# coding=utf-8 # # Copyright © 2015, 2017 Intel Corporation # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # import argparse import math import os import xml.etree.cElementTree as et from collections import OrderedDict, namedtuple from mako.template import Template from anv_extensions import VkVersion, MAX_API_VERSION, EXTENSIONS # We generate a static hash table for entry point lookup # (vkGetProcAddress). We use a linear congruential generator for our hash # function and a power-of-two size table. The prime numbers are determined # experimentally. LAYERS = [ 'anv', 'gen7', 'gen75', 'gen8', 'gen9', 'gen10', 'gen11', 'gen12', ] TEMPLATE_H = Template("""\ /* This file generated from ${filename}, don't edit directly. */ struct anv_instance_dispatch_table { union { void *entrypoints[${len(instance_entrypoints)}]; struct { % for e in instance_entrypoints: % if e.guard is not None: #ifdef ${e.guard} PFN_${e.name} ${e.name}; #else void *${e.name}; # endif % else: PFN_${e.name} ${e.name}; % endif % endfor }; }; }; struct anv_physical_device_dispatch_table { union { void *entrypoints[${len(physical_device_entrypoints)}]; struct { % for e in physical_device_entrypoints: % if e.guard is not None: #ifdef ${e.guard} PFN_${e.name} ${e.name}; #else void *${e.name}; # endif % else: PFN_${e.name} ${e.name}; % endif % endfor }; }; }; struct anv_device_dispatch_table { union { void *entrypoints[${len(device_entrypoints)}]; struct { % for e in device_entrypoints: % if e.guard is not None: #ifdef ${e.guard} PFN_${e.name} ${e.name}; #else void *${e.name}; # endif % else: PFN_${e.name} ${e.name}; % endif % endfor }; }; }; extern const struct anv_instance_dispatch_table anv_instance_dispatch_table; %for layer in LAYERS: extern const struct anv_physical_device_dispatch_table ${layer}_physical_device_dispatch_table; %endfor %for layer in LAYERS: extern const struct anv_device_dispatch_table ${layer}_device_dispatch_table; %endfor % for e in instance_entrypoints: % if e.alias: <% continue %> % endif % if e.guard is not None: #ifdef ${e.guard} % endif ${e.return_type} ${e.prefixed_name('anv')}(${e.decl_params()}); % if e.guard is not None: #endif // ${e.guard} % endif % endfor % for e in physical_device_entrypoints: % if e.alias: <% continue %> % endif % if e.guard is not None: #ifdef ${e.guard} % endif % for layer in LAYERS: ${e.return_type} ${e.prefixed_name(layer)}(${e.decl_params()}); % endfor % if e.guard is not None: #endif // ${e.guard} % endif % endfor % for e in device_entrypoints: % if e.alias: <% continue %> % endif % if e.guard is not None: #ifdef ${e.guard} % endif % for layer in LAYERS: ${e.return_type} ${e.prefixed_name(layer)}(${e.decl_params()}); % endfor % if e.guard is not None: #endif // ${e.guard} % endif % endfor """, output_encoding='utf-8') TEMPLATE_C = Template(u"""\ /* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /* This file generated from ${filename}, don't edit directly. */ #include "anv_private.h" #include "util/macros.h" struct string_map_entry { uint32_t name; uint32_t hash; uint32_t num; }; /* We use a big string constant to avoid lots of reloctions from the entry * point table to lots of little strings. The entries in the entry point table * store the index into this big string. */ <%def name="strmap(strmap, prefix)"> static const char ${prefix}_strings[] = % for s in strmap.sorted_strings: "${s.string}\\0" % endfor ; static const struct string_map_entry ${prefix}_string_map_entries[] = { % for s in strmap.sorted_strings: { ${s.offset}, ${'{:0=#8x}'.format(s.hash)}, ${s.num} }, /* ${s.string} */ % endfor }; /* Hash table stats: * size ${len(strmap.sorted_strings)} entries * collisions entries: % for i in range(10): * ${i}${'+' if i == 9 else ' '} ${strmap.collisions[i]} % endfor */ #define none 0xffff static const uint16_t ${prefix}_string_map[${strmap.hash_size}] = { % for e in strmap.mapping: ${ '{:0=#6x}'.format(e) if e >= 0 else 'none' }, % endfor }; static int ${prefix}_string_map_lookup(const char *str) { static const uint32_t prime_factor = ${strmap.prime_factor}; static const uint32_t prime_step = ${strmap.prime_step}; const struct string_map_entry *e; uint32_t hash, h; uint16_t i; const char *p; hash = 0; for (p = str; *p; p++) hash = hash * prime_factor + *p; h = hash; while (1) { i = ${prefix}_string_map[h & ${strmap.hash_mask}]; if (i == none) return -1; e = &${prefix}_string_map_entries[i]; if (e->hash == hash && strcmp(str, ${prefix}_strings + e->name) == 0) return e->num; h += prime_step; } return -1; } static const char * ${prefix}_entry_name(int num) { for (int i = 0; i < ARRAY_SIZE(${prefix}_string_map_entries); i++) { if (${prefix}_string_map_entries[i].num == num) return &${prefix}_strings[${prefix}_string_map_entries[i].name]; } return NULL; } ${strmap(instance_strmap, 'instance')} ${strmap(physical_device_strmap, 'physical_device')} ${strmap(device_strmap, 'device')} /* Weak aliases for all potential implementations. These will resolve to * NULL if they're not defined, which lets the resolve_entrypoint() function * either pick the correct entry point. */ % for e in instance_entrypoints: % if e.alias: <% continue %> % endif % if e.guard is not None: #ifdef ${e.guard} % endif ${e.return_type} ${e.prefixed_name('anv')}(${e.decl_params()}) __attribute__ ((weak)); % if e.guard is not None: #endif // ${e.guard} % endif % endfor const struct anv_instance_dispatch_table anv_instance_dispatch_table = { % for e in instance_entrypoints: % if e.guard is not None: #ifdef ${e.guard} % endif .${e.name} = ${e.prefixed_name('anv')}, % if e.guard is not None: #endif // ${e.guard} % endif % endfor }; % for layer in LAYERS: % for e in physical_device_entrypoints: % if e.alias: <% continue %> % endif % if e.guard is not None: #ifdef ${e.guard} % endif % if layer == 'anv': ${e.return_type} __attribute__ ((weak)) ${e.prefixed_name('anv')}(${e.decl_params()}) { % if e.params[0].type == 'VkPhysicalDevice': ANV_FROM_HANDLE(anv_physical_device, anv_physical_device, ${e.params[0].name}); return anv_physical_device->dispatch.${e.name}(${e.call_params()}); % else: assert(!"Unhandled device child trampoline case: ${e.params[0].type}"); % endif } % else: ${e.return_type} ${e.prefixed_name(layer)}(${e.decl_params()}) __attribute__ ((weak)); % endif % if e.guard is not None: #endif // ${e.guard} % endif % endfor const struct anv_physical_device_dispatch_table ${layer}_physical_device_dispatch_table = { % for e in physical_device_entrypoints: % if e.guard is not None: #ifdef ${e.guard} % endif .${e.name} = ${e.prefixed_name(layer)}, % if e.guard is not None: #endif // ${e.guard} % endif % endfor }; % endfor % for layer in LAYERS: % for e in device_entrypoints: % if e.alias: <% continue %> % endif % if e.guard is not None: #ifdef ${e.guard} % endif % if layer == 'anv': ${e.return_type} __attribute__ ((weak)) ${e.prefixed_name('anv')}(${e.decl_params()}) { % if e.params[0].type == 'VkDevice': ANV_FROM_HANDLE(anv_device, anv_device, ${e.params[0].name}); return anv_device->dispatch.${e.name}(${e.call_params()}); % elif e.params[0].type == 'VkCommandBuffer': ANV_FROM_HANDLE(anv_cmd_buffer, anv_cmd_buffer, ${e.params[0].name}); return anv_cmd_buffer->device->dispatch.${e.name}(${e.call_params()}); % elif e.params[0].type == 'VkQueue': ANV_FROM_HANDLE(anv_queue, anv_queue, ${e.params[0].name}); return anv_queue->device->dispatch.${e.name}(${e.call_params()}); % else: assert(!"Unhandled device child trampoline case: ${e.params[0].type}"); % endif } % else: ${e.return_type} ${e.prefixed_name(layer)}(${e.decl_params()}) __attribute__ ((weak)); % endif % if e.guard is not None: #endif // ${e.guard} % endif % endfor const struct anv_device_dispatch_table ${layer}_device_dispatch_table = { % for e in device_entrypoints: % if e.guard is not None: #ifdef ${e.guard} % endif .${e.name} = ${e.prefixed_name(layer)}, % if e.guard is not None: #endif // ${e.guard} % endif % endfor }; % endfor /** Return true if the core version or extension in which the given entrypoint * is defined is enabled. * * If device is NULL, all device extensions are considered enabled. */ bool anv_instance_entrypoint_is_enabled(int index, uint32_t core_version, const struct anv_instance_extension_table *instance) { switch (index) { % for e in instance_entrypoints: case ${e.num}: /* ${e.name} */ % if e.core_version: return ${e.core_version.c_vk_version()} <= core_version; % elif e.extensions: % for ext in e.extensions: % if ext.type == 'instance': if (instance->${ext.name[3:]}) return true; % else: /* All device extensions are considered enabled at the instance level */ return true; % endif % endfor return false; % else: return true; % endif % endfor default: return false; } } /** Return true if the core version or extension in which the given entrypoint * is defined is enabled. * * If device is NULL, all device extensions are considered enabled. */ bool anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version, const struct anv_instance_extension_table *instance) { switch (index) { % for e in physical_device_entrypoints: case ${e.num}: /* ${e.name} */ % if e.core_version: return ${e.core_version.c_vk_version()} <= core_version; % elif e.extensions: % for ext in e.extensions: % if ext.type == 'instance': if (instance->${ext.name[3:]}) return true; % else: /* All device extensions are considered enabled at the instance level */ return true; % endif % endfor return false; % else: return true; % endif % endfor default: return false; } } /** Return true if the core version or extension in which the given entrypoint * is defined is enabled. * * If device is NULL, all device extensions are considered enabled. */ bool anv_device_entrypoint_is_enabled(int index, uint32_t core_version, const struct anv_instance_extension_table *instance, const struct anv_device_extension_table *device) { switch (index) { % for e in device_entrypoints: case ${e.num}: /* ${e.name} */ % if e.core_version: return ${e.core_version.c_vk_version()} <= core_version; % elif e.extensions: % for ext in e.extensions: % if ext.type == 'instance': <% assert False %> % else: if (!device || device->${ext.name[3:]}) return true; % endif % endfor return false; % else: return true; % endif % endfor default: return false; } } int anv_get_instance_entrypoint_index(const char *name) { return instance_string_map_lookup(name); } int anv_get_physical_device_entrypoint_index(const char *name) { return physical_device_string_map_lookup(name); } int anv_get_device_entrypoint_index(const char *name) { return device_string_map_lookup(name); } const char * anv_get_instance_entry_name(int index) { return instance_entry_name(index); } const char * anv_get_physical_device_entry_name(int index) { return physical_device_entry_name(index); } const char * anv_get_device_entry_name(int index) { return device_entry_name(index); } static void * __attribute__ ((noinline)) anv_resolve_device_entrypoint(const struct gen_device_info *devinfo, uint32_t index) { const struct anv_device_dispatch_table *genX_table; switch (devinfo->gen) { case 12: genX_table = &gen12_device_dispatch_table; break; case 11: genX_table = &gen11_device_dispatch_table; break; case 10: genX_table = &gen10_device_dispatch_table; break; case 9: genX_table = &gen9_device_dispatch_table; break; case 8: genX_table = &gen8_device_dispatch_table; break; case 7: if (devinfo->is_haswell) genX_table = &gen75_device_dispatch_table; else genX_table = &gen7_device_dispatch_table; break; default: unreachable("unsupported gen\\n"); } if (genX_table->entrypoints[index]) return genX_table->entrypoints[index]; else return anv_device_dispatch_table.entrypoints[index]; } void * anv_lookup_entrypoint(const struct gen_device_info *devinfo, const char *name) { int idx = anv_get_instance_entrypoint_index(name); if (idx >= 0) return anv_instance_dispatch_table.entrypoints[idx]; idx = anv_get_physical_device_entrypoint_index(name); if (idx >= 0) return anv_physical_device_dispatch_table.entrypoints[idx]; idx = anv_get_device_entrypoint_index(name); if (idx >= 0) return anv_resolve_device_entrypoint(devinfo, idx); return NULL; }""", output_encoding='utf-8') U32_MASK = 2**32 - 1 PRIME_FACTOR = 5024183 PRIME_STEP = 19 class StringIntMapEntry(object): def __init__(self, string, num): self.string = string self.num = num # Calculate the same hash value that we will calculate in C. h = 0 for c in string: h = ((h * PRIME_FACTOR) + ord(c)) & U32_MASK self.hash = h self.offset = None def round_to_pow2(x): return 2**int(math.ceil(math.log(x, 2))) class StringIntMap(object): def __init__(self): self.baked = False self.strings = dict() def add_string(self, string, num): assert not self.baked assert string not in self.strings assert 0 <= num < 2**31 self.strings[string] = StringIntMapEntry(string, num) def bake(self): self.sorted_strings = \ sorted(self.strings.values(), key=lambda x: x.string) offset = 0 for entry in self.sorted_strings: entry.offset = offset offset += len(entry.string) + 1 # Save off some values that we'll need in C self.hash_size = round_to_pow2(len(self.strings) * 1.25) self.hash_mask = self.hash_size - 1 self.prime_factor = PRIME_FACTOR self.prime_step = PRIME_STEP self.mapping = [-1] * self.hash_size self.collisions = [0] * 10 for idx, s in enumerate(self.sorted_strings): level = 0 h = s.hash while self.mapping[h & self.hash_mask] >= 0: h = h + PRIME_STEP level = level + 1 self.collisions[min(level, 9)] += 1 self.mapping[h & self.hash_mask] = idx EntrypointParam = namedtuple('EntrypointParam', 'type name decl') class EntrypointBase(object): def __init__(self, name): self.name = name self.alias = None self.guard = None self.enabled = False self.num = None # Extensions which require this entrypoint self.core_version = None self.extensions = [] class Entrypoint(EntrypointBase): def __init__(self, name, return_type, params, guard=None): super(Entrypoint, self).__init__(name) self.return_type = return_type self.params = params self.guard = guard def is_physical_device_entrypoint(self): return self.params[0].type in ('VkPhysicalDevice', ) def is_device_entrypoint(self): return self.params[0].type in ('VkDevice', 'VkCommandBuffer', 'VkQueue') def prefixed_name(self, prefix): assert self.name.startswith('vk') return prefix + '_' + self.name[2:] def decl_params(self): return ', '.join(p.decl for p in self.params) def call_params(self): return ', '.join(p.name for p in self.params) class EntrypointAlias(EntrypointBase): def __init__(self, name, entrypoint): super(EntrypointAlias, self).__init__(name) self.alias = entrypoint def is_physical_device_entrypoint(self): return self.alias.is_physical_device_entrypoint() def is_device_entrypoint(self): return self.alias.is_device_entrypoint() def prefixed_name(self, prefix): return self.alias.prefixed_name(prefix) def get_entrypoints(doc, entrypoints_to_defines): """Extract the entry points from the registry.""" entrypoints = OrderedDict() for command in doc.findall('./commands/command'): if 'alias' in command.attrib: alias = command.attrib['name'] target = command.attrib['alias'] entrypoints[alias] = EntrypointAlias(alias, entrypoints[target]) else: name = command.find('./proto/name').text ret_type = command.find('./proto/type').text params = [EntrypointParam( type=p.find('./type').text, name=p.find('./name').text, decl=''.join(p.itertext()) ) for p in command.findall('./param')] guard = entrypoints_to_defines.get(name) # They really need to be unique assert name not in entrypoints entrypoints[name] = Entrypoint(name, ret_type, params, guard) for feature in doc.findall('./feature'): assert feature.attrib['api'] == 'vulkan' version = VkVersion(feature.attrib['number']) if version > MAX_API_VERSION: continue for command in feature.findall('./require/command'): e = entrypoints[command.attrib['name']] e.enabled = True assert e.core_version is None e.core_version = version supported_exts = dict((ext.name, ext) for ext in EXTENSIONS) for extension in doc.findall('.extensions/extension'): ext_name = extension.attrib['name'] if ext_name not in supported_exts: continue ext = supported_exts[ext_name] ext.type = extension.attrib['type'] for command in extension.findall('./require/command'): e = entrypoints[command.attrib['name']] e.enabled = True assert e.core_version is None e.extensions.append(ext) return [e for e in entrypoints.values() if e.enabled] def get_entrypoints_defines(doc): """Maps entry points to extension defines.""" entrypoints_to_defines = {} platform_define = {} for platform in doc.findall('./platforms/platform'): name = platform.attrib['name'] define = platform.attrib['protect'] platform_define[name] = define for extension in doc.findall('./extensions/extension[@platform]'): platform = extension.attrib['platform'] define = platform_define[platform] for entrypoint in extension.findall('./require/command'): fullname = entrypoint.attrib['name'] entrypoints_to_defines[fullname] = define return entrypoints_to_defines def main(): parser = argparse.ArgumentParser() parser.add_argument('--outdir', help='Where to write the files.', required=True) parser.add_argument('--xml', help='Vulkan API XML file.', required=True, action='append', dest='xml_files') args = parser.parse_args() entrypoints = [] for filename in args.xml_files: doc = et.parse(filename) entrypoints += get_entrypoints(doc, get_entrypoints_defines(doc)) # Manually add CreateDmaBufImageINTEL for which we don't have an extension # defined. entrypoints.append(Entrypoint('vkCreateDmaBufImageINTEL', 'VkResult', [ EntrypointParam('VkDevice', 'device', 'VkDevice device'), EntrypointParam('VkDmaBufImageCreateInfo', 'pCreateInfo', 'const VkDmaBufImageCreateInfo* pCreateInfo'), EntrypointParam('VkAllocationCallbacks', 'pAllocator', 'const VkAllocationCallbacks* pAllocator'), EntrypointParam('VkDeviceMemory', 'pMem', 'VkDeviceMemory* pMem'), EntrypointParam('VkImage', 'pImage', 'VkImage* pImage') ])) device_entrypoints = [] physical_device_entrypoints = [] instance_entrypoints = [] for e in entrypoints: if e.is_device_entrypoint(): device_entrypoints.append(e) elif e.is_physical_device_entrypoint(): physical_device_entrypoints.append(e) else: instance_entrypoints.append(e) device_strmap = StringIntMap() for num, e in enumerate(device_entrypoints): device_strmap.add_string(e.name, num) e.num = num device_strmap.bake() physical_device_strmap = StringIntMap() for num, e in enumerate(physical_device_entrypoints): physical_device_strmap.add_string(e.name, num) e.num = num physical_device_strmap.bake() instance_strmap = StringIntMap() for num, e in enumerate(instance_entrypoints): instance_strmap.add_string(e.name, num) e.num = num instance_strmap.bake() # For outputting entrypoints.h we generate a anv_EntryPoint() prototype # per entry point. try: with open(os.path.join(args.outdir, 'anv_entrypoints.h'), 'wb') as f: f.write(TEMPLATE_H.render(instance_entrypoints=instance_entrypoints, physical_device_entrypoints=physical_device_entrypoints, device_entrypoints=device_entrypoints, LAYERS=LAYERS, filename=os.path.basename(__file__))) with open(os.path.join(args.outdir, 'anv_entrypoints.c'), 'wb') as f: f.write(TEMPLATE_C.render(instance_entrypoints=instance_entrypoints, physical_device_entrypoints=physical_device_entrypoints, device_entrypoints=device_entrypoints, LAYERS=LAYERS, instance_strmap=instance_strmap, physical_device_strmap=physical_device_strmap, device_strmap=device_strmap, filename=os.path.basename(__file__))) except Exception: # In the event there's an error, this imports some helpers from mako # to print a useful stack trace and prints it, then exits with # status 1, if python is run with debug; otherwise it just raises # the exception if __debug__: import sys from mako import exceptions sys.stderr.write(exceptions.text_error_template().render() + '\n') sys.exit(1) raise if __name__ == '__main__': main()