/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include "anv_private.h" #include "util/debug.h" #include "vk_format_info.h" /** * Exactly one bit must be set in \a aspect. */ static isl_surf_usage_flags_t choose_isl_surf_usage(VkImageUsageFlags vk_usage, VkImageAspectFlags aspect) { isl_surf_usage_flags_t isl_usage = 0; if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT) isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; if (vk_usage & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) isl_usage |= ISL_SURF_USAGE_CUBE_BIT; /* Even if we're only using it for transfer operations, clears to depth and * stencil images happen as depth and stencil so they need the right ISL * usage bits or else things will fall apart. */ switch (aspect) { case VK_IMAGE_ASPECT_DEPTH_BIT: isl_usage |= ISL_SURF_USAGE_DEPTH_BIT; break; case VK_IMAGE_ASPECT_STENCIL_BIT: isl_usage |= ISL_SURF_USAGE_STENCIL_BIT; break; case VK_IMAGE_ASPECT_COLOR_BIT: break; default: unreachable("bad VkImageAspect"); } if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) { /* blorp implements transfers by sampling from the source image. */ isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; } if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT && aspect == VK_IMAGE_ASPECT_COLOR_BIT) { /* blorp implements transfers by rendering into the destination image. * Only request this with color images, as we deal with depth/stencil * formats differently. */ isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; } return isl_usage; } /** * Exactly one bit must be set in \a aspect. */ static struct anv_surface * get_surface(struct anv_image *image, VkImageAspectFlags aspect) { switch (aspect) { default: unreachable("bad VkImageAspect"); case VK_IMAGE_ASPECT_COLOR_BIT: return &image->color_surface; case VK_IMAGE_ASPECT_DEPTH_BIT: return &image->depth_surface; case VK_IMAGE_ASPECT_STENCIL_BIT: return &image->stencil_surface; } } static void add_surface(struct anv_image *image, struct anv_surface *surf) { assert(surf->isl.size > 0); /* isl surface must be initialized */ surf->offset = align_u32(image->size, surf->isl.alignment); image->size = surf->offset + surf->isl.size; image->alignment = MAX2(image->alignment, surf->isl.alignment); } /** * Initialize the anv_image::*_surface selected by \a aspect. Then update the * image's memory requirements (that is, the image's size and alignment). * * Exactly one bit must be set in \a aspect. */ static VkResult make_surface(const struct anv_device *dev, struct anv_image *image, const struct anv_image_create_info *anv_info, VkImageAspectFlags aspect) { const VkImageCreateInfo *vk_info = anv_info->vk_info; bool ok UNUSED; static const enum isl_surf_dim vk_to_isl_surf_dim[] = { [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D, [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D, [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D, }; /* Translate the Vulkan tiling to an equivalent ISL tiling, then filter the * result with an optionally provided ISL tiling argument. */ isl_tiling_flags_t tiling_flags = (vk_info->tiling == VK_IMAGE_TILING_LINEAR) ? ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK; if (anv_info->isl_tiling_flags) tiling_flags &= anv_info->isl_tiling_flags; assert(tiling_flags); struct anv_surface *anv_surf = get_surface(image, aspect); image->extent = anv_sanitize_image_extent(vk_info->imageType, vk_info->extent); enum isl_format format = anv_get_isl_format(&dev->info, vk_info->format, aspect, vk_info->tiling); assert(format != ISL_FORMAT_UNSUPPORTED); ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl, .dim = vk_to_isl_surf_dim[vk_info->imageType], .format = format, .width = image->extent.width, .height = image->extent.height, .depth = image->extent.depth, .levels = vk_info->mipLevels, .array_len = vk_info->arrayLayers, .samples = vk_info->samples, .min_alignment = 0, .row_pitch = anv_info->stride, .usage = choose_isl_surf_usage(image->usage, aspect), .tiling_flags = tiling_flags); /* isl_surf_init() will fail only if provided invalid input. Invalid input * is illegal in Vulkan. */ assert(ok); add_surface(image, anv_surf); /* Add a HiZ surface to a depth buffer that will be used for rendering. */ if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { /* We don't advertise that depth buffers could be used as storage * images. */ assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT)); /* Allow the user to control HiZ enabling. Disable by default on gen7 * because resolves are not currently implemented pre-BDW. */ if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { /* It will never be used as an attachment, HiZ is pointless. */ } else if (dev->info.gen == 7) { anv_perf_warn("Implement gen7 HiZ"); } else if (vk_info->mipLevels > 1) { anv_perf_warn("Enable multi-LOD HiZ"); } else if (vk_info->arrayLayers > 1) { anv_perf_warn("Implement multi-arrayLayer HiZ clears and resolves"); } else if (dev->info.gen == 8 && vk_info->samples > 1) { anv_perf_warn("Enable gen8 multisampled HiZ"); } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) { assert(image->aux_surface.isl.size == 0); ok = isl_surf_get_hiz_surf(&dev->isl_dev, &image->depth_surface.isl, &image->aux_surface.isl); assert(ok); add_surface(image, &image->aux_surface); image->aux_usage = ISL_AUX_USAGE_HIZ; } } else if (aspect == VK_IMAGE_ASPECT_COLOR_BIT && vk_info->samples == 1) { if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC)) { assert(image->aux_surface.isl.size == 0); ok = isl_surf_get_ccs_surf(&dev->isl_dev, &anv_surf->isl, &image->aux_surface.isl); if (ok) { add_surface(image, &image->aux_surface); /* For images created without MUTABLE_FORMAT_BIT set, we know that * they will always be used with the original format. In * particular, they will always be used with a format that * supports color compression. If it's never used as a storage * image, then it will only be used through the sampler or the as * a render target. This means that it's safe to just leave * compression on at all times for these formats. */ if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) && !(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) && isl_format_supports_ccs_e(&dev->info, format)) { image->aux_usage = ISL_AUX_USAGE_CCS_E; } } } } else if (aspect == VK_IMAGE_ASPECT_COLOR_BIT && vk_info->samples > 1) { assert(image->aux_surface.isl.size == 0); assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT)); ok = isl_surf_get_mcs_surf(&dev->isl_dev, &anv_surf->isl, &image->aux_surface.isl); if (ok) { add_surface(image, &image->aux_surface); image->aux_usage = ISL_AUX_USAGE_MCS; } } return VK_SUCCESS; } VkResult anv_image_create(VkDevice _device, const struct anv_image_create_info *create_info, const VkAllocationCallbacks* alloc, VkImage *pImage) { ANV_FROM_HANDLE(anv_device, device, _device); const VkImageCreateInfo *pCreateInfo = create_info->vk_info; struct anv_image *image = NULL; VkResult r; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO); anv_assert(pCreateInfo->mipLevels > 0); anv_assert(pCreateInfo->arrayLayers > 0); anv_assert(pCreateInfo->samples > 0); anv_assert(pCreateInfo->extent.width > 0); anv_assert(pCreateInfo->extent.height > 0); anv_assert(pCreateInfo->extent.depth > 0); image = vk_alloc2(&device->alloc, alloc, sizeof(*image), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!image) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); memset(image, 0, sizeof(*image)); image->type = pCreateInfo->imageType; image->extent = pCreateInfo->extent; image->vk_format = pCreateInfo->format; image->aspects = vk_format_aspects(image->vk_format); image->levels = pCreateInfo->mipLevels; image->array_size = pCreateInfo->arrayLayers; image->samples = pCreateInfo->samples; image->usage = pCreateInfo->usage; image->tiling = pCreateInfo->tiling; image->aux_usage = ISL_AUX_USAGE_NONE; uint32_t b; for_each_bit(b, image->aspects) { r = make_surface(device, image, create_info, (1 << b)); if (r != VK_SUCCESS) goto fail; } *pImage = anv_image_to_handle(image); return VK_SUCCESS; fail: if (image) vk_free2(&device->alloc, alloc, image); return r; } VkResult anv_CreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { return anv_image_create(device, &(struct anv_image_create_info) { .vk_info = pCreateInfo, }, pAllocator, pImage); } void anv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, _image); if (!image) return; vk_free2(&device->alloc, pAllocator, image); } VkResult anv_BindImageMemory( VkDevice _device, VkImage _image, VkDeviceMemory _memory, VkDeviceSize memoryOffset) { ANV_FROM_HANDLE(anv_device_memory, mem, _memory); ANV_FROM_HANDLE(anv_image, image, _image); if (mem == NULL) { image->bo = NULL; image->offset = 0; return VK_SUCCESS; } image->bo = mem->bo; image->offset = memoryOffset; return VK_SUCCESS; } static void anv_surface_get_subresource_layout(struct anv_image *image, struct anv_surface *surface, const VkImageSubresource *subresource, VkSubresourceLayout *layout) { /* If we are on a non-zero mip level or array slice, we need to * calculate a real offset. */ anv_assert(subresource->mipLevel == 0); anv_assert(subresource->arrayLayer == 0); layout->offset = surface->offset; layout->rowPitch = surface->isl.row_pitch; layout->depthPitch = isl_surf_get_array_pitch(&surface->isl); layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl); layout->size = surface->isl.size; } void anv_GetImageSubresourceLayout( VkDevice device, VkImage _image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) { ANV_FROM_HANDLE(anv_image, image, _image); assert(__builtin_popcount(pSubresource->aspectMask) == 1); switch (pSubresource->aspectMask) { case VK_IMAGE_ASPECT_COLOR_BIT: anv_surface_get_subresource_layout(image, &image->color_surface, pSubresource, pLayout); break; case VK_IMAGE_ASPECT_DEPTH_BIT: anv_surface_get_subresource_layout(image, &image->depth_surface, pSubresource, pLayout); break; case VK_IMAGE_ASPECT_STENCIL_BIT: anv_surface_get_subresource_layout(image, &image->stencil_surface, pSubresource, pLayout); break; default: assert(!"Invalid image aspect"); } } /** * This function determines the optimal buffer to use for a given * VkImageLayout and other pieces of information needed to make that * determination. This does not determine the optimal buffer to use * during a resolve operation. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspects The aspect(s) of the image to be accessed. * @param layout The current layout of the image aspect(s). * * @return The primary buffer that should be used for the given layout. */ enum isl_aux_usage anv_layout_to_aux_usage(const struct gen_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlags aspects, const VkImageLayout layout) { /* Validate the inputs. */ /* The devinfo is needed as the optimal buffer varies across generations. */ assert(devinfo != NULL); /* The layout of a NULL image is not properly defined. */ assert(image != NULL); /* The aspects must be a subset of the image aspects. */ assert(aspects & image->aspects && aspects <= image->aspects); /* Determine the optimal buffer. */ /* If there is no auxiliary surface allocated, we must use the one and only * main buffer. */ if (image->aux_surface.isl.size == 0) return ISL_AUX_USAGE_NONE; /* All images that use an auxiliary surface are required to be tiled. */ assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); /* On BDW+, when clearing the stencil aspect of a depth stencil image, * the HiZ buffer allows us to record the clear with a relatively small * number of packets. Prior to BDW, the HiZ buffer provides no known benefit * to the stencil aspect. */ if (devinfo->gen < 8 && aspects == VK_IMAGE_ASPECT_STENCIL_BIT) return ISL_AUX_USAGE_NONE; const bool color_aspect = aspects == VK_IMAGE_ASPECT_COLOR_BIT; /* The following switch currently only handles depth stencil aspects. * TODO: Handle the color aspect. */ if (color_aspect) return image->aux_usage; switch (layout) { /* Invalid Layouts */ case VK_IMAGE_LAYOUT_RANGE_SIZE: case VK_IMAGE_LAYOUT_MAX_ENUM: unreachable("Invalid image layout."); /* Undefined layouts * * The pre-initialized layout is equivalent to the undefined layout for * optimally-tiled images. We can only do color compression (CCS or HiZ) * on tiled images. */ case VK_IMAGE_LAYOUT_UNDEFINED: case VK_IMAGE_LAYOUT_PREINITIALIZED: return ISL_AUX_USAGE_NONE; /* Transfer Layouts * * This buffer could be a depth buffer used in a transfer operation. BLORP * currently doesn't use HiZ for transfer operations so we must use the main * buffer for this layout. TODO: Enable HiZ in BLORP. */ case VK_IMAGE_LAYOUT_GENERAL: case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: return ISL_AUX_USAGE_NONE; /* Sampling Layouts */ case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: assert(!color_aspect); /* Fall-through */ case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: if (anv_can_sample_with_hiz(devinfo, aspects, image->samples)) return ISL_AUX_USAGE_HIZ; else return ISL_AUX_USAGE_NONE; case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: assert(color_aspect); /* On SKL+, the render buffer can be decompressed by the presentation * engine. Support for this feature has not yet landed in the wider * ecosystem. TODO: Update this code when support lands. * * From the BDW PRM, Vol 7, Render Target Resolve: * * If the MCS is enabled on a non-multisampled render target, the * render target must be resolved before being used for other * purposes (display, texture, CPU lock) The clear value from * SURFACE_STATE is written into pixels in the render target * indicated as clear in the MCS. * * Pre-SKL, the render buffer must be resolved before being used for * presentation. We can infer that the auxiliary buffer is not used. */ return ISL_AUX_USAGE_NONE; /* Rendering Layouts */ case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: assert(color_aspect); unreachable("Color images are not yet supported."); case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: assert(!color_aspect); return ISL_AUX_USAGE_HIZ; case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR: unreachable("VK_KHR_shared_presentable_image is unsupported"); } /* If the layout isn't recognized in the exhaustive switch above, the * VkImageLayout value is not defined in vulkan.h. */ unreachable("layout is not a VkImageLayout enumeration member."); } static struct anv_state alloc_surface_state(struct anv_device *device) { return anv_state_pool_alloc(&device->surface_state_pool, 64, 64); } static enum isl_channel_select remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component, struct isl_swizzle format_swizzle) { if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY) swizzle = component; switch (swizzle) { case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO; case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE; case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r; case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g; case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b; case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a; default: unreachable("Invalid swizzle"); } } VkResult anv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); struct anv_image_view *iview; iview = vk_alloc2(&device->alloc, pAllocator, sizeof(*iview), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (iview == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; assert(range->layerCount > 0); assert(range->baseMipLevel < image->levels); assert(image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)); switch (image->type) { default: unreachable("bad VkImageType"); case VK_IMAGE_TYPE_1D: case VK_IMAGE_TYPE_2D: assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size); break; case VK_IMAGE_TYPE_3D: assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= anv_minify(image->extent.depth, range->baseMipLevel)); break; } const struct anv_surface *surface = anv_image_get_surface_for_aspect_mask(image, range->aspectMask); iview->image = image; iview->bo = image->bo; iview->offset = image->offset + surface->offset; iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask; iview->vk_format = pCreateInfo->format; struct anv_format format = anv_get_format(&device->info, pCreateInfo->format, range->aspectMask, image->tiling); iview->isl = (struct isl_view) { .format = format.isl_format, .base_level = range->baseMipLevel, .levels = anv_get_levelCount(image, range), .base_array_layer = range->baseArrayLayer, .array_len = anv_get_layerCount(image, range), .swizzle = { .r = remap_swizzle(pCreateInfo->components.r, VK_COMPONENT_SWIZZLE_R, format.swizzle), .g = remap_swizzle(pCreateInfo->components.g, VK_COMPONENT_SWIZZLE_G, format.swizzle), .b = remap_swizzle(pCreateInfo->components.b, VK_COMPONENT_SWIZZLE_B, format.swizzle), .a = remap_swizzle(pCreateInfo->components.a, VK_COMPONENT_SWIZZLE_A, format.swizzle), }, }; iview->extent = (VkExtent3D) { .width = anv_minify(image->extent.width , range->baseMipLevel), .height = anv_minify(image->extent.height, range->baseMipLevel), .depth = anv_minify(image->extent.depth , range->baseMipLevel), }; if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) { iview->isl.base_array_layer = 0; iview->isl.array_len = iview->extent.depth; } if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE || pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) { iview->isl.usage = ISL_SURF_USAGE_CUBE_BIT; } else { iview->isl.usage = 0; } /* Input attachment surfaces for color are allocated and filled * out at BeginRenderPass time because they need compression information. * Compression is not yet enabled for depth textures and stencil doesn't * allow compression so we can just use the texture surface state from the * view. */ if (image->usage & VK_IMAGE_USAGE_SAMPLED_BIT || (image->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT && !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) { iview->sampler_surface_state = alloc_surface_state(device); iview->no_aux_sampler_surface_state = alloc_surface_state(device); /* Sampling is performed in one of two buffer configurations in anv: with * an auxiliary buffer or without it. Sampler states aren't always needed * for both configurations, but are currently created unconditionally for * simplicity. * * TODO: Consider allocating each surface state only when necessary. */ /* Create a sampler state with the optimal aux_usage for sampling. This * may use the aux_buffer. */ const enum isl_aux_usage surf_usage = anv_layout_to_aux_usage(&device->info, image, iview->aspect_mask, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); /* If this is a HiZ buffer we can sample from with a programmable clear * value (SKL+), define the clear value to the optimal constant. */ const float red_clear_color = surf_usage == ISL_AUX_USAGE_HIZ && device->info.gen >= 9 ? ANV_HZ_FC_VAL : 0.0f; struct isl_view view = iview->isl; view.usage |= ISL_SURF_USAGE_TEXTURE_BIT; isl_surf_fill_state(&device->isl_dev, iview->sampler_surface_state.map, .surf = &surface->isl, .view = &view, .clear_color.f32 = { red_clear_color,}, .aux_surf = &image->aux_surface.isl, .aux_usage = surf_usage, .mocs = device->default_mocs); /* Create a sampler state that only uses the main buffer. */ isl_surf_fill_state(&device->isl_dev, iview->no_aux_sampler_surface_state.map, .surf = &surface->isl, .view = &view, .mocs = device->default_mocs); anv_state_flush(device, iview->sampler_surface_state); anv_state_flush(device, iview->no_aux_sampler_surface_state); } else { iview->sampler_surface_state.alloc_size = 0; iview->no_aux_sampler_surface_state.alloc_size = 0; } /* NOTE: This one needs to go last since it may stomp isl_view.format */ if (image->usage & VK_IMAGE_USAGE_STORAGE_BIT) { iview->storage_surface_state = alloc_surface_state(device); iview->writeonly_storage_surface_state = alloc_surface_state(device); struct isl_view view = iview->isl; view.usage |= ISL_SURF_USAGE_STORAGE_BIT; /* Write-only accesses always used a typed write instruction and should * therefore use the real format. */ isl_surf_fill_state(&device->isl_dev, iview->writeonly_storage_surface_state.map, .surf = &surface->isl, .view = &view, .aux_surf = &image->aux_surface.isl, .aux_usage = image->aux_usage, .mocs = device->default_mocs); if (isl_has_matching_typed_storage_image_format(&device->info, format.isl_format)) { /* Typed surface reads support a very limited subset of the shader * image formats. Translate it into the closest format the hardware * supports. */ view.format = isl_lower_storage_image_format(&device->info, format.isl_format); isl_surf_fill_state(&device->isl_dev, iview->storage_surface_state.map, .surf = &surface->isl, .view = &view, .aux_surf = &image->aux_surface.isl, .aux_usage = image->aux_usage, .mocs = device->default_mocs); } else { anv_fill_buffer_surface_state(device, iview->storage_surface_state, ISL_FORMAT_RAW, iview->offset, iview->bo->size - iview->offset, 1); } isl_surf_fill_image_param(&device->isl_dev, &iview->storage_image_param, &surface->isl, &iview->isl); anv_state_flush(device, iview->storage_surface_state); anv_state_flush(device, iview->writeonly_storage_surface_state); } else { iview->storage_surface_state.alloc_size = 0; iview->writeonly_storage_surface_state.alloc_size = 0; } *pView = anv_image_view_to_handle(iview); return VK_SUCCESS; } void anv_DestroyImageView(VkDevice _device, VkImageView _iview, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image_view, iview, _iview); if (!iview) return; if (iview->sampler_surface_state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->sampler_surface_state); } if (iview->storage_surface_state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->storage_surface_state); } if (iview->writeonly_storage_surface_state.alloc_size > 0) { anv_state_pool_free(&device->surface_state_pool, iview->writeonly_storage_surface_state); } vk_free2(&device->alloc, pAllocator, iview); } VkResult anv_CreateBufferView(VkDevice _device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer); struct anv_buffer_view *view; view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!view) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); /* TODO: Handle the format swizzle? */ view->format = anv_get_isl_format(&device->info, pCreateInfo->format, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_TILING_LINEAR); const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8; view->bo = buffer->bo; view->offset = buffer->offset + pCreateInfo->offset; view->range = anv_buffer_get_range(buffer, pCreateInfo->offset, pCreateInfo->range); view->range = align_down_npot_u32(view->range, format_bs); if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) { view->surface_state = alloc_surface_state(device); anv_fill_buffer_surface_state(device, view->surface_state, view->format, view->offset, view->range, format_bs); } else { view->surface_state = (struct anv_state){ 0 }; } if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) { view->storage_surface_state = alloc_surface_state(device); view->writeonly_storage_surface_state = alloc_surface_state(device); enum isl_format storage_format = isl_has_matching_typed_storage_image_format(&device->info, view->format) ? isl_lower_storage_image_format(&device->info, view->format) : ISL_FORMAT_RAW; anv_fill_buffer_surface_state(device, view->storage_surface_state, storage_format, view->offset, view->range, (storage_format == ISL_FORMAT_RAW ? 1 : isl_format_get_layout(storage_format)->bpb / 8)); /* Write-only accesses should use the original format. */ anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state, view->format, view->offset, view->range, isl_format_get_layout(view->format)->bpb / 8); isl_buffer_fill_image_param(&device->isl_dev, &view->storage_image_param, view->format, view->range); } else { view->storage_surface_state = (struct anv_state){ 0 }; view->writeonly_storage_surface_state = (struct anv_state){ 0 }; } *pView = anv_buffer_view_to_handle(view); return VK_SUCCESS; } void anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer_view, view, bufferView); if (!view) return; if (view->surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->surface_state); if (view->storage_surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->storage_surface_state); if (view->writeonly_storage_surface_state.alloc_size > 0) anv_state_pool_free(&device->surface_state_pool, view->writeonly_storage_surface_state); vk_free2(&device->alloc, pAllocator, view); } const struct anv_surface * anv_image_get_surface_for_aspect_mask(const struct anv_image *image, VkImageAspectFlags aspect_mask) { switch (aspect_mask) { case VK_IMAGE_ASPECT_COLOR_BIT: assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); return &image->color_surface; case VK_IMAGE_ASPECT_DEPTH_BIT: assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT); return &image->depth_surface; case VK_IMAGE_ASPECT_STENCIL_BIT: assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT); return &image->stencil_surface; case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT: /* FINISHME: The Vulkan spec (git a511ba2) requires support for * combined depth stencil formats. Specifically, it states: * * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported. * * Image views with both depth and stencil aspects are only valid for * render target attachments, in which case * cmd_buffer_emit_depth_stencil() will pick out both the depth and * stencil surfaces from the underlying surface. */ if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { return &image->depth_surface; } else { assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT); return &image->stencil_surface; } default: unreachable("image does not have aspect"); return NULL; } }