/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "anv_meta.h" #include "nir/nir_builder.h" struct blit_region { VkOffset3D src_offset; VkExtent3D src_extent; VkOffset3D dest_offset; VkExtent3D dest_extent; }; static nir_shader * build_nir_vertex_shader(void) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL); b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs"); nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec4, "a_pos"); pos_in->data.location = VERT_ATTRIB_GENERIC0; nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "gl_Position"); pos_out->data.location = VARYING_SLOT_POS; nir_copy_var(&b, pos_out, pos_in); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec4, "a_tex_pos"); tex_pos_in->data.location = VERT_ATTRIB_GENERIC1; nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "v_tex_pos"); tex_pos_out->data.location = VARYING_SLOT_VAR0; tex_pos_out->data.interpolation = INTERP_QUALIFIER_SMOOTH; nir_copy_var(&b, tex_pos_out, tex_pos_in); return b.shader; } static nir_shader * build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL); b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_fs"); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec4, "v_tex_pos"); tex_pos_in->data.location = VARYING_SLOT_VAR0; /* Swizzle the array index which comes in as Z coordinate into the right * position. */ unsigned swz[] = { 0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2 }; nir_ssa_def *const tex_pos = nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3), false); const struct glsl_type *sampler_type = glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D, glsl_get_base_type(vec4)); nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); sampler->data.descriptor_set = 0; sampler->data.binding = 0; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1); tex->sampler_dim = tex_dim; tex->op = nir_texop_tex; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(tex_pos); tex->dest_type = nir_type_float; /* TODO */ tex->is_array = glsl_sampler_type_is_array(sampler_type); tex->coord_components = tex_pos->num_components; tex->texture = nir_deref_var_create(tex, sampler); tex->sampler = nir_deref_var_create(tex, sampler); nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_DATA0; nir_store_var(&b, color_out, &tex->dest.ssa, 4); return b.shader; } static void meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_saved_state *saved_state) { anv_meta_save(saved_state, cmd_buffer, (1 << VK_DYNAMIC_STATE_VIEWPORT)); } /* Returns the user-provided VkBufferImageCopy::imageOffset in units of * elements rather than texels. One element equals one texel or one block * if Image is uncompressed or compressed, respectively. */ static struct VkOffset3D meta_region_offset_el(const struct anv_image * image, const struct VkOffset3D * offset) { const struct isl_format_layout * isl_layout = image->format->isl_layout; return (VkOffset3D) { .x = offset->x / isl_layout->bw, .y = offset->y / isl_layout->bh, .z = offset->z / isl_layout->bd, }; } /* Returns the user-provided VkBufferImageCopy::imageExtent in units of * elements rather than texels. One element equals one texel or one block * if Image is uncompressed or compressed, respectively. */ static struct VkExtent3D meta_region_extent_el(const VkFormat format, const struct VkExtent3D * extent) { const struct isl_format_layout * isl_layout = anv_format_for_vk_format(format)->isl_layout; return (VkExtent3D) { .width = DIV_ROUND_UP(extent->width , isl_layout->bw), .height = DIV_ROUND_UP(extent->height, isl_layout->bh), .depth = DIV_ROUND_UP(extent->depth , isl_layout->bd), }; } static void meta_emit_blit(struct anv_cmd_buffer *cmd_buffer, struct anv_image *src_image, struct anv_image_view *src_iview, VkOffset3D src_offset, VkExtent3D src_extent, struct anv_image *dest_image, struct anv_image_view *dest_iview, VkOffset3D dest_offset, VkExtent3D dest_extent, VkFilter blit_filter) { struct anv_device *device = cmd_buffer->device; VkDescriptorPool dummy_desc_pool = (VkDescriptorPool)1; struct blit_vb_data { float pos[2]; float tex_coord[3]; } *vb_data; assert(src_image->samples == dest_image->samples); unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data); struct anv_state vb_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16); memset(vb_state.map, 0, sizeof(struct anv_vue_header)); vb_data = vb_state.map + sizeof(struct anv_vue_header); vb_data[0] = (struct blit_vb_data) { .pos = { dest_offset.x + dest_extent.width, dest_offset.y + dest_extent.height, }, .tex_coord = { (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width, (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height, (float)src_offset.z / (float)src_iview->extent.depth, }, }; vb_data[1] = (struct blit_vb_data) { .pos = { dest_offset.x, dest_offset.y + dest_extent.height, }, .tex_coord = { (float)src_offset.x / (float)src_iview->extent.width, (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height, (float)src_offset.z / (float)src_iview->extent.depth, }, }; vb_data[2] = (struct blit_vb_data) { .pos = { dest_offset.x, dest_offset.y, }, .tex_coord = { (float)src_offset.x / (float)src_iview->extent.width, (float)src_offset.y / (float)src_iview->extent.height, (float)src_offset.z / (float)src_iview->extent.depth, }, }; anv_state_clflush(vb_state); struct anv_buffer vertex_buffer = { .device = device, .size = vb_size, .bo = &device->dynamic_state_block_pool.bo, .offset = vb_state.offset, }; anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2, (VkBuffer[]) { anv_buffer_to_handle(&vertex_buffer), anv_buffer_to_handle(&vertex_buffer) }, (VkDeviceSize[]) { 0, sizeof(struct anv_vue_header), }); VkSampler sampler; ANV_CALL(CreateSampler)(anv_device_to_handle(device), &(VkSamplerCreateInfo) { .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, .magFilter = blit_filter, .minFilter = blit_filter, }, &cmd_buffer->pool->alloc, &sampler); VkDescriptorSet set; anv_AllocateDescriptorSets(anv_device_to_handle(device), &(VkDescriptorSetAllocateInfo) { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorPool = dummy_desc_pool, .descriptorSetCount = 1, .pSetLayouts = &device->meta_state.blit.ds_layout }, &set); anv_UpdateDescriptorSets(anv_device_to_handle(device), 1, /* writeCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstSet = set, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = sampler, .imageView = anv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }, 0, NULL); VkFramebuffer fb; anv_CreateFramebuffer(anv_device_to_handle(device), &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { anv_image_view_to_handle(dest_iview), }, .width = dest_iview->extent.width, .height = dest_iview->extent.height, .layers = 1 }, &cmd_buffer->pool->alloc, &fb); ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.blit.render_pass, .framebuffer = fb, .renderArea = { .offset = { dest_offset.x, dest_offset.y }, .extent = { dest_extent.width, dest_extent.height }, }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); VkPipeline pipeline; switch (src_image->type) { case VK_IMAGE_TYPE_1D: pipeline = device->meta_state.blit.pipeline_1d_src; break; case VK_IMAGE_TYPE_2D: pipeline = device->meta_state.blit.pipeline_2d_src; break; case VK_IMAGE_TYPE_3D: pipeline = device->meta_state.blit.pipeline_3d_src; break; default: unreachable(!"bad VkImageType"); } if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) { anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); } anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) { .x = 0.0f, .y = 0.0f, .width = dest_iview->extent.width, .height = dest_iview->extent.height, .minDepth = 0.0f, .maxDepth = 1.0f, }); anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, device->meta_state.blit.pipeline_layout, 0, 1, &set, 0, NULL); ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer)); /* At the point where we emit the draw call, all data from the * descriptor sets, etc. has been used. We are free to delete it. */ anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set)); anv_DestroySampler(anv_device_to_handle(device), sampler, &cmd_buffer->pool->alloc); anv_DestroyFramebuffer(anv_device_to_handle(device), fb, &cmd_buffer->pool->alloc); } static void meta_finish_blit(struct anv_cmd_buffer *cmd_buffer, const struct anv_meta_saved_state *saved_state) { anv_meta_restore(saved_state, cmd_buffer); } static VkFormat vk_format_for_size(int bs) { /* Note: We intentionally use the 4-channel formats whenever we can. * This is so that, when we do a RGB <-> RGBX copy, the two formats will * line up even though one of them is 3/4 the size of the other. */ switch (bs) { case 1: return VK_FORMAT_R8_UINT; case 2: return VK_FORMAT_R8G8_UINT; case 3: return VK_FORMAT_R8G8B8_UINT; case 4: return VK_FORMAT_R8G8B8A8_UINT; case 6: return VK_FORMAT_R16G16B16_UINT; case 8: return VK_FORMAT_R16G16B16A16_UINT; case 12: return VK_FORMAT_R32G32B32_UINT; case 16: return VK_FORMAT_R32G32B32A32_UINT; default: unreachable("Invalid format block size"); } } static void do_buffer_copy(struct anv_cmd_buffer *cmd_buffer, struct anv_bo *src, uint64_t src_offset, struct anv_bo *dest, uint64_t dest_offset, int width, int height, VkFormat copy_format) { VkDevice vk_device = anv_device_to_handle(cmd_buffer->device); VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = copy_format, .extent = { .width = width, .height = height, .depth = 1, }, .mipLevels = 1, .arrayLayers = 1, .samples = 1, .tiling = VK_IMAGE_TILING_LINEAR, .usage = 0, .flags = 0, }; VkImage src_image; image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT; anv_CreateImage(vk_device, &image_info, &cmd_buffer->pool->alloc, &src_image); VkImage dest_image; image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; anv_CreateImage(vk_device, &image_info, &cmd_buffer->pool->alloc, &dest_image); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ anv_image_from_handle(src_image)->bo = src; anv_image_from_handle(src_image)->offset = src_offset; anv_image_from_handle(dest_image)->bo = dest; anv_image_from_handle(dest_image)->offset = dest_offset; struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = src_image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = copy_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 }, }, cmd_buffer, 0); struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = dest_image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = copy_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }, cmd_buffer, 0); meta_emit_blit(cmd_buffer, anv_image_from_handle(src_image), &src_iview, (VkOffset3D) { 0, 0, 0 }, (VkExtent3D) { width, height, 1 }, anv_image_from_handle(dest_image), &dest_iview, (VkOffset3D) { 0, 0, 0 }, (VkExtent3D) { width, height, 1 }, VK_FILTER_NEAREST); anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc); anv_DestroyImage(vk_device, dest_image, &cmd_buffer->pool->alloc); } void anv_CmdCopyBuffer( VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer destBuffer, uint32_t regionCount, const VkBufferCopy* pRegions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer); ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer); struct anv_meta_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset; uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset; uint64_t copy_size = pRegions[r].size; /* First, we compute the biggest format that can be used with the * given offsets and size. */ int bs = 16; int fs = ffs(src_offset) - 1; if (fs != -1) bs = MIN2(bs, 1 << fs); assert(src_offset % bs == 0); fs = ffs(dest_offset) - 1; if (fs != -1) bs = MIN2(bs, 1 << fs); assert(dest_offset % bs == 0); fs = ffs(pRegions[r].size) - 1; if (fs != -1) bs = MIN2(bs, 1 << fs); assert(pRegions[r].size % bs == 0); VkFormat copy_format = vk_format_for_size(bs); /* This is maximum possible width/height our HW can handle */ uint64_t max_surface_dim = 1 << 14; /* First, we make a bunch of max-sized copies */ uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs; while (copy_size >= max_copy_size) { do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, max_surface_dim, max_surface_dim, copy_format); copy_size -= max_copy_size; src_offset += max_copy_size; dest_offset += max_copy_size; } uint64_t height = copy_size / (max_surface_dim * bs); assert(height < max_surface_dim); if (height != 0) { uint64_t rect_copy_size = height * max_surface_dim * bs; do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, max_surface_dim, height, copy_format); copy_size -= rect_copy_size; src_offset += rect_copy_size; dest_offset += rect_copy_size; } if (copy_size != 0) { do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, copy_size / bs, 1, copy_format); } } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdUpdateBuffer( VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const uint32_t* pData) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer); struct anv_meta_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); /* We can't quite grab a full block because the state stream needs a * little data at the top to build its linked list. */ const uint32_t max_update_size = cmd_buffer->device->dynamic_state_block_pool.block_size - 64; assert(max_update_size < (1 << 14) * 4); while (dataSize) { const uint32_t copy_size = MIN2(dataSize, max_update_size); struct anv_state tmp_data = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64); memcpy(tmp_data.map, pData, copy_size); VkFormat format; int bs; if ((copy_size & 15) == 0 && (dstOffset & 15) == 0) { format = VK_FORMAT_R32G32B32A32_UINT; bs = 16; } else if ((copy_size & 7) == 0 && (dstOffset & 7) == 0) { format = VK_FORMAT_R32G32_UINT; bs = 8; } else { assert((copy_size & 3) == 0 && (dstOffset & 3) == 0); format = VK_FORMAT_R32_UINT; bs = 4; } do_buffer_copy(cmd_buffer, &cmd_buffer->device->dynamic_state_block_pool.bo, tmp_data.offset, dst_buffer->bo, dst_buffer->offset + dstOffset, copy_size / bs, 1, format); dataSize -= copy_size; dstOffset += copy_size; pData = (void *)pData + copy_size; } } static VkFormat choose_iview_format(struct anv_image *image, VkImageAspectFlagBits aspect) { assert(__builtin_popcount(aspect) == 1); struct isl_surf *surf = &anv_image_get_surface_for_aspect_mask(image, aspect)->isl; /* vkCmdCopyImage behaves like memcpy. Therefore we choose identical UINT * formats for the source and destination image views. * * From the Vulkan spec (2015-12-30): * * vkCmdCopyImage performs image copies in a similar manner to a host * memcpy. It does not perform general-purpose conversions such as * scaling, resizing, blending, color-space conversion, or format * conversions. Rather, it simply copies raw image data. vkCmdCopyImage * can copy between images with different formats, provided the formats * are compatible as defined below. * * [The spec later defines compatibility as having the same number of * bytes per block]. */ return vk_format_for_size(isl_format_layouts[surf->format].bs); } static VkFormat choose_buffer_format(VkFormat format, VkImageAspectFlagBits aspect) { assert(__builtin_popcount(aspect) == 1); /* vkCmdCopy* commands behave like memcpy. Therefore we choose * compatable UINT formats for the source and destination image views. * * For the buffer, we go back to the original image format and get a * the format as if it were linear. This way, for RGB formats, we get * an RGB format here even if the tiled image is RGBA. XXX: This doesn't * work if the buffer is the destination. */ enum isl_format linear_format = anv_get_isl_format(format, aspect, VK_IMAGE_TILING_LINEAR, NULL); return vk_format_for_size(isl_format_layouts[linear_format].bs); } void anv_CmdCopyImage( VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageCopy* pRegions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_image, src_image, srcImage); ANV_FROM_HANDLE(anv_image, dest_image, destImage); struct anv_meta_saved_state saved_state; /* From the Vulkan 1.0 spec: * * vkCmdCopyImage can be used to copy image data between multisample * images, but both images must have the same number of samples. */ assert(src_image->samples == dest_image->samples); meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { assert(pRegions[r].srcSubresource.aspectMask == pRegions[r].dstSubresource.aspectMask); VkImageAspectFlags aspect = pRegions[r].srcSubresource.aspectMask; VkFormat src_format = choose_iview_format(src_image, aspect); VkFormat dst_format = choose_iview_format(dest_image, aspect); struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = anv_meta_get_view_type(src_image), .format = src_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = pRegions[r].srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer, .layerCount = pRegions[r].dstSubresource.layerCount, }, }, cmd_buffer, 0); const VkOffset3D dest_offset = { .x = pRegions[r].dstOffset.x, .y = pRegions[r].dstOffset.y, .z = 0, }; unsigned num_slices; if (src_image->type == VK_IMAGE_TYPE_3D) { assert(pRegions[r].srcSubresource.layerCount == 1 && pRegions[r].dstSubresource.layerCount == 1); num_slices = pRegions[r].extent.depth; } else { assert(pRegions[r].srcSubresource.layerCount == pRegions[r].dstSubresource.layerCount); assert(pRegions[r].extent.depth == 1); num_slices = pRegions[r].dstSubresource.layerCount; } const uint32_t dest_base_array_slice = anv_meta_get_iview_layer(dest_image, &pRegions[r].dstSubresource, &pRegions[r].dstOffset); for (unsigned slice = 0; slice < num_slices; slice++) { VkOffset3D src_offset = pRegions[r].srcOffset; src_offset.z += slice; struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = destImage, .viewType = anv_meta_get_view_type(dest_image), .format = dst_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = pRegions[r].dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_array_slice + slice, .layerCount = 1 }, }, cmd_buffer, 0); meta_emit_blit(cmd_buffer, src_image, &src_iview, src_offset, pRegions[r].extent, dest_image, &dest_iview, dest_offset, pRegions[r].extent, VK_FILTER_NEAREST); } } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdBlitImage( VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageBlit* pRegions, VkFilter filter) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_image, src_image, srcImage); ANV_FROM_HANDLE(anv_image, dest_image, destImage); struct anv_meta_saved_state saved_state; /* From the Vulkan 1.0 spec: * * vkCmdBlitImage must not be used for multisampled source or * destination images. Use vkCmdResolveImage for this purpose. */ assert(src_image->samples == 1); assert(dest_image->samples == 1); anv_finishme("respect VkFilter"); meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = anv_meta_get_view_type(src_image), .format = src_image->vk_format, .subresourceRange = { .aspectMask = pRegions[r].srcSubresource.aspectMask, .baseMipLevel = pRegions[r].srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer, .layerCount = 1 }, }, cmd_buffer, 0); const VkOffset3D dest_offset = { .x = pRegions[r].dstOffsets[0].x, .y = pRegions[r].dstOffsets[0].y, .z = 0, }; if (pRegions[r].dstOffsets[1].x < pRegions[r].dstOffsets[0].x || pRegions[r].dstOffsets[1].y < pRegions[r].dstOffsets[0].y || pRegions[r].srcOffsets[1].x < pRegions[r].srcOffsets[0].x || pRegions[r].srcOffsets[1].y < pRegions[r].srcOffsets[0].y) anv_finishme("FINISHME: Allow flipping in blits"); const VkExtent3D dest_extent = { .width = pRegions[r].dstOffsets[1].x - pRegions[r].dstOffsets[0].x, .height = pRegions[r].dstOffsets[1].y - pRegions[r].dstOffsets[0].y, }; const VkExtent3D src_extent = { .width = pRegions[r].srcOffsets[1].x - pRegions[r].srcOffsets[0].x, .height = pRegions[r].srcOffsets[1].y - pRegions[r].srcOffsets[0].y, }; const uint32_t dest_array_slice = anv_meta_get_iview_layer(dest_image, &pRegions[r].dstSubresource, &pRegions[r].dstOffsets[0]); if (pRegions[r].srcSubresource.layerCount > 1) anv_finishme("FINISHME: copy multiple array layers"); if (pRegions[r].srcOffsets[0].z + 1 != pRegions[r].srcOffsets[1].z || pRegions[r].dstOffsets[0].z + 1 != pRegions[r].dstOffsets[1].z) anv_finishme("FINISHME: copy multiple depth layers"); struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = destImage, .viewType = anv_meta_get_view_type(dest_image), .format = dest_image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = pRegions[r].dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_array_slice, .layerCount = 1 }, }, cmd_buffer, 0); meta_emit_blit(cmd_buffer, src_image, &src_iview, pRegions[r].srcOffsets[0], src_extent, dest_image, &dest_iview, dest_offset, dest_extent, filter); } meta_finish_blit(cmd_buffer, &saved_state); } static struct anv_image * make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format, VkImageUsageFlags usage, VkImageType image_type, const VkAllocationCallbacks *alloc, const VkBufferImageCopy *copy) { ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer); VkExtent3D extent = copy->imageExtent; if (copy->bufferRowLength) extent.width = copy->bufferRowLength; if (copy->bufferImageHeight) extent.height = copy->bufferImageHeight; extent.depth = 1; extent = meta_region_extent_el(format, &extent); VkImageAspectFlags aspect = copy->imageSubresource.aspectMask; VkFormat buffer_format = choose_buffer_format(format, aspect); VkImage vk_image; VkResult result = anv_CreateImage(vk_device, &(VkImageCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = buffer_format, .extent = extent, .mipLevels = 1, .arrayLayers = 1, .samples = 1, .tiling = VK_IMAGE_TILING_LINEAR, .usage = usage, .flags = 0, }, alloc, &vk_image); assert(result == VK_SUCCESS); ANV_FROM_HANDLE(anv_image, image, vk_image); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ image->bo = buffer->bo; image->offset = buffer->offset + copy->bufferOffset; return image; } void anv_CmdCopyBufferToImage( VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_image, dest_image, destImage); VkDevice vk_device = anv_device_to_handle(cmd_buffer->device); struct anv_meta_saved_state saved_state; /* The Vulkan 1.0 spec says "dstImage must have a sample count equal to * VK_SAMPLE_COUNT_1_BIT." */ assert(dest_image->samples == 1); meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask; VkFormat image_format = choose_iview_format(dest_image, aspect); struct anv_image *src_image = make_image_for_buffer(vk_device, srcBuffer, dest_image->vk_format, VK_IMAGE_USAGE_SAMPLED_BIT, dest_image->type, &cmd_buffer->pool->alloc, &pRegions[r]); const uint32_t dest_base_array_slice = anv_meta_get_iview_layer(dest_image, &pRegions[r].imageSubresource, &pRegions[r].imageOffset); unsigned num_slices_3d = pRegions[r].imageExtent.depth; unsigned num_slices_array = pRegions[r].imageSubresource.layerCount; unsigned slice_3d = 0; unsigned slice_array = 0; while (slice_3d < num_slices_3d && slice_array < num_slices_array) { struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = anv_image_to_handle(src_image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = src_image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }, cmd_buffer, 0); uint32_t img_x = 0; uint32_t img_y = 0; uint32_t img_o = 0; if (isl_format_is_compressed(dest_image->format->isl_format)) isl_surf_get_image_intratile_offset_el(&cmd_buffer->device->isl_dev, &dest_image->color_surface.isl, pRegions[r].imageSubresource.mipLevel, pRegions[r].imageSubresource.baseArrayLayer + slice_array, pRegions[r].imageOffset.z + slice_3d, &img_o, &img_x, &img_y); VkOffset3D dest_offset_el = meta_region_offset_el(dest_image, & pRegions[r].imageOffset); dest_offset_el.x += img_x; dest_offset_el.y += img_y; dest_offset_el.z = 0; struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = anv_image_to_handle(dest_image), .viewType = anv_meta_get_view_type(dest_image), .format = image_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = pRegions[r].imageSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_array_slice + slice_array + slice_3d, .layerCount = 1 }, }, cmd_buffer, img_o); const VkExtent3D img_extent_el = meta_region_extent_el(dest_image->vk_format, &pRegions[r].imageExtent); meta_emit_blit(cmd_buffer, src_image, &src_iview, (VkOffset3D){0, 0, 0}, img_extent_el, dest_image, &dest_iview, dest_offset_el, img_extent_el, VK_FILTER_NEAREST); /* Once we've done the blit, all of the actual information about * the image is embedded in the command buffer so we can just * increment the offset directly in the image effectively * re-binding it to different backing memory. */ src_image->offset += src_image->extent.width * src_image->extent.height * src_image->format->isl_layout->bs; if (dest_image->type == VK_IMAGE_TYPE_3D) slice_3d++; else slice_array++; } anv_DestroyImage(vk_device, anv_image_to_handle(src_image), &cmd_buffer->pool->alloc); } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdCopyImageToBuffer( VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer destBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_image, src_image, srcImage); VkDevice vk_device = anv_device_to_handle(cmd_buffer->device); struct anv_meta_saved_state saved_state; /* The Vulkan 1.0 spec says "srcImage must have a sample count equal to * VK_SAMPLE_COUNT_1_BIT." */ assert(src_image->samples == 1); meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask; VkFormat image_format = choose_iview_format(src_image, aspect); struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = anv_meta_get_view_type(src_image), .format = image_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = pRegions[r].imageSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = pRegions[r].imageSubresource.baseArrayLayer, .layerCount = pRegions[r].imageSubresource.layerCount, }, }, cmd_buffer, 0); struct anv_image *dest_image = make_image_for_buffer(vk_device, destBuffer, src_image->vk_format, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, src_image->type, &cmd_buffer->pool->alloc, &pRegions[r]); unsigned num_slices; if (src_image->type == VK_IMAGE_TYPE_3D) { assert(pRegions[r].imageSubresource.layerCount == 1); num_slices = pRegions[r].imageExtent.depth; } else { assert(pRegions[r].imageExtent.depth == 1); num_slices = pRegions[r].imageSubresource.layerCount; } for (unsigned slice = 0; slice < num_slices; slice++) { VkOffset3D src_offset = pRegions[r].imageOffset; src_offset.z += slice; struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = anv_image_to_handle(dest_image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = dest_image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 }, }, cmd_buffer, 0); meta_emit_blit(cmd_buffer, anv_image_from_handle(srcImage), &src_iview, src_offset, pRegions[r].imageExtent, dest_image, &dest_iview, (VkOffset3D) { 0, 0, 0 }, pRegions[r].imageExtent, VK_FILTER_NEAREST); /* Once we've done the blit, all of the actual information about * the image is embedded in the command buffer so we can just * increment the offset directly in the image effectively * re-binding it to different backing memory. */ dest_image->offset += dest_image->extent.width * dest_image->extent.height * src_image->format->isl_layout->bs; } anv_DestroyImage(vk_device, anv_image_to_handle(dest_image), &cmd_buffer->pool->alloc); } meta_finish_blit(cmd_buffer, &saved_state); } void anv_device_finish_meta_blit_state(struct anv_device *device) { anv_DestroyRenderPass(anv_device_to_handle(device), device->meta_state.blit.render_pass, &device->meta_state.alloc); anv_DestroyPipeline(anv_device_to_handle(device), device->meta_state.blit.pipeline_1d_src, &device->meta_state.alloc); anv_DestroyPipeline(anv_device_to_handle(device), device->meta_state.blit.pipeline_2d_src, &device->meta_state.alloc); anv_DestroyPipeline(anv_device_to_handle(device), device->meta_state.blit.pipeline_3d_src, &device->meta_state.alloc); anv_DestroyPipelineLayout(anv_device_to_handle(device), device->meta_state.blit.pipeline_layout, &device->meta_state.alloc); anv_DestroyDescriptorSetLayout(anv_device_to_handle(device), device->meta_state.blit.ds_layout, &device->meta_state.alloc); } VkResult anv_device_init_meta_blit_state(struct anv_device *device) { VkResult result; result = anv_CreateRenderPass(anv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */ .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_GENERAL, .finalLayout = VK_IMAGE_LAYOUT_GENERAL, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 1, .pColorAttachments = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = VK_ATTACHMENT_UNUSED, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .preserveAttachmentCount = 1, .pPreserveAttachments = (uint32_t[]) { 0 }, }, .dependencyCount = 0, }, &device->meta_state.alloc, &device->meta_state.blit.render_pass); if (result != VK_SUCCESS) goto fail; /* We don't use a vertex shader for blitting, but instead build and pass * the VUEs directly to the rasterization backend. However, we do need * to provide GLSL source for the vertex shader so that the compiler * does not dead-code our inputs. */ struct anv_shader_module vs = { .nir = build_nir_vertex_shader(), }; struct anv_shader_module fs_1d = { .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_1D), }; struct anv_shader_module fs_2d = { .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D), }; struct anv_shader_module fs_3d = { .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D), }; VkPipelineVertexInputStateCreateInfo vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 2, .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) { { .binding = 0, .stride = 0, .inputRate = VK_VERTEX_INPUT_RATE_VERTEX }, { .binding = 1, .stride = 5 * sizeof(float), .inputRate = VK_VERTEX_INPUT_RATE_VERTEX }, }, .vertexAttributeDescriptionCount = 3, .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) { { /* VUE Header */ .location = 0, .binding = 0, .format = VK_FORMAT_R32G32B32A32_UINT, .offset = 0 }, { /* Position */ .location = 1, .binding = 1, .format = VK_FORMAT_R32G32_SFLOAT, .offset = 0 }, { /* Texture Coordinate */ .location = 2, .binding = 1, .format = VK_FORMAT_R32G32B32_SFLOAT, .offset = 8 } } }; VkDescriptorSetLayoutCreateInfo ds_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL }, } }; result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device), &ds_layout_info, &device->meta_state.alloc, &device->meta_state.blit.ds_layout); if (result != VK_SUCCESS) goto fail_render_pass; result = anv_CreatePipelineLayout(anv_device_to_handle(device), &(VkPipelineLayoutCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.blit.ds_layout, }, &device->meta_state.alloc, &device->meta_state.blit.pipeline_layout); if (result != VK_SUCCESS) goto fail_descriptor_set_layout; VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = anv_shader_module_to_handle(&vs), .pName = "main", .pSpecializationInfo = NULL }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */ .pName = "main", .pSpecializationInfo = NULL }, }; const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = &vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]) { UINT32_MAX }, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState []) { { .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT }, } }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 9, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }, }, .flags = 0, .layout = device->meta_state.blit.pipeline_layout, .renderPass = device->meta_state.blit.render_pass, .subpass = 0, }; const struct anv_graphics_pipeline_create_info anv_pipeline_info = { .color_attachment_count = -1, .use_repclear = false, .disable_viewport = true, .disable_scissor = true, .disable_vs = true, .use_rectlist = true }; pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_1d); result = anv_graphics_pipeline_create(anv_device_to_handle(device), VK_NULL_HANDLE, &vk_pipeline_info, &anv_pipeline_info, &device->meta_state.alloc, &device->meta_state.blit.pipeline_1d_src); if (result != VK_SUCCESS) goto fail_pipeline_layout; pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d); result = anv_graphics_pipeline_create(anv_device_to_handle(device), VK_NULL_HANDLE, &vk_pipeline_info, &anv_pipeline_info, &device->meta_state.alloc, &device->meta_state.blit.pipeline_2d_src); if (result != VK_SUCCESS) goto fail_pipeline_1d; pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d); result = anv_graphics_pipeline_create(anv_device_to_handle(device), VK_NULL_HANDLE, &vk_pipeline_info, &anv_pipeline_info, &device->meta_state.alloc, &device->meta_state.blit.pipeline_3d_src); if (result != VK_SUCCESS) goto fail_pipeline_2d; ralloc_free(vs.nir); ralloc_free(fs_1d.nir); ralloc_free(fs_2d.nir); ralloc_free(fs_3d.nir); return VK_SUCCESS; fail_pipeline_2d: anv_DestroyPipeline(anv_device_to_handle(device), device->meta_state.blit.pipeline_2d_src, &device->meta_state.alloc); fail_pipeline_1d: anv_DestroyPipeline(anv_device_to_handle(device), device->meta_state.blit.pipeline_1d_src, &device->meta_state.alloc); fail_pipeline_layout: anv_DestroyPipelineLayout(anv_device_to_handle(device), device->meta_state.blit.pipeline_layout, &device->meta_state.alloc); fail_descriptor_set_layout: anv_DestroyDescriptorSetLayout(anv_device_to_handle(device), device->meta_state.blit.ds_layout, &device->meta_state.alloc); fail_render_pass: anv_DestroyRenderPass(anv_device_to_handle(device), device->meta_state.blit.render_pass, &device->meta_state.alloc); ralloc_free(vs.nir); ralloc_free(fs_1d.nir); ralloc_free(fs_2d.nir); ralloc_free(fs_3d.nir); fail: return result; }