/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "anv_private.h" #include "util/debug.h" #include "vk_util.h" #include "vk_format_info.h" static isl_surf_usage_flags_t choose_isl_surf_usage(VkImageCreateFlags vk_create_flags, VkImageUsageFlags vk_usage, isl_surf_usage_flags_t isl_extra_usage, VkImageAspectFlagBits aspect) { isl_surf_usage_flags_t isl_usage = isl_extra_usage; if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT) isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) isl_usage |= ISL_SURF_USAGE_CUBE_BIT; /* Even if we're only using it for transfer operations, clears to depth and * stencil images happen as depth and stencil so they need the right ISL * usage bits or else things will fall apart. */ switch (aspect) { case VK_IMAGE_ASPECT_DEPTH_BIT: isl_usage |= ISL_SURF_USAGE_DEPTH_BIT; break; case VK_IMAGE_ASPECT_STENCIL_BIT: isl_usage |= ISL_SURF_USAGE_STENCIL_BIT; break; case VK_IMAGE_ASPECT_COLOR_BIT: case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR: case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR: case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR: break; default: unreachable("bad VkImageAspect"); } if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) { /* blorp implements transfers by sampling from the source image. */ isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; } if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT && aspect == VK_IMAGE_ASPECT_COLOR_BIT) { /* blorp implements transfers by rendering into the destination image. * Only request this with color images, as we deal with depth/stencil * formats differently. */ isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; } return isl_usage; } static isl_tiling_flags_t choose_isl_tiling_flags(const struct anv_image_create_info *anv_info, const struct isl_drm_modifier_info *isl_mod_info) { const VkImageCreateInfo *base_info = anv_info->vk_info; isl_tiling_flags_t flags = 0; switch (base_info->tiling) { default: unreachable("bad VkImageTiling"); case VK_IMAGE_TILING_OPTIMAL: flags = ISL_TILING_ANY_MASK; break; case VK_IMAGE_TILING_LINEAR: flags = ISL_TILING_LINEAR_BIT; break; } if (anv_info->isl_tiling_flags) flags &= anv_info->isl_tiling_flags; if (isl_mod_info) flags &= 1 << isl_mod_info->tiling; assert(flags); return flags; } static struct anv_surface * get_surface(struct anv_image *image, VkImageAspectFlagBits aspect) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); return &image->planes[plane].surface; } static void add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane) { assert(surf->isl.size > 0); /* isl surface must be initialized */ if (image->disjoint) { surf->offset = align_u32(image->planes[plane].size, surf->isl.alignment); /* Plane offset is always 0 when it's disjoint. */ } else { surf->offset = align_u32(image->size, surf->isl.alignment); /* Determine plane's offset only once when the first surface is added. */ if (image->planes[plane].size == 0) image->planes[plane].offset = image->size; } image->size = surf->offset + surf->isl.size; image->planes[plane].size = (surf->offset + surf->isl.size) - image->planes[plane].offset; image->alignment = MAX2(image->alignment, surf->isl.alignment); image->planes[plane].alignment = MAX2(image->planes[plane].alignment, surf->isl.alignment); } static bool all_formats_ccs_e_compatible(const struct gen_device_info *devinfo, const struct VkImageCreateInfo *vk_info) { enum isl_format format = anv_get_isl_format(devinfo, vk_info->format, VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling); if (!isl_format_supports_ccs_e(devinfo, format)) return false; if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) return true; const VkImageFormatListCreateInfoKHR *fmt_list = vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR); if (!fmt_list || fmt_list->viewFormatCount == 0) return false; for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { enum isl_format view_format = anv_get_isl_format(devinfo, fmt_list->pViewFormats[i], VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling); if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format)) return false; } return true; } /** * For color images that have an auxiliary surface, request allocation for an * additional buffer that mainly stores fast-clear values. Use of this buffer * allows us to access the image's subresources while being aware of their * fast-clear values in non-trivial cases (e.g., outside of a render pass in * which a fast clear has occurred). * * In order to avoid having multiple clear colors for a single plane of an * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on * the first slice (level 0, layer 0). At the time of our testing (Jan 17, * 2018), there were no known applications which would benefit from fast- * clearing more than just the first slice. * * The fast clear portion of the image is laid out in the following order: * * * 1 or 4 dwords (depending on hardware generation) for the clear color * * 1 dword for the anv_fast_clear_type of the clear color * * On gen9+, 1 dword per level and layer of the image (3D levels count * multiple layers) in level-major order for compression state. * * For the purpose of discoverability, the algorithm used to manage * compression and fast-clears is described here: * * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout, * all of the values in the fast clear portion of the image are initialized * to default values. * * * On fast-clear, the clear value is written into surface state and also * into the buffer and the fast clear type is set appropriately. Both * setting the fast-clear value in the buffer and setting the fast-clear * type happen from the GPU using MI commands. * * * Whenever a render or blorp operation is performed with CCS_E, we call * genX(cmd_buffer_mark_image_written) to set the compression state to * true (which is represented by UINT32_MAX). * * * On pipeline barrier transitions, the worst-case transition is computed * from the image layouts. The command streamer inspects the fast clear * type and compression state dwords and constructs a predicate. The * worst-case resolve is performed with the given predicate and the fast * clear and compression state is set accordingly. * * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for * details on exactly what is allowed in what layouts. * * On gen7-9, we do not have a concept of indirect clear colors in hardware. * In order to deal with this, we have to do some clear color management. * * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear * value from the buffer into the surface state with MI commands. * * * For any blorp operations, we pass the address to the clear value into * blorp and it knows to copy the clear color. */ static void add_aux_state_tracking_buffer(struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t plane, const struct anv_device *device) { assert(image && device); assert(image->planes[plane].aux_surface.isl.size > 0 && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); /* Compressed images must be tiled and therefore everything should be 4K * aligned. The CCS has the same alignment requirements. This is good * because we need at least dword-alignment for MI_LOAD/STORE operations. */ assert(image->alignment % 4 == 0); assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0); /* This buffer should be at the very end of the plane. */ if (image->disjoint) { assert(image->planes[plane].size == (image->planes[plane].offset + image->planes[plane].size)); } else { assert(image->size == (image->planes[plane].offset + image->planes[plane].size)); } /* Clear color and fast clear type */ unsigned state_size = device->isl_dev.ss.clear_value_size + 4; /* We only need to track compression on CCS_E surfaces. */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { if (image->type == VK_IMAGE_TYPE_3D) { for (uint32_t l = 0; l < image->levels; l++) state_size += anv_minify(image->extent.depth, l) * 4; } else { state_size += image->levels * image->array_size * 4; } } image->planes[plane].fast_clear_state_offset = image->planes[plane].offset + image->planes[plane].size; image->planes[plane].size += state_size; image->size += state_size; } /** * Initialize the anv_image::*_surface selected by \a aspect. Then update the * image's memory requirements (that is, the image's size and alignment). */ static VkResult make_surface(const struct anv_device *dev, struct anv_image *image, const struct anv_image_create_info *anv_info, isl_tiling_flags_t tiling_flags, VkImageAspectFlagBits aspect) { const VkImageCreateInfo *vk_info = anv_info->vk_info; bool ok UNUSED; static const enum isl_surf_dim vk_to_isl_surf_dim[] = { [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D, [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D, [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D, }; image->extent = anv_sanitize_image_extent(vk_info->imageType, vk_info->extent); const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect); const struct anv_format_plane plane_format = anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling); struct anv_surface *anv_surf = &image->planes[plane].surface; const isl_surf_usage_flags_t usage = choose_isl_surf_usage(vk_info->flags, image->usage, anv_info->isl_extra_usage_flags, aspect); /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to * fall back to linear on Broadwell and earlier because we aren't * guaranteed that we can handle offsets correctly. On Sky Lake, the * horizontal and vertical alignments are sufficiently high that we can * just use RENDER_SURFACE_STATE::X/Y Offset. */ bool needs_shadow = false; if (dev->info.gen <= 8 && (vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR) && vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) { assert(isl_format_is_compressed(plane_format.isl_format)); tiling_flags = ISL_TILING_LINEAR_BIT; needs_shadow = true; } ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl, .dim = vk_to_isl_surf_dim[vk_info->imageType], .format = plane_format.isl_format, .width = image->extent.width / plane_format.denominator_scales[0], .height = image->extent.height / plane_format.denominator_scales[1], .depth = image->extent.depth, .levels = vk_info->mipLevels, .array_len = vk_info->arrayLayers, .samples = vk_info->samples, .min_alignment = 0, .row_pitch = anv_info->stride, .usage = usage, .tiling_flags = tiling_flags); if (!ok) return VK_ERROR_OUT_OF_DEVICE_MEMORY; image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE; add_surface(image, anv_surf, plane); /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to * create an identical tiled shadow surface for use while texturing so we * don't get garbage performance. */ if (needs_shadow) { assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); assert(tiling_flags == ISL_TILING_LINEAR_BIT); ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl, .dim = vk_to_isl_surf_dim[vk_info->imageType], .format = plane_format.isl_format, .width = image->extent.width, .height = image->extent.height, .depth = image->extent.depth, .levels = vk_info->mipLevels, .array_len = vk_info->arrayLayers, .samples = vk_info->samples, .min_alignment = 0, .row_pitch = anv_info->stride, .usage = usage, .tiling_flags = ISL_TILING_ANY_MASK); /* isl_surf_init() will fail only if provided invalid input. Invalid input * is illegal in Vulkan. */ assert(ok); add_surface(image, &image->planes[plane].shadow_surface, plane); } /* Add a HiZ surface to a depth buffer that will be used for rendering. */ if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { /* We don't advertise that depth buffers could be used as storage * images. */ assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT)); /* Allow the user to control HiZ enabling. Disable by default on gen7 * because resolves are not currently implemented pre-BDW. */ if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { /* It will never be used as an attachment, HiZ is pointless. */ } else if (dev->info.gen == 7) { anv_perf_warn(dev->instance, image, "Implement gen7 HiZ"); } else if (vk_info->mipLevels > 1) { anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ"); } else if (vk_info->arrayLayers > 1) { anv_perf_warn(dev->instance, image, "Implement multi-arrayLayer HiZ clears and resolves"); } else if (dev->info.gen == 8 && vk_info->samples > 1) { anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ"); } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) { assert(image->planes[plane].aux_surface.isl.size == 0); ok = isl_surf_get_hiz_surf(&dev->isl_dev, &image->planes[plane].surface.isl, &image->planes[plane].aux_surface.isl); assert(ok); add_surface(image, &image->planes[plane].aux_surface, plane); image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ; } } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) { /* TODO: Disallow compression with : * * 1) non multiplanar images (We appear to hit a sampler bug with * CCS & R16G16 format. Putting the clear state a page/4096bytes * further fixes the issue). * * 2) alias images, because they might be aliases of images * described in 1) * * 3) compression disabled by debug */ const bool allow_compression = image->n_planes == 1 && (vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT_KHR) == 0 && likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0); if (allow_compression) { assert(image->planes[plane].aux_surface.isl.size == 0); ok = isl_surf_get_ccs_surf(&dev->isl_dev, &image->planes[plane].surface.isl, &image->planes[plane].aux_surface.isl, 0); if (ok) { /* Disable CCS when it is not useful (i.e., when you can't render * to the image with CCS enabled). */ if (!isl_format_supports_rendering(&dev->info, plane_format.isl_format)) { /* While it may be technically possible to enable CCS for this * image, we currently don't have things hooked up to get it * working. */ anv_perf_warn(dev->instance, image, "This image format doesn't support rendering. " "Not allocating an CCS buffer."); image->planes[plane].aux_surface.isl.size = 0; return VK_SUCCESS; } add_surface(image, &image->planes[plane].aux_surface, plane); add_aux_state_tracking_buffer(image, aspect, plane, dev); /* For images created without MUTABLE_FORMAT_BIT set, we know that * they will always be used with the original format. In * particular, they will always be used with a format that * supports color compression. If it's never used as a storage * image, then it will only be used through the sampler or the as * a render target. This means that it's safe to just leave * compression on at all times for these formats. */ if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) && all_formats_ccs_e_compatible(&dev->info, vk_info)) { image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E; } } } } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) { assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT)); assert(image->planes[plane].aux_surface.isl.size == 0); ok = isl_surf_get_mcs_surf(&dev->isl_dev, &image->planes[plane].surface.isl, &image->planes[plane].aux_surface.isl); if (ok) { add_surface(image, &image->planes[plane].aux_surface, plane); add_aux_state_tracking_buffer(image, aspect, plane, dev); image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS; } } assert((image->planes[plane].offset + image->planes[plane].size) == image->size); /* Upper bound of the last surface should be smaller than the plane's * size. */ assert((MAX2(image->planes[plane].surface.offset, image->planes[plane].aux_surface.offset) + (image->planes[plane].aux_surface.isl.size > 0 ? image->planes[plane].aux_surface.isl.size : image->planes[plane].surface.isl.size)) <= (image->planes[plane].offset + image->planes[plane].size)); if (image->planes[plane].aux_surface.isl.size) { /* assert(image->planes[plane].fast_clear_state_offset == */ /* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size)); */ assert(image->planes[plane].fast_clear_state_offset < (image->planes[plane].offset + image->planes[plane].size)); } return VK_SUCCESS; } static const struct isl_drm_modifier_info * get_legacy_scanout_drm_format_mod(VkImageTiling tiling) { switch (tiling) { case VK_IMAGE_TILING_OPTIMAL: return isl_drm_modifier_get_info(I915_FORMAT_MOD_X_TILED); case VK_IMAGE_TILING_LINEAR: return isl_drm_modifier_get_info(DRM_FORMAT_MOD_LINEAR); default: unreachable("bad VkImageTiling"); } } VkResult anv_image_create(VkDevice _device, const struct anv_image_create_info *create_info, const VkAllocationCallbacks* alloc, VkImage *pImage) { ANV_FROM_HANDLE(anv_device, device, _device); const VkImageCreateInfo *pCreateInfo = create_info->vk_info; const struct isl_drm_modifier_info *isl_mod_info = NULL; struct anv_image *image = NULL; VkResult r; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO); const struct wsi_image_create_info *wsi_info = vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA); if (wsi_info && wsi_info->scanout) isl_mod_info = get_legacy_scanout_drm_format_mod(pCreateInfo->tiling); anv_assert(pCreateInfo->mipLevels > 0); anv_assert(pCreateInfo->arrayLayers > 0); anv_assert(pCreateInfo->samples > 0); anv_assert(pCreateInfo->extent.width > 0); anv_assert(pCreateInfo->extent.height > 0); anv_assert(pCreateInfo->extent.depth > 0); image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!image) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); image->type = pCreateInfo->imageType; image->extent = pCreateInfo->extent; image->vk_format = pCreateInfo->format; image->format = anv_get_format(pCreateInfo->format); image->aspects = vk_format_aspects(image->vk_format); image->levels = pCreateInfo->mipLevels; image->array_size = pCreateInfo->arrayLayers; image->samples = pCreateInfo->samples; image->usage = pCreateInfo->usage; image->tiling = pCreateInfo->tiling; image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_KHR; image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier : DRM_FORMAT_MOD_INVALID; const struct anv_format *format = anv_get_format(image->vk_format); assert(format != NULL); const isl_tiling_flags_t isl_tiling_flags = choose_isl_tiling_flags(create_info, isl_mod_info); image->n_planes = format->n_planes; uint32_t b; for_each_bit(b, image->aspects) { r = make_surface(device, image, create_info, isl_tiling_flags, (1 << b)); if (r != VK_SUCCESS) goto fail; } *pImage = anv_image_to_handle(image); return VK_SUCCESS; fail: if (image) vk_free2(&device->alloc, alloc, image); return r; } VkResult anv_CreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { #ifdef ANDROID const VkNativeBufferANDROID *gralloc_info = vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID); if (gralloc_info) return anv_image_from_gralloc(device, pCreateInfo, gralloc_info, pAllocator, pImage); #endif return anv_image_create(device, &(struct anv_image_create_info) { .vk_info = pCreateInfo, }, pAllocator, pImage); } void anv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, _image); if (!image) return; for (uint32_t p = 0; p < image->n_planes; ++p) { if (image->planes[p].bo_is_owned) { assert(image->planes[p].bo != NULL); anv_bo_cache_release(device, &device->bo_cache, image->planes[p].bo); } } vk_free2(&device->alloc, pAllocator, image); } static void anv_image_bind_memory_plane(struct anv_device *device, struct anv_image *image, uint32_t plane, struct anv_device_memory *memory, uint32_t memory_offset) { assert(!image->planes[plane].bo_is_owned); if (!memory) { image->planes[plane].bo = NULL; image->planes[plane].bo_offset = 0; return; } image->planes[plane].bo = memory->bo; image->planes[plane].bo_offset = memory_offset; } VkResult anv_BindImageMemory( VkDevice _device, VkImage _image, VkDeviceMemory _memory, VkDeviceSize memoryOffset) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_device_memory, mem, _memory); ANV_FROM_HANDLE(anv_image, image, _image); uint32_t aspect_bit; anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit); anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset); } return VK_SUCCESS; } VkResult anv_BindImageMemory2KHR( VkDevice _device, uint32_t bindInfoCount, const VkBindImageMemoryInfoKHR* pBindInfos) { ANV_FROM_HANDLE(anv_device, device, _device); for (uint32_t i = 0; i < bindInfoCount; i++) { const VkBindImageMemoryInfoKHR *bind_info = &pBindInfos[i]; ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory); ANV_FROM_HANDLE(anv_image, image, bind_info->image); VkImageAspectFlags aspects = image->aspects; vk_foreach_struct_const(s, bind_info->pNext) { switch (s->sType) { case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR: { const VkBindImagePlaneMemoryInfoKHR *plane_info = (const VkBindImagePlaneMemoryInfoKHR *) s; aspects = plane_info->planeAspect; break; } default: anv_debug_ignored_stype(s->sType); break; } } uint32_t aspect_bit; anv_foreach_image_aspect_bit(aspect_bit, image, aspects) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit); anv_image_bind_memory_plane(device, image, plane, mem, bind_info->memoryOffset); } } return VK_SUCCESS; } void anv_GetImageSubresourceLayout( VkDevice device, VkImage _image, const VkImageSubresource* subresource, VkSubresourceLayout* layout) { ANV_FROM_HANDLE(anv_image, image, _image); const struct anv_surface *surface = get_surface(image, subresource->aspectMask); assert(__builtin_popcount(subresource->aspectMask) == 1); /* If we are on a non-zero mip level or array slice, we need to * calculate a real offset. */ anv_assert(subresource->mipLevel == 0); anv_assert(subresource->arrayLayer == 0); layout->offset = surface->offset; layout->rowPitch = surface->isl.row_pitch; layout->depthPitch = isl_surf_get_array_pitch(&surface->isl); layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl); layout->size = surface->isl.size; } /** * This function determines the optimal buffer to use for a given * VkImageLayout and other pieces of information needed to make that * determination. This does not determine the optimal buffer to use * during a resolve operation. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param layout The current layout of the image aspect(s). * * @return The primary buffer that should be used for the given layout. */ enum isl_aux_usage anv_layout_to_aux_usage(const struct gen_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageLayout layout) { /* Validate the inputs. */ /* The devinfo is needed as the optimal buffer varies across generations. */ assert(devinfo != NULL); /* The layout of a NULL image is not properly defined. */ assert(image != NULL); /* The aspect must be exactly one of the image aspects. */ assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects)); /* Determine the optimal buffer. */ uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); /* If there is no auxiliary surface allocated, we must use the one and only * main buffer. */ if (image->planes[plane].aux_surface.isl.size == 0) return ISL_AUX_USAGE_NONE; /* All images that use an auxiliary surface are required to be tiled. */ assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); /* Stencil has no aux */ assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT); switch (layout) { /* Invalid Layouts */ case VK_IMAGE_LAYOUT_RANGE_SIZE: case VK_IMAGE_LAYOUT_MAX_ENUM: unreachable("Invalid image layout."); /* Undefined layouts * * The pre-initialized layout is equivalent to the undefined layout for * optimally-tiled images. We can only do color compression (CCS or HiZ) * on tiled images. */ case VK_IMAGE_LAYOUT_UNDEFINED: case VK_IMAGE_LAYOUT_PREINITIALIZED: return ISL_AUX_USAGE_NONE; /* Transfer Layouts */ case VK_IMAGE_LAYOUT_GENERAL: case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { /* This buffer could be a depth buffer used in a transfer operation. * BLORP currently doesn't use HiZ for transfer operations so we must * use the main buffer for this layout. TODO: Enable HiZ in BLORP. */ assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ); return ISL_AUX_USAGE_NONE; } else { assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); return image->planes[plane].aux_usage; } /* Sampling Layouts */ case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR: assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0); /* Fall-through */ case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { if (anv_can_sample_with_hiz(devinfo, image)) return ISL_AUX_USAGE_HIZ; else return ISL_AUX_USAGE_NONE; } else { return image->planes[plane].aux_usage; } case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); /* On SKL+, the render buffer can be decompressed by the presentation * engine. Support for this feature has not yet landed in the wider * ecosystem. TODO: Update this code when support lands. * * From the BDW PRM, Vol 7, Render Target Resolve: * * If the MCS is enabled on a non-multisampled render target, the * render target must be resolved before being used for other * purposes (display, texture, CPU lock) The clear value from * SURFACE_STATE is written into pixels in the render target * indicated as clear in the MCS. * * Pre-SKL, the render buffer must be resolved before being used for * presentation. We can infer that the auxiliary buffer is not used. */ return ISL_AUX_USAGE_NONE; /* Rendering Layouts */ case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) { assert(image->samples == 1); return ISL_AUX_USAGE_CCS_D; } else { assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_D); return image->planes[plane].aux_usage; } case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR: assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT); return ISL_AUX_USAGE_HIZ; case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR: unreachable("VK_KHR_shared_presentable_image is unsupported"); } /* If the layout isn't recognized in the exhaustive switch above, the * VkImageLayout value is not defined in vulkan.h. */ unreachable("layout is not a VkImageLayout enumeration member."); } /** * This function returns the level of unresolved fast-clear support of the * given image in the given VkImageLayout. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param layout The current layout of the image aspect(s). */ enum anv_fast_clear_type anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageLayout layout) { /* The aspect must be exactly one of the image aspects. */ assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects)); uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); /* If there is no auxiliary surface allocated, there are no fast-clears */ if (image->planes[plane].aux_surface.isl.size == 0) return ANV_FAST_CLEAR_NONE; /* All images that use an auxiliary surface are required to be tiled. */ assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); /* Stencil has no aux */ assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT); if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { /* For depth images (with HiZ), the layout supports fast-clears if and * only if it supports HiZ. However, we only support fast-clears to the * default depth value. */ enum isl_aux_usage aux_usage = anv_layout_to_aux_usage(devinfo, image, aspect, layout); return aux_usage == ISL_AUX_USAGE_HIZ ? ANV_FAST_CLEAR_DEFAULT_VALUE : ANV_FAST_CLEAR_NONE; } assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); /* Multisample fast-clear is not yet supported. */ if (image->samples > 1) return ANV_FAST_CLEAR_NONE; switch (layout) { case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: return ANV_FAST_CLEAR_ANY; case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: return ANV_FAST_CLEAR_NONE; default: /* If the image has CCS_E enabled all the time then we can use * fast-clear as long as the clear color is the default value of zero * since this is the default value we program into every surface state * used for texturing. */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) return ANV_FAST_CLEAR_DEFAULT_VALUE; else return ANV_FAST_CLEAR_NONE; } } static struct anv_state alloc_surface_state(struct anv_device *device) { return anv_state_pool_alloc(&device->surface_state_pool, 64, 64); } static enum isl_channel_select remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component, struct isl_swizzle format_swizzle) { if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY) swizzle = component; switch (swizzle) { case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO; case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE; case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r; case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g; case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b; case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a; default: unreachable("Invalid swizzle"); } } void anv_image_fill_surface_state(struct anv_device *device, const struct anv_image *image, VkImageAspectFlagBits aspect, const struct isl_view *view_in, isl_surf_usage_flags_t view_usage, enum isl_aux_usage aux_usage, const union isl_color_value *clear_color, enum anv_image_view_state_flags flags, struct anv_surface_state *state_inout, struct brw_image_param *image_param_out) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); const struct anv_surface *surface = &image->planes[plane].surface, *aux_surface = &image->planes[plane].aux_surface; struct isl_view view = *view_in; view.usage |= view_usage; /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a * compressed surface with a shadow surface, we use the shadow instead of * the primary surface. The shadow surface will be tiled, unlike the main * surface, so it should get significantly better performance. */ if (image->planes[plane].shadow_surface.isl.size > 0 && isl_format_is_compressed(view.format) && (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) { assert(isl_format_is_compressed(surface->isl.format)); assert(surface->isl.tiling == ISL_TILING_LINEAR); assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR); surface = &image->planes[plane].shadow_surface; } if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT) view.swizzle = anv_swizzle_for_render(view.swizzle); /* If this is a HiZ buffer we can sample from with a programmable clear * value (SKL+), define the clear value to the optimal constant. */ union isl_color_value default_clear_color = { .u32 = { 0, } }; if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ) default_clear_color.f32[0] = ANV_HZ_FC_VAL; if (!clear_color) clear_color = &default_clear_color; const uint64_t address = image->planes[plane].bo_offset + surface->offset; const uint64_t aux_address = aux_usage == ISL_AUX_USAGE_NONE ? 0 : (image->planes[plane].bo_offset + aux_surface->offset); if (view_usage == ISL_SURF_USAGE_STORAGE_BIT && !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) && !isl_has_matching_typed_storage_image_format(&device->info, view.format)) { /* In this case, we are a writeable storage buffer which needs to be * lowered to linear. All tiling and offset calculations will be done in * the shader. */ assert(aux_usage == ISL_AUX_USAGE_NONE); isl_buffer_fill_state(&device->isl_dev, state_inout->state.map, .address = address, .size = surface->isl.size, .format = ISL_FORMAT_RAW, .stride = 1, .mocs = device->default_mocs); state_inout->address = address, state_inout->aux_address = 0; } else { if (view_usage == ISL_SURF_USAGE_STORAGE_BIT && !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) { /* Typed surface reads support a very limited subset of the shader * image formats. Translate it into the closest format the hardware * supports. */ assert(aux_usage == ISL_AUX_USAGE_NONE); view.format = isl_lower_storage_image_format(&device->info, view.format); } const struct isl_surf *isl_surf = &surface->isl; struct isl_surf tmp_surf; uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0; if (isl_format_is_compressed(surface->isl.format) && !isl_format_is_compressed(view.format)) { /* We're creating an uncompressed view of a compressed surface. This * is allowed but only for a single level/layer. */ assert(surface->isl.samples == 1); assert(view.levels == 1); assert(view.array_len == 1); isl_surf_get_image_surf(&device->isl_dev, isl_surf, view.base_level, surface->isl.dim == ISL_SURF_DIM_3D ? 0 : view.base_array_layer, surface->isl.dim == ISL_SURF_DIM_3D ? view.base_array_layer : 0, &tmp_surf, &offset_B, &tile_x_sa, &tile_y_sa); /* The newly created image represents the one subimage we're * referencing with this view so it only has one array slice and * miplevel. */ view.base_array_layer = 0; view.base_level = 0; /* We're making an uncompressed view here. The image dimensions need * to be scaled down by the block size. */ const struct isl_format_layout *fmtl = isl_format_get_layout(surface->isl.format); tmp_surf.format = view.format; tmp_surf.logical_level0_px.width = DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw); tmp_surf.logical_level0_px.height = DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh); tmp_surf.phys_level0_sa.width /= fmtl->bw; tmp_surf.phys_level0_sa.height /= fmtl->bh; tile_x_sa /= fmtl->bw; tile_y_sa /= fmtl->bh; isl_surf = &tmp_surf; if (device->info.gen <= 8) { assert(surface->isl.tiling == ISL_TILING_LINEAR); assert(tile_x_sa == 0); assert(tile_y_sa == 0); } } isl_surf_fill_state(&device->isl_dev, state_inout->state.map, .surf = isl_surf, .view = &view, .address = address + offset_B, .clear_color = *clear_color, .aux_surf = &aux_surface->isl, .aux_usage = aux_usage, .aux_address = aux_address, .mocs = device->default_mocs, .x_offset_sa = tile_x_sa, .y_offset_sa = tile_y_sa); state_inout->address = address + offset_B; if (device->info.gen >= 8) { state_inout->aux_address = aux_address; } else { /* On gen7 and prior, the bottom 12 bits of the MCS base address are * used to store other information. This should be ok, however, * because surface buffer addresses are always 4K page alinged. */ uint32_t *aux_addr_dw = state_inout->state.map + device->isl_dev.ss.aux_addr_offset; assert((aux_address & 0xfff) == 0); assert(aux_address == (*aux_addr_dw & 0xfffff000)); state_inout->aux_address = *aux_addr_dw; } } anv_state_flush(device, state_inout->state); if (image_param_out) { assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT); isl_surf_fill_image_param(&device->isl_dev, image_param_out, &surface->isl, &view); } } static VkImageAspectFlags remap_aspect_flags(VkImageAspectFlags view_aspects) { if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { if (_mesa_bitcount(view_aspects) == 1) return VK_IMAGE_ASPECT_COLOR_BIT; VkImageAspectFlags color_aspects = 0; for (uint32_t i = 0; i < _mesa_bitcount(view_aspects); i++) color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT_KHR << i; return color_aspects; } /* No special remapping needed for depth & stencil aspects. */ return view_aspects; } VkResult anv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); struct anv_image_view *iview; iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (iview == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; assert(range->layerCount > 0); assert(range->baseMipLevel < image->levels); const VkImageViewUsageCreateInfoKHR *usage_info = vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO_KHR); VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage; /* View usage should be a subset of image usage */ assert((view_usage & ~image->usage) == 0); assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)); switch (image->type) { default: unreachable("bad VkImageType"); case VK_IMAGE_TYPE_1D: case VK_IMAGE_TYPE_2D: assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size); break; case VK_IMAGE_TYPE_3D: assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= anv_minify(image->extent.depth, range->baseMipLevel)); break; } /* First expand aspects to the image's ones (for example * VK_IMAGE_ASPECT_COLOR_BIT will be converted to * VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | VK_IMAGE_ASPECT_PLANE_1_BIT_KHR | * VK_IMAGE_ASPECT_PLANE_2_BIT_KHR for an image of format * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR. */ VkImageAspectFlags expanded_aspects = anv_image_expand_aspects(image, range->aspectMask); iview->image = image; /* Remap the expanded aspects for the image view. For example if only * VK_IMAGE_ASPECT_PLANE_1_BIT_KHR was given in range->aspectMask, we will * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of * the image view, it only has a single plane. */ iview->aspect_mask = remap_aspect_flags(expanded_aspects); iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask); iview->vk_format = pCreateInfo->format; iview->extent = (VkExtent3D) { .width = anv_minify(image->extent.width , range->baseMipLevel), .height = anv_minify(image->extent.height, range->baseMipLevel), .depth = anv_minify(image->extent.depth , range->baseMipLevel), }; /* Now go through the underlying image selected planes (computed in * expanded_aspects) and map them to planes in the image view. */ uint32_t iaspect_bit, vplane = 0; anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) { uint32_t iplane = anv_image_aspect_to_plane(expanded_aspects, 1UL << iaspect_bit); VkImageAspectFlags vplane_aspect = anv_plane_to_aspect(iview->aspect_mask, vplane); struct anv_format_plane format = anv_get_format_plane(&device->info, pCreateInfo->format, vplane_aspect, image->tiling); iview->planes[vplane].image_plane = iplane; iview->planes[vplane].isl = (struct isl_view) { .format = format.isl_format, .base_level = range->baseMipLevel, .levels = anv_get_levelCount(image, range), .base_array_layer = range->baseArrayLayer, .array_len = anv_get_layerCount(image, range), .swizzle = { .r = remap_swizzle(pCreateInfo->components.r, VK_COMPONENT_SWIZZLE_R, format.swizzle), .g = remap_swizzle(pCreateInfo->components.g, VK_COMPONENT_SWIZZLE_G, format.swizzle), .b = remap_swizzle(pCreateInfo->components.b, VK_COMPONENT_SWIZZLE_B, format.swizzle), .a = remap_swizzle(pCreateInfo->components.a, VK_COMPONENT_SWIZZLE_A, format.swizzle), }, }; if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) { iview->planes[vplane].isl.base_array_layer = 0; iview->planes[vplane].isl.array_len = iview->extent.depth; } if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE || pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) { iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT; } else { iview->planes[vplane].isl.usage = 0; } if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT || (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT && !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) { iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device); iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device); enum isl_aux_usage general_aux_usage = anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit, VK_IMAGE_LAYOUT_GENERAL); enum isl_aux_usage optimal_aux_usage = anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, &iview->planes[vplane].isl, ISL_SURF_USAGE_TEXTURE_BIT, optimal_aux_usage, NULL, ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL, &iview->planes[vplane].optimal_sampler_surface_state, NULL); anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, &iview->planes[vplane].isl, ISL_SURF_USAGE_TEXTURE_BIT, general_aux_usage, NULL, 0, &iview->planes[vplane].general_sampler_surface_state, NULL); } /* NOTE: This one needs to go last since it may stomp isl_view.format */ if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) { iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device); iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device); anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, &iview->planes[vplane].isl, ISL_SURF_USAGE_STORAGE_BIT, ISL_AUX_USAGE_NONE, NULL, 0, &iview->planes[vplane].storage_surface_state, &iview->planes[vplane].storage_image_param); anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit, &iview->planes[vplane].isl, ISL_SURF_USAGE_STORAGE_BIT, ISL_AUX_USAGE_NONE, NULL, ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY, &iview->planes[vplane].writeonly_storage_surface_state, NULL); } vplane++; } *pView = anv_image_view_to_handle(iview); return VK_SUCCESS; } void anv_DestroyImageView(VkDevice _device, VkImageView _iview, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image_view, iview, _iview); if (!iview) return; for (uint32_t plane = 0; plane < iview->n_planes; plane++) { if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->planes[plane].optimal_sampler_surface_state.state); } if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->planes[plane].general_sampler_surface_state.state); } if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->planes[plane].storage_surface_state.state); } if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->planes[plane].writeonly_storage_surface_state.state); } } vk_free2(&device->alloc, pAllocator, iview); } VkResult anv_CreateBufferView(VkDevice _device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer); struct anv_buffer_view *view; view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!view) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); /* TODO: Handle the format swizzle? */ view->format = anv_get_isl_format(&device->info, pCreateInfo->format, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_TILING_LINEAR); const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8; view->bo = buffer->bo; view->offset = buffer->offset + pCreateInfo->offset; view->range = anv_buffer_get_range(buffer, pCreateInfo->offset, pCreateInfo->range); view->range = align_down_npot_u32(view->range, format_bs); if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) { view->surface_state = alloc_surface_state(device); anv_fill_buffer_surface_state(device, view->surface_state, view->format, view->offset, view->range, format_bs); } else { view->surface_state = (struct anv_state){ 0 }; } if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) { view->storage_surface_state = alloc_surface_state(device); view->writeonly_storage_surface_state = alloc_surface_state(device); enum isl_format storage_format = isl_has_matching_typed_storage_image_format(&device->info, view->format) ? isl_lower_storage_image_format(&device->info, view->format) : ISL_FORMAT_RAW; anv_fill_buffer_surface_state(device, view->storage_surface_state, storage_format, view->offset, view->range, (storage_format == ISL_FORMAT_RAW ? 1 : isl_format_get_layout(storage_format)->bpb / 8)); /* Write-only accesses should use the original format. */ anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state, view->format, view->offset, view->range, isl_format_get_layout(view->format)->bpb / 8); isl_buffer_fill_image_param(&device->isl_dev, &view->storage_image_param, view->format, view->range); } else { view->storage_surface_state = (struct anv_state){ 0 }; view->writeonly_storage_surface_state = (struct anv_state){ 0 }; } *pView = anv_buffer_view_to_handle(view); return VK_SUCCESS; } void anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer_view, view, bufferView); if (!view) return; if (view->surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->surface_state); if (view->storage_surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->storage_surface_state); if (view->writeonly_storage_surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->writeonly_storage_surface_state); vk_free2(&device->alloc, pAllocator, view); } const struct anv_surface * anv_image_get_surface_for_aspect_mask(const struct anv_image *image, VkImageAspectFlags aspect_mask) { VkImageAspectFlags sanitized_mask; switch (aspect_mask) { case VK_IMAGE_ASPECT_COLOR_BIT: assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT; break; case VK_IMAGE_ASPECT_DEPTH_BIT: assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT); sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT; break; case VK_IMAGE_ASPECT_STENCIL_BIT: assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT); sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT; break; case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT: /* FINISHME: The Vulkan spec (git a511ba2) requires support for * combined depth stencil formats. Specifically, it states: * * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported. * * Image views with both depth and stencil aspects are only valid for * render target attachments, in which case * cmd_buffer_emit_depth_stencil() will pick out both the depth and * stencil surfaces from the underlying surface. */ if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT; } else { assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT); sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT; } break; case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR: assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0); sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT_KHR; break; case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR: assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0); sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT_KHR; break; case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR: assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0); sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT_KHR; break; default: unreachable("image does not have aspect"); return NULL; } uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask); return &image->planes[plane].surface; }