, &tile_info); image_info.extent.height = rects[r].height + rects[r].src_y % tile_info.height; image_info.extent.width = src->pitch / src->bs; VkImage src_image; anv_image_create(vk_device, &anv_image_info, &cmd_buffer->pool->alloc, &src_image); anv_image_info.isl_tiling_flags = 1 << dst->tiling; image_info.tiling = anv_image_info.isl_tiling_flags == ISL_TILING_LINEAR_BIT ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL; image_info.usage = dst_usage; image_info.format = dst_format, isl_tiling_get_info(&cmd_buffer->device->isl_dev, dst->tiling, dst->bs, &tile_info); image_info.extent.height = rects[r].height + rects[r].dst_y % tile_info.height; image_info.extent.width = dst->pitch / dst->bs; VkImage dst_image; anv_image_create(vk_device, &anv_image_info, &cmd_buffer->pool->alloc, &dst_image); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ anv_image_from_handle(src_image)->bo = src->bo; anv_image_from_handle(src_image)->offset = src->base_offset; anv_image_from_handle(dst_image)->bo = dst->bo; anv_image_from_handle(dst_image)->offset = dst->base_offset; /* Create VkImageViews */ VkImageViewCreateInfo iview_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = 0, /* TEMPLATE */ .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = 0, /* TEMPLATE */ .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 }, }; uint32_t img_o = 0; iview_info.image = src_image; iview_info.format = src_format; VkOffset3D src_offset_el = {0}; isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev, &anv_image_from_handle(src_image)-> color_surface.isl, rects[r].src_x, rects[r].src_y, &img_o, (uint32_t*)&src_offset_el.x, (uint32_t*)&src_offset_el.y); struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &iview_info, cmd_buffer, img_o, src_usage); iview_info.image = dst_image; iview_info.format = dst_format; VkOffset3D dst_offset_el = {0}; isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev, &anv_image_from_handle(dst_image)-> color_surface.isl, rects[r].dst_x, rects[r].dst_y, &img_o, (uint32_t*)&dst_offset_el.x, (uint32_t*)&dst_offset_el.y); struct anv_image_view dst_iview; anv_image_view_init(&dst_iview, cmd_buffer->device, &iview_info, cmd_buffer, img_o, dst_usage); /* Perform blit */ anv_meta_emit_blit(cmd_buffer, anv_image_from_handle(src_image), &src_iview, src_offset_el, (VkExtent3D){rects[r].width, rects[r].height, 1}, anv_image_from_handle(dst_image), &dst_iview, dst_offset_el, (VkExtent3D){rects[r].width, rects[r].height, 1}, VK_FILTER_NEAREST); anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc); anv_DestroyImage(vk_device, dst_image, &cmd_buffer->pool->alloc); } }