/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "drm-uapi/drm_fourcc.h" #include "anv_private.h" #include "util/strtod.h" #include "util/debug.h" #include "util/build_id.h" #include "util/disk_cache.h" #include "util/mesa-sha1.h" #include "util/u_string.h" #include "git_sha1.h" #include "vk_util.h" #include "common/gen_defines.h" #include "compiler/glsl_types.h" #include "genxml/gen7_pack.h" /* This is probably far to big but it reflects the max size used for messages * in OpenGLs KHR_debug. */ #define MAX_DEBUG_MESSAGE_LENGTH 4096 static void compiler_debug_log(void *data, const char *fmt, ...) { char str[MAX_DEBUG_MESSAGE_LENGTH]; struct anv_device *device = (struct anv_device *)data; if (list_empty(&device->instance->debug_report_callbacks.callbacks)) return; va_list args; va_start(args, fmt); (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args); va_end(args); vk_debug_report(&device->instance->debug_report_callbacks, VK_DEBUG_REPORT_DEBUG_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, 0, 0, "anv", str); } static void compiler_perf_log(void *data, const char *fmt, ...) { va_list args; va_start(args, fmt); if (unlikely(INTEL_DEBUG & DEBUG_PERF)) intel_logd_v(fmt, args); va_end(args); } static uint64_t anv_compute_heap_size(int fd, uint64_t gtt_size) { /* Query the total ram from the system */ struct sysinfo info; sysinfo(&info); uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit; /* We don't want to burn too much ram with the GPU. If the user has 4GiB * or less, we use at most half. If they have more than 4GiB, we use 3/4. */ uint64_t available_ram; if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull) available_ram = total_ram / 2; else available_ram = total_ram * 3 / 4; /* We also want to leave some padding for things we allocate in the driver, * so don't go over 3/4 of the GTT either. */ uint64_t available_gtt = gtt_size * 3 / 4; return MIN2(available_ram, available_gtt); } static VkResult anv_physical_device_init_heaps(struct anv_physical_device *device, int fd) { uint64_t gtt_size; if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE, >t_size) == -1) { /* If, for whatever reason, we can't actually get the GTT size from the * kernel (too old?) fall back to the aperture size. */ anv_perf_warn(NULL, NULL, "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m"); if (anv_gem_get_aperture(fd, >t_size) == -1) { return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED, "failed to get aperture size: %m"); } } device->supports_48bit_addresses = (device->info.gen >= 8) && gtt_size > (4ULL << 30 /* GiB */); uint64_t heap_size = anv_compute_heap_size(fd, gtt_size); if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) { /* When running with an overridden PCI ID, we may get a GTT size from * the kernel that is greater than 2 GiB but the execbuf check for 48bit * address support can still fail. Just clamp the address space size to * 2 GiB if we don't have 48-bit support. */ intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but " "not support for 48-bit addresses", __FILE__, __LINE__); heap_size = 2ull << 30; } if (heap_size <= 3ull * (1ull << 30)) { /* In this case, everything fits nicely into the 32-bit address space, * so there's no need for supporting 48bit addresses on client-allocated * memory objects. */ device->memory.heap_count = 1; device->memory.heaps[0] = (struct anv_memory_heap) { .vma_start = LOW_HEAP_MIN_ADDRESS, .vma_size = LOW_HEAP_SIZE, .size = heap_size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, .supports_48bit_addresses = false, }; } else { /* Not everything will fit nicely into a 32-bit address space. In this * case we need a 64-bit heap. Advertise a small 32-bit heap and a * larger 48-bit heap. If we're in this case, then we have a total heap * size larger than 3GiB which most likely means they have 8 GiB of * video memory and so carving off 1 GiB for the 32-bit heap should be * reasonable. */ const uint64_t heap_size_32bit = 1ull << 30; const uint64_t heap_size_48bit = heap_size - heap_size_32bit; assert(device->supports_48bit_addresses); device->memory.heap_count = 2; device->memory.heaps[0] = (struct anv_memory_heap) { .vma_start = HIGH_HEAP_MIN_ADDRESS, /* Leave the last 4GiB out of the high vma range, so that no state * base address + size can overflow 48 bits. For more information see * the comment about Wa32bitGeneralStateOffset in anv_allocator.c */ .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS, .size = heap_size_48bit, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, .supports_48bit_addresses = true, }; device->memory.heaps[1] = (struct anv_memory_heap) { .vma_start = LOW_HEAP_MIN_ADDRESS, .vma_size = LOW_HEAP_SIZE, .size = heap_size_32bit, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, .supports_48bit_addresses = false, }; } uint32_t type_count = 0; for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) { uint32_t valid_buffer_usage = ~0; /* There appears to be a hardware issue in the VF cache where it only * considers the bottom 32 bits of memory addresses. If you happen to * have two vertex buffers which get placed exactly 4 GiB apart and use * them in back-to-back draw calls, you can get collisions. In order to * solve this problem, we require vertex and index buffers be bound to * memory allocated out of the 32-bit heap. */ if (device->memory.heaps[heap].supports_48bit_addresses) { valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); } if (device->info.has_llc) { /* Big core GPUs share LLC with the CPU and thus one memory type can be * both cached and coherent at the same time. */ device->memory.types[type_count++] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, .heapIndex = heap, .valid_buffer_usage = valid_buffer_usage, }; } else { /* The spec requires that we expose a host-visible, coherent memory * type, but Atom GPUs don't share LLC. Thus we offer two memory types * to give the application a choice between cached, but not coherent and * coherent but uncached (WC though). */ device->memory.types[type_count++] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = heap, .valid_buffer_usage = valid_buffer_usage, }; device->memory.types[type_count++] = (struct anv_memory_type) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, .heapIndex = heap, .valid_buffer_usage = valid_buffer_usage, }; } } device->memory.type_count = type_count; return VK_SUCCESS; } static VkResult anv_physical_device_init_uuids(struct anv_physical_device *device) { const struct build_id_note *note = build_id_find_nhdr_for_addr(anv_physical_device_init_uuids); if (!note) { return vk_errorf(device->instance, device, VK_ERROR_INITIALIZATION_FAILED, "Failed to find build-id"); } unsigned build_id_len = build_id_length(note); if (build_id_len < 20) { return vk_errorf(device->instance, device, VK_ERROR_INITIALIZATION_FAILED, "build-id too short. It needs to be a SHA"); } memcpy(device->driver_build_sha1, build_id_data(note), 20); struct mesa_sha1 sha1_ctx; uint8_t sha1[20]; STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1)); /* The pipeline cache UUID is used for determining when a pipeline cache is * invalid. It needs both a driver build and the PCI ID of the device. */ _mesa_sha1_init(&sha1_ctx); _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len); _mesa_sha1_update(&sha1_ctx, &device->chipset_id, sizeof(device->chipset_id)); _mesa_sha1_final(&sha1_ctx, sha1); memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE); /* The driver UUID is used for determining sharability of images and memory * between two Vulkan instances in separate processes. People who want to * share memory need to also check the device UUID (below) so all this * needs to be is the build-id. */ memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE); /* The device UUID uniquely identifies the given device within the machine. * Since we never have more than one device, this doesn't need to be a real * UUID. However, on the off-chance that someone tries to use this to * cache pre-tiled images or something of the like, we use the PCI ID and * some bits of ISL info to ensure that this is safe. */ _mesa_sha1_init(&sha1_ctx); _mesa_sha1_update(&sha1_ctx, &device->chipset_id, sizeof(device->chipset_id)); _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling, sizeof(device->isl_dev.has_bit6_swizzling)); _mesa_sha1_final(&sha1_ctx, sha1); memcpy(device->device_uuid, sha1, VK_UUID_SIZE); return VK_SUCCESS; } static void anv_physical_device_init_disk_cache(struct anv_physical_device *device) { #ifdef ENABLE_SHADER_CACHE char renderer[10]; MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x", device->chipset_id); assert(len == sizeof(renderer) - 2); char timestamp[41]; _mesa_sha1_format(timestamp, device->driver_build_sha1); const uint64_t driver_flags = brw_get_compiler_config_value(device->compiler); device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags); #else device->disk_cache = NULL; #endif } static void anv_physical_device_free_disk_cache(struct anv_physical_device *device) { #ifdef ENABLE_SHADER_CACHE if (device->disk_cache) disk_cache_destroy(device->disk_cache); #else assert(device->disk_cache == NULL); #endif } static VkResult anv_physical_device_init(struct anv_physical_device *device, struct anv_instance *instance, drmDevicePtr drm_device) { const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY]; const char *path = drm_device->nodes[DRM_NODE_RENDER]; VkResult result; int fd; int master_fd = -1; brw_process_intel_debug_variable(); fd = open(path, O_RDWR | O_CLOEXEC); if (fd < 0) return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; device->instance = instance; assert(strlen(path) < ARRAY_SIZE(device->path)); snprintf(device->path, ARRAY_SIZE(device->path), "%s", path); device->no_hw = getenv("INTEL_NO_HW") != NULL; const int pci_id_override = gen_get_pci_device_id_override(); if (pci_id_override < 0) { device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID); if (!device->chipset_id) { result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); goto fail; } } else { device->chipset_id = pci_id_override; device->no_hw = true; } device->pci_info.domain = drm_device->businfo.pci->domain; device->pci_info.bus = drm_device->businfo.pci->bus; device->pci_info.device = drm_device->businfo.pci->dev; device->pci_info.function = drm_device->businfo.pci->func; device->name = gen_get_device_name(device->chipset_id); if (!gen_get_device_info(device->chipset_id, &device->info)) { result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); goto fail; } if (device->info.is_haswell) { intel_logw("Haswell Vulkan support is incomplete"); } else if (device->info.gen == 7 && !device->info.is_baytrail) { intel_logw("Ivy Bridge Vulkan support is incomplete"); } else if (device->info.gen == 7 && device->info.is_baytrail) { intel_logw("Bay Trail Vulkan support is incomplete"); } else if (device->info.gen >= 8 && device->info.gen <= 10) { /* Gen8-10 fully supported */ } else if (device->info.gen == 11) { intel_logw("Vulkan is not yet fully supported on gen11."); } else { result = vk_errorf(device->instance, device, VK_ERROR_INCOMPATIBLE_DRIVER, "Vulkan not yet supported on %s", device->name); goto fail; } device->cmd_parser_version = -1; if (device->info.gen == 7) { device->cmd_parser_version = anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION); if (device->cmd_parser_version == -1) { result = vk_errorf(device->instance, device, VK_ERROR_INITIALIZATION_FAILED, "failed to get command parser version"); goto fail; } } if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) { result = vk_errorf(device->instance, device, VK_ERROR_INITIALIZATION_FAILED, "kernel missing gem wait"); goto fail; } if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) { result = vk_errorf(device->instance, device, VK_ERROR_INITIALIZATION_FAILED, "kernel missing execbuf2"); goto fail; } if (!device->info.has_llc && anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) { result = vk_errorf(device->instance, device, VK_ERROR_INITIALIZATION_FAILED, "kernel missing wc mmap"); goto fail; } result = anv_physical_device_init_heaps(device, fd); if (result != VK_SUCCESS) goto fail; device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC); device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE); device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE); device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY); device->has_syncobj_wait = device->has_syncobj && anv_gem_supports_syncobj_wait(fd); device->has_context_priority = anv_gem_has_context_priority(fd); device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN) && device->supports_48bit_addresses; device->has_context_isolation = anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION); /* Starting with Gen10, the timestamp frequency of the command streamer may * vary from one part to another. We can query the value from the kernel. */ if (device->info.gen >= 10) { int timestamp_frequency = anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY); if (timestamp_frequency < 0) intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency"); else device->info.timestamp_frequency = timestamp_frequency; } /* GENs prior to 8 do not support EU/Subslice info */ if (device->info.gen >= 8) { device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL); device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL); /* Without this information, we cannot get the right Braswell * brandstrings, and we have to use conservative numbers for GPGPU on * many platforms, but otherwise, things will just work. */ if (device->subslice_total < 1 || device->eu_total < 1) { intel_logw("Kernel 4.1 required to properly query GPU properties"); } } else if (device->info.gen == 7) { device->subslice_total = 1 << (device->info.gt - 1); } if (device->info.is_cherryview && device->subslice_total > 0 && device->eu_total > 0) { /* Logical CS threads = EUs per subslice * num threads per EU */ uint32_t max_cs_threads = device->eu_total / device->subslice_total * device->info.num_thread_per_eu; /* Fuse configurations may give more threads than expected, never less. */ if (max_cs_threads > device->info.max_cs_threads) device->info.max_cs_threads = max_cs_threads; } device->compiler = brw_compiler_create(NULL, &device->info); if (device->compiler == NULL) { result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); goto fail; } device->compiler->shader_debug_log = compiler_debug_log; device->compiler->shader_perf_log = compiler_perf_log; device->compiler->supports_pull_constants = false; device->compiler->constant_buffer_0_is_relative = device->info.gen < 8 || !device->has_context_isolation; device->compiler->supports_shader_constants = true; /* Broadwell PRM says: * * "Before Gen8, there was a historical configuration control field to * swizzle address bit[6] for in X/Y tiling modes. This was set in three * different places: TILECTL[1:0], ARB_MODE[5:4], and * DISP_ARB_CTL[14:13]. * * For Gen8 and subsequent generations, the swizzle fields are all * reserved, and the CPU's memory controller performs all address * swizzling modifications." */ bool swizzled = device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X); isl_device_init(&device->isl_dev, &device->info, swizzled); result = anv_physical_device_init_uuids(device); if (result != VK_SUCCESS) goto fail; anv_physical_device_init_disk_cache(device); if (instance->enabled_extensions.KHR_display) { master_fd = open(primary_path, O_RDWR | O_CLOEXEC); if (master_fd >= 0) { /* prod the device with a GETPARAM call which will fail if * we don't have permission to even render on this device */ if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) { close(master_fd); master_fd = -1; } } } device->master_fd = master_fd; result = anv_init_wsi(device); if (result != VK_SUCCESS) { ralloc_free(device->compiler); anv_physical_device_free_disk_cache(device); goto fail; } anv_physical_device_get_supported_extensions(device, &device->supported_extensions); device->local_fd = fd; return VK_SUCCESS; fail: close(fd); if (master_fd != -1) close(master_fd); return result; } static void anv_physical_device_finish(struct anv_physical_device *device) { anv_finish_wsi(device); anv_physical_device_free_disk_cache(device); ralloc_free(device->compiler); close(device->local_fd); if (device->master_fd >= 0) close(device->master_fd); } static void * default_alloc_func(void *pUserData, size_t size, size_t align, VkSystemAllocationScope allocationScope) { return malloc(size); } static void * default_realloc_func(void *pUserData, void *pOriginal, size_t size, size_t align, VkSystemAllocationScope allocationScope) { return realloc(pOriginal, size); } static void default_free_func(void *pUserData, void *pMemory) { free(pMemory); } static const VkAllocationCallbacks default_alloc = { .pUserData = NULL, .pfnAllocation = default_alloc_func, .pfnReallocation = default_realloc_func, .pfnFree = default_free_func, }; VkResult anv_EnumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount); for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) { if (anv_instance_extensions_supported.extensions[i]) { vk_outarray_append(&out, prop) { *prop = anv_instance_extensions[i]; } } } return vk_outarray_status(&out); } VkResult anv_CreateInstance( const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) { struct anv_instance *instance; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO); struct anv_instance_extension_table enabled_extensions = {}; for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { int idx; for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) { if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], anv_instance_extensions[idx].extensionName) == 0) break; } if (idx >= ANV_INSTANCE_EXTENSION_COUNT) return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); if (!anv_instance_extensions_supported.extensions[idx]) return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); enabled_extensions.extensions[idx] = true; } instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!instance) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC; if (pAllocator) instance->alloc = *pAllocator; else instance->alloc = default_alloc; instance->app_info = (struct anv_app_info) { .api_version = 0 }; if (pCreateInfo->pApplicationInfo) { const VkApplicationInfo *app = pCreateInfo->pApplicationInfo; instance->app_info.app_name = vk_strdup(&instance->alloc, app->pApplicationName, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); instance->app_info.app_version = app->applicationVersion; instance->app_info.engine_name = vk_strdup(&instance->alloc, app->pEngineName, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); instance->app_info.engine_version = app->engineVersion; instance->app_info.api_version = app->apiVersion; } if (instance->app_info.api_version == 0) instance->app_info.api_version = VK_API_VERSION_1_0; instance->enabled_extensions = enabled_extensions; for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) { /* Vulkan requires that entrypoints for extensions which have not been * enabled must not be advertised. */ if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version, &instance->enabled_extensions)) { instance->dispatch.entrypoints[i] = NULL; } else { instance->dispatch.entrypoints[i] = anv_instance_dispatch_table.entrypoints[i]; } } for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) { /* Vulkan requires that entrypoints for extensions which have not been * enabled must not be advertised. */ if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version, &instance->enabled_extensions, NULL)) { instance->device_dispatch.entrypoints[i] = NULL; } else { instance->device_dispatch.entrypoints[i] = anv_device_dispatch_table.entrypoints[i]; } } instance->physicalDeviceCount = -1; result = vk_debug_report_instance_init(&instance->debug_report_callbacks); if (result != VK_SUCCESS) { vk_free2(&default_alloc, pAllocator, instance); return vk_error(result); } instance->pipeline_cache_enabled = env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true); _mesa_locale_init(); glsl_type_singleton_init_or_ref(); VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false)); *pInstance = anv_instance_to_handle(instance); return VK_SUCCESS; } void anv_DestroyInstance( VkInstance _instance, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_instance, instance, _instance); if (!instance) return; if (instance->physicalDeviceCount > 0) { /* We support at most one physical device. */ assert(instance->physicalDeviceCount == 1); anv_physical_device_finish(&instance->physicalDevice); } vk_free(&instance->alloc, (char *)instance->app_info.app_name); vk_free(&instance->alloc, (char *)instance->app_info.engine_name); VG(VALGRIND_DESTROY_MEMPOOL(instance)); vk_debug_report_instance_destroy(&instance->debug_report_callbacks); glsl_type_singleton_decref(); _mesa_locale_fini(); vk_free(&instance->alloc, instance); } static VkResult anv_enumerate_devices(struct anv_instance *instance) { /* TODO: Check for more devices ? */ drmDevicePtr devices[8]; VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER; int max_devices; instance->physicalDeviceCount = 0; max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices)); if (max_devices < 1) return VK_ERROR_INCOMPATIBLE_DRIVER; for (unsigned i = 0; i < (unsigned)max_devices; i++) { if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER && devices[i]->bustype == DRM_BUS_PCI && devices[i]->deviceinfo.pci->vendor_id == 0x8086) { result = anv_physical_device_init(&instance->physicalDevice, instance, devices[i]); if (result != VK_ERROR_INCOMPATIBLE_DRIVER) break; } } drmFreeDevices(devices, max_devices); if (result == VK_SUCCESS) instance->physicalDeviceCount = 1; return result; } static VkResult anv_instance_ensure_physical_device(struct anv_instance *instance) { if (instance->physicalDeviceCount < 0) { VkResult result = anv_enumerate_devices(instance); if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER) return result; } return VK_SUCCESS; } VkResult anv_EnumeratePhysicalDevices( VkInstance _instance, uint32_t* pPhysicalDeviceCount, VkPhysicalDevice* pPhysicalDevices) { ANV_FROM_HANDLE(anv_instance, instance, _instance); VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount); VkResult result = anv_instance_ensure_physical_device(instance); if (result != VK_SUCCESS) return result; if (instance->physicalDeviceCount == 0) return VK_SUCCESS; assert(instance->physicalDeviceCount == 1); vk_outarray_append(&out, i) { *i = anv_physical_device_to_handle(&instance->physicalDevice); } return vk_outarray_status(&out); } VkResult anv_EnumeratePhysicalDeviceGroups( VkInstance _instance, uint32_t* pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties) { ANV_FROM_HANDLE(anv_instance, instance, _instance); VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties, pPhysicalDeviceGroupCount); VkResult result = anv_instance_ensure_physical_device(instance); if (result != VK_SUCCESS) return result; if (instance->physicalDeviceCount == 0) return VK_SUCCESS; assert(instance->physicalDeviceCount == 1); vk_outarray_append(&out, p) { p->physicalDeviceCount = 1; memset(p->physicalDevices, 0, sizeof(p->physicalDevices)); p->physicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice); p->subsetAllocation = false; vk_foreach_struct(ext, p->pNext) anv_debug_ignored_stype(ext->sType); } return vk_outarray_status(&out); } void anv_GetPhysicalDeviceFeatures( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); *pFeatures = (VkPhysicalDeviceFeatures) { .robustBufferAccess = true, .fullDrawIndexUint32 = true, .imageCubeArray = true, .independentBlend = true, .geometryShader = true, .tessellationShader = true, .sampleRateShading = true, .dualSrcBlend = true, .logicOp = true, .multiDrawIndirect = true, .drawIndirectFirstInstance = true, .depthClamp = true, .depthBiasClamp = true, .fillModeNonSolid = true, .depthBounds = false, .wideLines = true, .largePoints = true, .alphaToOne = true, .multiViewport = true, .samplerAnisotropy = true, .textureCompressionETC2 = pdevice->info.gen >= 8 || pdevice->info.is_baytrail, .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */ .textureCompressionBC = true, .occlusionQueryPrecise = true, .pipelineStatisticsQuery = true, .fragmentStoresAndAtomics = true, .shaderTessellationAndGeometryPointSize = true, .shaderImageGatherExtended = true, .shaderStorageImageExtendedFormats = true, .shaderStorageImageMultisample = false, .shaderStorageImageReadWithoutFormat = false, .shaderStorageImageWriteWithoutFormat = true, .shaderUniformBufferArrayDynamicIndexing = true, .shaderSampledImageArrayDynamicIndexing = true, .shaderStorageBufferArrayDynamicIndexing = true, .shaderStorageImageArrayDynamicIndexing = true, .shaderClipDistance = true, .shaderCullDistance = true, .shaderFloat64 = pdevice->info.gen >= 8 && pdevice->info.has_64bit_types, .shaderInt64 = pdevice->info.gen >= 8 && pdevice->info.has_64bit_types, .shaderInt16 = pdevice->info.gen >= 8, .shaderResourceMinLod = pdevice->info.gen >= 9, .variableMultisampleRate = true, .inheritedQueries = true, }; /* We can't do image stores in vec4 shaders */ pFeatures->vertexPipelineStoresAndAtomics = pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] && pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY]; struct anv_app_info *app_info = &pdevice->instance->app_info; /* The new DOOM and Wolfenstein games require depthBounds without * checking for it. They seem to run fine without it so just claim it's * there and accept the consequences. */ if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0) pFeatures->depthBounds = true; } void anv_GetPhysicalDeviceFeatures2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2* pFeatures) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features); vk_foreach_struct(ext, pFeatures->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: { VkPhysicalDevice8BitStorageFeaturesKHR *features = (VkPhysicalDevice8BitStorageFeaturesKHR *)ext; features->storageBuffer8BitAccess = pdevice->info.gen >= 8; features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8; features->storagePushConstant8 = pdevice->info.gen >= 8; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: { VkPhysicalDevice16BitStorageFeatures *features = (VkPhysicalDevice16BitStorageFeatures *)ext; features->storageBuffer16BitAccess = pdevice->info.gen >= 8; features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8; features->storagePushConstant16 = pdevice->info.gen >= 8; features->storageInputOutput16 = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: { VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext; features->bufferDeviceAddress = pdevice->use_softpin && pdevice->info.gen >= 8; features->bufferDeviceAddressCaptureReplay = false; features->bufferDeviceAddressMultiDevice = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: { VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features = (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext; features->computeDerivativeGroupQuads = true; features->computeDerivativeGroupLinear = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: { VkPhysicalDeviceConditionalRenderingFeaturesEXT *features = (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext; features->conditionalRendering = pdevice->info.gen >= 8 || pdevice->info.is_haswell; features->inheritedConditionalRendering = pdevice->info.gen >= 8 || pdevice->info.is_haswell; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: { VkPhysicalDeviceDepthClipEnableFeaturesEXT *features = (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext; features->depthClipEnable = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: { VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext; features->shaderFloat16 = pdevice->info.gen >= 8; features->shaderInt8 = pdevice->info.gen >= 8; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: { VkPhysicalDeviceHostQueryResetFeaturesEXT *features = (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext; features->hostQueryReset = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: { VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features = (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext; features->inlineUniformBlock = true; features->descriptorBindingInlineUniformBlockUpdateAfterBind = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: { VkPhysicalDeviceMultiviewFeatures *features = (VkPhysicalDeviceMultiviewFeatures *)ext; features->multiview = true; features->multiviewGeometryShader = true; features->multiviewTessellationShader = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: { VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext; features->protectedMemory = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: { VkPhysicalDeviceSamplerYcbcrConversionFeatures *features = (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext; features->samplerYcbcrConversion = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: { VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features = (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext; features->scalarBlockLayout = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: { VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext; features->shaderDrawParameters = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: { VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext; features->variablePointersStorageBuffer = true; features->variablePointers = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: { VkPhysicalDeviceTransformFeedbackFeaturesEXT *features = (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext; features->transformFeedback = true; features->geometryStreams = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: { VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features = (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext; features->vertexAttributeInstanceRateDivisor = true; features->vertexAttributeInstanceRateZeroDivisor = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: { VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features = (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext; features->ycbcrImageArrays = true; break; } default: anv_debug_ignored_stype(ext->sType); break; } } } void anv_GetPhysicalDeviceProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties* pProperties) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); const struct gen_device_info *devinfo = &pdevice->info; /* See assertions made when programming the buffer surface state. */ const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ? (1ul << 30) : (1ul << 27); const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16; const uint32_t max_images = devinfo->gen < 9 ? MAX_GEN8_IMAGES : MAX_IMAGES; VkSampleCountFlags sample_counts = isl_device_get_sample_counts(&pdevice->isl_dev); VkPhysicalDeviceLimits limits = { .maxImageDimension1D = (1 << 14), .maxImageDimension2D = (1 << 14), .maxImageDimension3D = (1 << 11), .maxImageDimensionCube = (1 << 14), .maxImageArrayLayers = (1 << 11), .maxTexelBufferElements = 128 * 1024 * 1024, .maxUniformBufferRange = (1ul << 27), .maxStorageBufferRange = max_raw_buffer_sz, .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE, .maxMemoryAllocationCount = UINT32_MAX, .maxSamplerAllocationCount = 64 * 1024, .bufferImageGranularity = 64, /* A cache line */ .sparseAddressSpaceSize = 0, .maxBoundDescriptorSets = MAX_SETS, .maxPerStageDescriptorSamplers = max_samplers, .maxPerStageDescriptorUniformBuffers = 64, .maxPerStageDescriptorStorageBuffers = 64, .maxPerStageDescriptorSampledImages = max_samplers, .maxPerStageDescriptorStorageImages = max_images, .maxPerStageDescriptorInputAttachments = 64, .maxPerStageResources = 250, .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */ .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */ .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2, .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */ .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2, .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */ .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */ .maxDescriptorSetInputAttachments = 256, .maxVertexInputAttributes = MAX_VBS, .maxVertexInputBindings = MAX_VBS, .maxVertexInputAttributeOffset = 2047, .maxVertexInputBindingStride = 2048, .maxVertexOutputComponents = 128, .maxTessellationGenerationLevel = 64, .maxTessellationPatchSize = 32, .maxTessellationControlPerVertexInputComponents = 128, .maxTessellationControlPerVertexOutputComponents = 128, .maxTessellationControlPerPatchOutputComponents = 128, .maxTessellationControlTotalOutputComponents = 2048, .maxTessellationEvaluationInputComponents = 128, .maxTessellationEvaluationOutputComponents = 128, .maxGeometryShaderInvocations = 32, .maxGeometryInputComponents = 64, .maxGeometryOutputComponents = 128, .maxGeometryOutputVertices = 256, .maxGeometryTotalOutputComponents = 1024, .maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */ .maxFragmentOutputAttachments = 8, .maxFragmentDualSrcAttachments = 1, .maxFragmentCombinedOutputResources = 8, .maxComputeSharedMemorySize = 32768, .maxComputeWorkGroupCount = { 65535, 65535, 65535 }, .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads, .maxComputeWorkGroupSize = { 16 * devinfo->max_cs_threads, 16 * devinfo->max_cs_threads, 16 * devinfo->max_cs_threads, }, .subPixelPrecisionBits = 8, .subTexelPrecisionBits = 8, .mipmapPrecisionBits = 8, .maxDrawIndexedIndexValue = UINT32_MAX, .maxDrawIndirectCount = UINT32_MAX, .maxSamplerLodBias = 16, .maxSamplerAnisotropy = 16, .maxViewports = MAX_VIEWPORTS, .maxViewportDimensions = { (1 << 14), (1 << 14) }, .viewportBoundsRange = { INT16_MIN, INT16_MAX }, .viewportSubPixelBits = 13, /* We take a float? */ .minMemoryMapAlignment = 4096, /* A page */ .minTexelBufferOffsetAlignment = 1, /* We need 16 for UBO block reads to work and 32 for push UBOs */ .minUniformBufferOffsetAlignment = 32, .minStorageBufferOffsetAlignment = 4, .minTexelOffset = -8, .maxTexelOffset = 7, .minTexelGatherOffset = -32, .maxTexelGatherOffset = 31, .minInterpolationOffset = -0.5, .maxInterpolationOffset = 0.4375, .subPixelInterpolationOffsetBits = 4, .maxFramebufferWidth = (1 << 14), .maxFramebufferHeight = (1 << 14), .maxFramebufferLayers = (1 << 11), .framebufferColorSampleCounts = sample_counts, .framebufferDepthSampleCounts = sample_counts, .framebufferStencilSampleCounts = sample_counts, .framebufferNoAttachmentsSampleCounts = sample_counts, .maxColorAttachments = MAX_RTS, .sampledImageColorSampleCounts = sample_counts, .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT, .sampledImageDepthSampleCounts = sample_counts, .sampledImageStencilSampleCounts = sample_counts, .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT, .maxSampleMaskWords = 1, .timestampComputeAndGraphics = false, .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency, .maxClipDistances = 8, .maxCullDistances = 8, .maxCombinedClipAndCullDistances = 8, .discreteQueuePriorities = 2, .pointSizeRange = { 0.125, 255.875 }, .lineWidthRange = { 0.0, 7.9921875 }, .pointSizeGranularity = (1.0 / 8.0), .lineWidthGranularity = (1.0 / 128.0), .strictLines = false, /* FINISHME */ .standardSampleLocations = true, .optimalBufferCopyOffsetAlignment = 128, .optimalBufferCopyRowPitchAlignment = 128, .nonCoherentAtomSize = 64, }; *pProperties = (VkPhysicalDeviceProperties) { .apiVersion = anv_physical_device_api_version(pdevice), .driverVersion = vk_get_driver_version(), .vendorID = 0x8086, .deviceID = pdevice->chipset_id, .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU, .limits = limits, .sparseProperties = {0}, /* Broadwell doesn't do sparse. */ }; snprintf(pProperties->deviceName, sizeof(pProperties->deviceName), "%s", pdevice->name); memcpy(pProperties->pipelineCacheUUID, pdevice->pipeline_cache_uuid, VK_UUID_SIZE); } void anv_GetPhysicalDeviceProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2* pProperties) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties); vk_foreach_struct(ext, pProperties->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: { VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props = (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext; /* We support all of the depth resolve modes */ props->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR | VK_RESOLVE_MODE_AVERAGE_BIT_KHR | VK_RESOLVE_MODE_MIN_BIT_KHR | VK_RESOLVE_MODE_MAX_BIT_KHR; /* Average doesn't make sense for stencil so we don't support that */ props->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR; if (pdevice->info.gen >= 8) { /* The advanced stencil resolve modes currently require stencil * sampling be supported by the hardware. */ props->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR | VK_RESOLVE_MODE_MAX_BIT_KHR; } props->independentResolveNone = true; props->independentResolve = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: { VkPhysicalDeviceDriverPropertiesKHR *driver_props = (VkPhysicalDeviceDriverPropertiesKHR *) ext; driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR; util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR, "Intel open-source Mesa driver"); util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1); driver_props->conformanceVersion = (VkConformanceVersionKHR) { .major = 1, .minor = 1, .subminor = 2, .patch = 0, }; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: { VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props = (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext; /* Userptr needs page aligned memory. */ props->minImportedHostPointerAlignment = 4096; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: { VkPhysicalDeviceIDProperties *id_props = (VkPhysicalDeviceIDProperties *)ext; memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE); memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE); /* The LUID is for Windows. */ id_props->deviceLUIDValid = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: { VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props = (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext; props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE; props->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS; props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS; props->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS; props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: { VkPhysicalDeviceMaintenance3Properties *props = (VkPhysicalDeviceMaintenance3Properties *)ext; /* This value doesn't matter for us today as our per-stage * descriptors are the real limit. */ props->maxPerSetDescriptors = 1024; props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: { VkPhysicalDeviceMultiviewProperties *properties = (VkPhysicalDeviceMultiviewProperties *)ext; properties->maxMultiviewViewCount = 16; properties->maxMultiviewInstanceIndex = UINT32_MAX / 16; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: { VkPhysicalDevicePCIBusInfoPropertiesEXT *properties = (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext; properties->pciDomain = pdevice->pci_info.domain; properties->pciBus = pdevice->pci_info.bus; properties->pciDevice = pdevice->pci_info.device; properties->pciFunction = pdevice->pci_info.function; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: { VkPhysicalDevicePointClippingProperties *properties = (VkPhysicalDevicePointClippingProperties *) ext; properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES; anv_finishme("Implement pop-free point clipping"); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: { VkPhysicalDeviceProtectedMemoryProperties *props = (VkPhysicalDeviceProtectedMemoryProperties *)ext; props->protectedNoFault = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: { VkPhysicalDevicePushDescriptorPropertiesKHR *properties = (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext; properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: { VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties = (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext; properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9; properties->filterMinmaxSingleComponentFormats = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: { VkPhysicalDeviceSubgroupProperties *properties = (void *)ext; properties->subgroupSize = BRW_SUBGROUP_SIZE; VkShaderStageFlags scalar_stages = 0; for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) { if (pdevice->compiler->scalar_stage[stage]) scalar_stages |= mesa_to_vk_shader_stage(stage); } properties->supportedStages = scalar_stages; properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT | VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT | VK_SUBGROUP_FEATURE_CLUSTERED_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT; properties->quadOperationsInAllStages = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: { VkPhysicalDeviceTransformFeedbackPropertiesEXT *props = (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext; props->maxTransformFeedbackStreams = MAX_XFB_STREAMS; props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS; props->maxTransformFeedbackBufferSize = (1ull << 32); props->maxTransformFeedbackStreamDataSize = 128 * 4; props->maxTransformFeedbackBufferDataSize = 128 * 4; props->maxTransformFeedbackBufferDataStride = 2048; props->transformFeedbackQueries = true; props->transformFeedbackStreamsLinesTriangles = false; props->transformFeedbackRasterizationStreamSelect = false; props->transformFeedbackDraw = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: { VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props = (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext; /* We have to restrict this a bit for multiview */ props->maxVertexAttribDivisor = UINT32_MAX / 16; break; } default: anv_debug_ignored_stype(ext->sType); break; } } } /* We support exactly one queue family. */ static const VkQueueFamilyProperties anv_queue_family_properties = { .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT, .queueCount = 1, .timestampValidBits = 36, /* XXX: Real value here */ .minImageTransferGranularity = { 1, 1, 1 }, }; void anv_GetPhysicalDeviceQueueFamilyProperties( VkPhysicalDevice physicalDevice, uint32_t* pCount, VkQueueFamilyProperties* pQueueFamilyProperties) { VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount); vk_outarray_append(&out, p) { *p = anv_queue_family_properties; } } void anv_GetPhysicalDeviceQueueFamilyProperties2( VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties2* pQueueFamilyProperties) { VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount); vk_outarray_append(&out, p) { p->queueFamilyProperties = anv_queue_family_properties; vk_foreach_struct(s, p->pNext) { anv_debug_ignored_stype(s->sType); } } } void anv_GetPhysicalDeviceMemoryProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties* pMemoryProperties) { ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); pMemoryProperties->memoryTypeCount = physical_device->memory.type_count; for (uint32_t i = 0; i < physical_device->memory.type_count; i++) { pMemoryProperties->memoryTypes[i] = (VkMemoryType) { .propertyFlags = physical_device->memory.types[i].propertyFlags, .heapIndex = physical_device->memory.types[i].heapIndex, }; } pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count; for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) { pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) { .size = physical_device->memory.heaps[i].size, .flags = physical_device->memory.heaps[i].flags, }; } } void anv_GetPhysicalDeviceMemoryProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2* pMemoryProperties) { anv_GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties); vk_foreach_struct(ext, pMemoryProperties->pNext) { switch (ext->sType) { default: anv_debug_ignored_stype(ext->sType); break; } } } void anv_GetDeviceGroupPeerMemoryFeatures( VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures) { assert(localDeviceIndex == 0 && remoteDeviceIndex == 0); *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT | VK_PEER_MEMORY_FEATURE_COPY_DST_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT; } PFN_vkVoidFunction anv_GetInstanceProcAddr( VkInstance _instance, const char* pName) { ANV_FROM_HANDLE(anv_instance, instance, _instance); /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly * when we have to return valid function pointers, NULL, or it's left * undefined. See the table for exact details. */ if (pName == NULL) return NULL; #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \ if (strcmp(pName, "vk" #entrypoint) == 0) \ return (PFN_vkVoidFunction)anv_##entrypoint LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties); LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties); LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion); LOOKUP_ANV_ENTRYPOINT(CreateInstance); #undef LOOKUP_ANV_ENTRYPOINT if (instance == NULL) return NULL; int idx = anv_get_instance_entrypoint_index(pName); if (idx >= 0) return instance->dispatch.entrypoints[idx]; idx = anv_get_device_entrypoint_index(pName); if (idx >= 0) return instance->device_dispatch.entrypoints[idx]; return NULL; } /* With version 1+ of the loader interface the ICD should expose * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps. */ PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName); PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName) { return anv_GetInstanceProcAddr(instance, pName); } PFN_vkVoidFunction anv_GetDeviceProcAddr( VkDevice _device, const char* pName) { ANV_FROM_HANDLE(anv_device, device, _device); if (!device || !pName) return NULL; int idx = anv_get_device_entrypoint_index(pName); if (idx < 0) return NULL; return device->dispatch.entrypoints[idx]; } VkResult anv_CreateDebugReportCallbackEXT(VkInstance _instance, const VkDebugReportCallbackCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugReportCallbackEXT* pCallback) { ANV_FROM_HANDLE(anv_instance, instance, _instance); return vk_create_debug_report_callback(&instance->debug_report_callbacks, pCreateInfo, pAllocator, &instance->alloc, pCallback); } void anv_DestroyDebugReportCallbackEXT(VkInstance _instance, VkDebugReportCallbackEXT _callback, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_instance, instance, _instance); vk_destroy_debug_report_callback(&instance->debug_report_callbacks, _callback, pAllocator, &instance->alloc); } void anv_DebugReportMessageEXT(VkInstance _instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage) { ANV_FROM_HANDLE(anv_instance, instance, _instance); vk_debug_report(&instance->debug_report_callbacks, flags, objectType, object, location, messageCode, pLayerPrefix, pMessage); } static void anv_queue_init(struct anv_device *device, struct anv_queue *queue) { queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC; queue->device = device; queue->flags = 0; } static void anv_queue_finish(struct anv_queue *queue) { } static struct anv_state anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p) { struct anv_state state; state = anv_state_pool_alloc(pool, size, align); memcpy(state.map, p, size); return state; } struct gen8_border_color { union { float float32[4]; uint32_t uint32[4]; }; /* Pad out to 64 bytes */ uint32_t _pad[12]; }; static void anv_device_init_border_colors(struct anv_device *device) { static const struct gen8_border_color border_colors[] = { [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } }, [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } }, [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } }, [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } }, [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } }, [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } }, }; device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool, sizeof(border_colors), 64, border_colors); } static void anv_device_init_trivial_batch(struct anv_device *device) { anv_bo_init_new(&device->trivial_batch_bo, device, 4096); if (device->instance->physicalDevice.has_exec_async) device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC; if (device->instance->physicalDevice.use_softpin) device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED; anv_vma_alloc(device, &device->trivial_batch_bo); void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle, 0, 4096, 0); struct anv_batch batch = { .start = map, .next = map, .end = map + 4096, }; anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe); anv_batch_emit(&batch, GEN7_MI_NOOP, noop); if (!device->info.has_llc) gen_clflush_range(map, batch.next - map); anv_gem_munmap(map, device->trivial_batch_bo.size); } VkResult anv_EnumerateDeviceExtensionProperties( VkPhysicalDevice physicalDevice, const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice); VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount); for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) { if (device->supported_extensions.extensions[i]) { vk_outarray_append(&out, prop) { *prop = anv_device_extensions[i]; } } } return vk_outarray_status(&out); } static void anv_device_init_dispatch(struct anv_device *device) { const struct anv_device_dispatch_table *genX_table; switch (device->info.gen) { case 11: genX_table = &gen11_device_dispatch_table; break; case 10: genX_table = &gen10_device_dispatch_table; break; case 9: genX_table = &gen9_device_dispatch_table; break; case 8: genX_table = &gen8_device_dispatch_table; break; case 7: if (device->info.is_haswell) genX_table = &gen75_device_dispatch_table; else genX_table = &gen7_device_dispatch_table; break; default: unreachable("unsupported gen\n"); } for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) { /* Vulkan requires that entrypoints for extensions which have not been * enabled must not be advertised. */ if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version, &device->instance->enabled_extensions, &device->enabled_extensions)) { device->dispatch.entrypoints[i] = NULL; } else if (genX_table->entrypoints[i]) { device->dispatch.entrypoints[i] = genX_table->entrypoints[i]; } else { device->dispatch.entrypoints[i] = anv_device_dispatch_table.entrypoints[i]; } } } static int vk_priority_to_gen(int priority) { switch (priority) { case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT: return GEN_CONTEXT_LOW_PRIORITY; case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT: return GEN_CONTEXT_MEDIUM_PRIORITY; case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT: return GEN_CONTEXT_HIGH_PRIORITY; case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT: return GEN_CONTEXT_REALTIME_PRIORITY; default: unreachable("Invalid priority"); } } static void anv_device_init_hiz_clear_value_bo(struct anv_device *device) { anv_bo_init_new(&device->hiz_clear_bo, device, 4096); if (device->instance->physicalDevice.has_exec_async) device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC; if (device->instance->physicalDevice.use_softpin) device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED; anv_vma_alloc(device, &device->hiz_clear_bo); uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle, 0, 4096, 0); union isl_color_value hiz_clear = { .u32 = { 0, } }; hiz_clear.f32[0] = ANV_HZ_FC_VAL; memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32)); anv_gem_munmap(map, device->hiz_clear_bo.size); } static bool get_bo_from_pool(struct gen_batch_decode_bo *ret, struct anv_block_pool *pool, uint64_t address) { for (uint32_t i = 0; i < pool->nbos; i++) { uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16); uint32_t bo_size = pool->bos[i].size; if (address >= bo_address && address < (bo_address + bo_size)) { *ret = (struct gen_batch_decode_bo) { .addr = bo_address, .size = bo_size, .map = pool->bos[i].map, }; return true; } } return false; } /* Finding a buffer for batch decoding */ static struct gen_batch_decode_bo decode_get_bo(void *v_batch, bool ppgtt, uint64_t address) { struct anv_device *device = v_batch; struct gen_batch_decode_bo ret_bo = {}; assert(ppgtt); if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address)) return ret_bo; if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address)) return ret_bo; if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address)) return ret_bo; if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address)) return ret_bo; if (!device->cmd_buffer_being_decoded) return (struct gen_batch_decode_bo) { }; struct anv_batch_bo **bo; u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) { /* The decoder zeroes out the top 16 bits, so we need to as well */ uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16); if (address >= bo_address && address < bo_address + (*bo)->bo.size) { return (struct gen_batch_decode_bo) { .addr = bo_address, .size = (*bo)->bo.size, .map = (*bo)->bo.map, }; } } return (struct gen_batch_decode_bo) { }; } VkResult anv_CreateDevice( VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) { ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); VkResult result; struct anv_device *device; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO); struct anv_device_extension_table enabled_extensions = { }; for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { int idx; for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) { if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], anv_device_extensions[idx].extensionName) == 0) break; } if (idx >= ANV_DEVICE_EXTENSION_COUNT) return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); if (!physical_device->supported_extensions.extensions[idx]) return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); enabled_extensions.extensions[idx] = true; } /* Check enabled features */ if (pCreateInfo->pEnabledFeatures) { VkPhysicalDeviceFeatures supported_features; anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features); VkBool32 *supported_feature = (VkBool32 *)&supported_features; VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures; unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32); for (uint32_t i = 0; i < num_features; i++) { if (enabled_feature[i] && !supported_feature[i]) return vk_error(VK_ERROR_FEATURE_NOT_PRESENT); } } /* Check requested queues and fail if we are requested to create any * queues with flags we don't support. */ assert(pCreateInfo->queueCreateInfoCount > 0); for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { if (pCreateInfo->pQueueCreateInfos[i].flags != 0) return vk_error(VK_ERROR_INITIALIZATION_FAILED); } /* Check if client specified queue priority. */ const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority = vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT); VkQueueGlobalPriorityEXT priority = queue_priority ? queue_priority->globalPriority : VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT; device = vk_alloc2(&physical_device->instance->alloc, pAllocator, sizeof(*device), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!device) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); const unsigned decode_flags = GEN_BATCH_DECODE_FULL | ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) | GEN_BATCH_DECODE_OFFSETS | GEN_BATCH_DECODE_FLOATS; gen_batch_decode_ctx_init(&device->decoder_ctx, &physical_device->info, stderr, decode_flags, NULL, decode_get_bo, NULL, device); device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; device->instance = physical_device->instance; device->chipset_id = physical_device->chipset_id; device->no_hw = physical_device->no_hw; device->_lost = false; if (pAllocator) device->alloc = *pAllocator; else device->alloc = physical_device->instance->alloc; /* XXX(chadv): Can we dup() physicalDevice->fd here? */ device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC); if (device->fd == -1) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_device; } device->context_id = anv_gem_create_context(device); if (device->context_id == -1) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_fd; } if (physical_device->use_softpin) { if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_fd; } /* keep the page with address zero out of the allocator */ struct anv_memory_heap *low_heap = &physical_device->memory.heaps[physical_device->memory.heap_count - 1]; util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size); device->vma_lo_available = low_heap->size; struct anv_memory_heap *high_heap = &physical_device->memory.heaps[0]; util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size); device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 : high_heap->size; } /* As per spec, the driver implementation may deny requests to acquire * a priority above the default priority (MEDIUM) if the caller does not * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT * is returned. */ if (physical_device->has_context_priority) { int err = anv_gem_set_context_param(device->fd, device->context_id, I915_CONTEXT_PARAM_PRIORITY, vk_priority_to_gen(priority)); if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) { result = vk_error(VK_ERROR_NOT_PERMITTED_EXT); goto fail_fd; } } device->info = physical_device->info; device->isl_dev = physical_device->isl_dev; /* On Broadwell and later, we can use batch chaining to more efficiently * implement growing command buffers. Prior to Haswell, the kernel * command parser gets in the way and we have to fall back to growing * the batch. */ device->can_chain_batches = device->info.gen >= 8; device->robust_buffer_access = pCreateInfo->pEnabledFeatures && pCreateInfo->pEnabledFeatures->robustBufferAccess; device->enabled_extensions = enabled_extensions; anv_device_init_dispatch(device); if (pthread_mutex_init(&device->mutex, NULL) != 0) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_context_id; } pthread_condattr_t condattr; if (pthread_condattr_init(&condattr) != 0) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) { pthread_condattr_destroy(&condattr); result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } if (pthread_cond_init(&device->queue_submit, &condattr) != 0) { pthread_condattr_destroy(&condattr); result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } pthread_condattr_destroy(&condattr); uint64_t bo_flags = (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) | (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) | (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) | (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0); anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags); result = anv_bo_cache_init(&device->bo_cache); if (result != VK_SUCCESS) goto fail_batch_bo_pool; if (!physical_device->use_softpin) bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS; result = anv_state_pool_init(&device->dynamic_state_pool, device, DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384, bo_flags); if (result != VK_SUCCESS) goto fail_bo_cache; result = anv_state_pool_init(&device->instruction_state_pool, device, INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384, bo_flags); if (result != VK_SUCCESS) goto fail_dynamic_state_pool; result = anv_state_pool_init(&device->surface_state_pool, device, SURFACE_STATE_POOL_MIN_ADDRESS, 4096, bo_flags); if (result != VK_SUCCESS) goto fail_instruction_state_pool; if (physical_device->use_softpin) { result = anv_state_pool_init(&device->binding_table_pool, device, BINDING_TABLE_POOL_MIN_ADDRESS, 4096, bo_flags); if (result != VK_SUCCESS) goto fail_surface_state_pool; } result = anv_bo_init_new(&device->workaround_bo, device, 1024); if (result != VK_SUCCESS) goto fail_binding_table_pool; if (physical_device->use_softpin) device->workaround_bo.flags |= EXEC_OBJECT_PINNED; if (!anv_vma_alloc(device, &device->workaround_bo)) goto fail_workaround_bo; anv_device_init_trivial_batch(device); if (device->info.gen >= 10) anv_device_init_hiz_clear_value_bo(device); if (physical_device->use_softpin) device->pinned_buffers = _mesa_pointer_set_create(NULL); anv_scratch_pool_init(device, &device->scratch_pool); anv_queue_init(device, &device->queue); switch (device->info.gen) { case 7: if (!device->info.is_haswell) result = gen7_init_device_state(device); else result = gen75_init_device_state(device); break; case 8: result = gen8_init_device_state(device); break; case 9: result = gen9_init_device_state(device); break; case 10: result = gen10_init_device_state(device); break; case 11: result = gen11_init_device_state(device); break; default: /* Shouldn't get here as we don't create physical devices for any other * gens. */ unreachable("unhandled gen"); } if (result != VK_SUCCESS) goto fail_workaround_bo; anv_pipeline_cache_init(&device->default_pipeline_cache, device, true); anv_device_init_blorp(device); anv_device_init_border_colors(device); *pDevice = anv_device_to_handle(device); return VK_SUCCESS; fail_workaround_bo: anv_queue_finish(&device->queue); anv_scratch_pool_finish(device, &device->scratch_pool); anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size); anv_gem_close(device, device->workaround_bo.gem_handle); fail_binding_table_pool: if (physical_device->use_softpin) anv_state_pool_finish(&device->binding_table_pool); fail_surface_state_pool: anv_state_pool_finish(&device->surface_state_pool); fail_instruction_state_pool: anv_state_pool_finish(&device->instruction_state_pool); fail_dynamic_state_pool: anv_state_pool_finish(&device->dynamic_state_pool); fail_bo_cache: anv_bo_cache_finish(&device->bo_cache); fail_batch_bo_pool: anv_bo_pool_finish(&device->batch_bo_pool); pthread_cond_destroy(&device->queue_submit); fail_mutex: pthread_mutex_destroy(&device->mutex); fail_context_id: anv_gem_destroy_context(device, device->context_id); fail_fd: close(device->fd); fail_device: vk_free(&device->alloc, device); return result; } void anv_DestroyDevice( VkDevice _device, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_physical_device *physical_device; if (!device) return; physical_device = &device->instance->physicalDevice; anv_device_finish_blorp(device); anv_pipeline_cache_finish(&device->default_pipeline_cache); anv_queue_finish(&device->queue); if (physical_device->use_softpin) _mesa_set_destroy(device->pinned_buffers, NULL); #ifdef HAVE_VALGRIND /* We only need to free these to prevent valgrind errors. The backing * BO will go away in a couple of lines so we don't actually leak. */ anv_state_pool_free(&device->dynamic_state_pool, device->border_colors); #endif anv_scratch_pool_finish(device, &device->scratch_pool); anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size); anv_vma_free(device, &device->workaround_bo); anv_gem_close(device, device->workaround_bo.gem_handle); anv_vma_free(device, &device->trivial_batch_bo); anv_gem_close(device, device->trivial_batch_bo.gem_handle); if (device->info.gen >= 10) anv_gem_close(device, device->hiz_clear_bo.gem_handle); if (physical_device->use_softpin) anv_state_pool_finish(&device->binding_table_pool); anv_state_pool_finish(&device->surface_state_pool); anv_state_pool_finish(&device->instruction_state_pool); anv_state_pool_finish(&device->dynamic_state_pool); anv_bo_cache_finish(&device->bo_cache); anv_bo_pool_finish(&device->batch_bo_pool); pthread_cond_destroy(&device->queue_submit); pthread_mutex_destroy(&device->mutex); anv_gem_destroy_context(device, device->context_id); gen_batch_decode_ctx_finish(&device->decoder_ctx); close(device->fd); vk_free(&device->alloc, device); } VkResult anv_EnumerateInstanceLayerProperties( uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(VK_ERROR_LAYER_NOT_PRESENT); } VkResult anv_EnumerateDeviceLayerProperties( VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(VK_ERROR_LAYER_NOT_PRESENT); } void anv_GetDeviceQueue( VkDevice _device, uint32_t queueNodeIndex, uint32_t queueIndex, VkQueue* pQueue) { ANV_FROM_HANDLE(anv_device, device, _device); assert(queueIndex == 0); *pQueue = anv_queue_to_handle(&device->queue); } void anv_GetDeviceQueue2( VkDevice _device, const VkDeviceQueueInfo2* pQueueInfo, VkQueue* pQueue) { ANV_FROM_HANDLE(anv_device, device, _device); assert(pQueueInfo->queueIndex == 0); if (pQueueInfo->flags == device->queue.flags) *pQueue = anv_queue_to_handle(&device->queue); else *pQueue = NULL; } VkResult _anv_device_set_lost(struct anv_device *device, const char *file, int line, const char *msg, ...) { VkResult err; va_list ap; device->_lost = true; va_start(ap, msg); err = __vk_errorv(device->instance, device, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, VK_ERROR_DEVICE_LOST, file, line, msg, ap); va_end(ap); if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false)) abort(); return err; } VkResult anv_device_query_status(struct anv_device *device) { /* This isn't likely as most of the callers of this function already check * for it. However, it doesn't hurt to check and it potentially lets us * avoid an ioctl. */ if (anv_device_is_lost(device)) return VK_ERROR_DEVICE_LOST; uint32_t active, pending; int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending); if (ret == -1) { /* We don't know the real error. */ return anv_device_set_lost(device, "get_reset_stats failed: %m"); } if (active) { return anv_device_set_lost(device, "GPU hung on one of our command buffers"); } else if (pending) { return anv_device_set_lost(device, "GPU hung with commands in-flight"); } return VK_SUCCESS; } VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo) { /* Note: This only returns whether or not the BO is in use by an i915 GPU. * Other usages of the BO (such as on different hardware) will not be * flagged as "busy" by this ioctl. Use with care. */ int ret = anv_gem_busy(device, bo->gem_handle); if (ret == 1) { return VK_NOT_READY; } else if (ret == -1) { /* We don't know the real error. */ return anv_device_set_lost(device, "gem wait failed: %m"); } /* Query for device status after the busy call. If the BO we're checking * got caught in a GPU hang we don't want to return VK_SUCCESS to the * client because it clearly doesn't have valid data. Yes, this most * likely means an ioctl, but we just did an ioctl to query the busy status * so it's no great loss. */ return anv_device_query_status(device); } VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo, int64_t timeout) { int ret = anv_gem_wait(device, bo->gem_handle, &timeout); if (ret == -1 && errno == ETIME) { return VK_TIMEOUT; } else if (ret == -1) { /* We don't know the real error. */ return anv_device_set_lost(device, "gem wait failed: %m"); } /* Query for device status after the wait. If the BO we're waiting on got * caught in a GPU hang we don't want to return VK_SUCCESS to the client * because it clearly doesn't have valid data. Yes, this most likely means * an ioctl, but we just did an ioctl to wait so it's no great loss. */ return anv_device_query_status(device); } VkResult anv_DeviceWaitIdle( VkDevice _device) { ANV_FROM_HANDLE(anv_device, device, _device); if (anv_device_is_lost(device)) return VK_ERROR_DEVICE_LOST; struct anv_batch batch; uint32_t cmds[8]; batch.start = batch.next = cmds; batch.end = (void *) cmds + sizeof(cmds); anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe); anv_batch_emit(&batch, GEN7_MI_NOOP, noop); return anv_device_submit_simple_batch(device, &batch); } bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo) { if (!(bo->flags & EXEC_OBJECT_PINNED)) return true; pthread_mutex_lock(&device->vma_mutex); bo->offset = 0; if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS && device->vma_hi_available >= bo->size) { uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096); if (addr) { bo->offset = gen_canonical_address(addr); assert(addr == gen_48b_address(bo->offset)); device->vma_hi_available -= bo->size; } } if (bo->offset == 0 && device->vma_lo_available >= bo->size) { uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096); if (addr) { bo->offset = gen_canonical_address(addr); assert(addr == gen_48b_address(bo->offset)); device->vma_lo_available -= bo->size; } } pthread_mutex_unlock(&device->vma_mutex); return bo->offset != 0; } void anv_vma_free(struct anv_device *device, struct anv_bo *bo) { if (!(bo->flags & EXEC_OBJECT_PINNED)) return; const uint64_t addr_48b = gen_48b_address(bo->offset); pthread_mutex_lock(&device->vma_mutex); if (addr_48b >= LOW_HEAP_MIN_ADDRESS && addr_48b <= LOW_HEAP_MAX_ADDRESS) { util_vma_heap_free(&device->vma_lo, addr_48b, bo->size); device->vma_lo_available += bo->size; } else { MAYBE_UNUSED const struct anv_physical_device *physical_device = &device->instance->physicalDevice; assert(addr_48b >= physical_device->memory.heaps[0].vma_start && addr_48b < (physical_device->memory.heaps[0].vma_start + physical_device->memory.heaps[0].vma_size)); util_vma_heap_free(&device->vma_hi, addr_48b, bo->size); device->vma_hi_available += bo->size; } pthread_mutex_unlock(&device->vma_mutex); bo->offset = 0; } VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size) { uint32_t gem_handle = anv_gem_create(device, size); if (!gem_handle) return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY); anv_bo_init(bo, gem_handle, size); return VK_SUCCESS; } VkResult anv_AllocateMemory( VkDevice _device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMem) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_physical_device *pdevice = &device->instance->physicalDevice; struct anv_device_memory *mem; VkResult result = VK_SUCCESS; assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO); /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */ assert(pAllocateInfo->allocationSize > 0); if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE) return VK_ERROR_OUT_OF_DEVICE_MEMORY; /* FINISHME: Fail if allocation request exceeds heap size. */ mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (mem == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count); mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex]; mem->map = NULL; mem->map_size = 0; mem->ahw = NULL; mem->host_ptr = NULL; uint64_t bo_flags = 0; assert(mem->type->heapIndex < pdevice->memory.heap_count); if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses) bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; const struct wsi_memory_allocate_info *wsi_info = vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA); if (wsi_info && wsi_info->implicit_sync) { /* We need to set the WRITE flag on window system buffers so that GEM * will know we're writing to them and synchronize uses on other rings * (eg if the display server uses the blitter ring). */ bo_flags |= EXEC_OBJECT_WRITE; } else if (pdevice->has_exec_async) { bo_flags |= EXEC_OBJECT_ASYNC; } if (pdevice->use_softpin) bo_flags |= EXEC_OBJECT_PINNED; const VkExportMemoryAllocateInfo *export_info = vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO); /* Check if we need to support Android HW buffer export. If so, * create AHardwareBuffer and import memory from it. */ bool android_export = false; if (export_info && export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) android_export = true; /* Android memory import. */ const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = vk_find_struct_const(pAllocateInfo->pNext, IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID); if (ahw_import_info) { result = anv_import_ahw_memory(_device, mem, ahw_import_info); if (result != VK_SUCCESS) goto fail; goto success; } else if (android_export) { result = anv_create_ahw_memory(_device, mem, pAllocateInfo); if (result != VK_SUCCESS) goto fail; const struct VkImportAndroidHardwareBufferInfoANDROID import_info = { .buffer = mem->ahw, }; result = anv_import_ahw_memory(_device, mem, &import_info); if (result != VK_SUCCESS) goto fail; goto success; } const VkImportMemoryFdInfoKHR *fd_info = vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR); /* The Vulkan spec permits handleType to be 0, in which case the struct is * ignored. */ if (fd_info && fd_info->handleType) { /* At the moment, we support only the below handle types. */ assert(fd_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT || fd_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd, bo_flags | ANV_BO_EXTERNAL, &mem->bo); if (result != VK_SUCCESS) goto fail; VkDeviceSize aligned_alloc_size = align_u64(pAllocateInfo->allocationSize, 4096); /* For security purposes, we reject importing the bo if it's smaller * than the requested allocation size. This prevents a malicious client * from passing a buffer to a trusted client, lying about the size, and * telling the trusted client to try and texture from an image that goes * out-of-bounds. This sort of thing could lead to GPU hangs or worse * in the trusted client. The trusted client can protect itself against * this sort of attack but only if it can trust the buffer size. */ if (mem->bo->size < aligned_alloc_size) { result = vk_errorf(device->instance, device, VK_ERROR_INVALID_EXTERNAL_HANDLE, "aligned allocationSize too large for " "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: " "%"PRIu64"B > %"PRIu64"B", aligned_alloc_size, mem->bo->size); anv_bo_cache_release(device, &device->bo_cache, mem->bo); goto fail; } /* From the Vulkan spec: * * "Importing memory from a file descriptor transfers ownership of * the file descriptor from the application to the Vulkan * implementation. The application must not perform any operations on * the file descriptor after a successful import." * * If the import fails, we leave the file descriptor open. */ close(fd_info->fd); goto success; } const VkImportMemoryHostPointerInfoEXT *host_ptr_info = vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT); if (host_ptr_info && host_ptr_info->handleType) { if (host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) { result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); goto fail; } assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT); result = anv_bo_cache_import_host_ptr( device, &device->bo_cache, host_ptr_info->pHostPointer, pAllocateInfo->allocationSize, bo_flags, &mem->bo); if (result != VK_SUCCESS) goto fail; mem->host_ptr = host_ptr_info->pHostPointer; goto success; } /* Regular allocate (not importing memory). */ if (export_info && export_info->handleTypes) bo_flags |= ANV_BO_EXTERNAL; result = anv_bo_cache_alloc(device, &device->bo_cache, pAllocateInfo->allocationSize, bo_flags, &mem->bo); if (result != VK_SUCCESS) goto fail; const VkMemoryDedicatedAllocateInfo *dedicated_info = vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO); if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) { ANV_FROM_HANDLE(anv_image, image, dedicated_info->image); /* Some legacy (non-modifiers) consumers need the tiling to be set on * the BO. In this case, we have a dedicated allocation. */ if (image->needs_set_tiling) { const uint32_t i915_tiling = isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling); int ret = anv_gem_set_tiling(device, mem->bo->gem_handle, image->planes[0].surface.isl.row_pitch_B, i915_tiling); if (ret) { anv_bo_cache_release(device, &device->bo_cache, mem->bo); return vk_errorf(device->instance, NULL, VK_ERROR_OUT_OF_DEVICE_MEMORY, "failed to set BO tiling: %m"); } } } success: *pMem = anv_device_memory_to_handle(mem); return VK_SUCCESS; fail: vk_free2(&device->alloc, pAllocator, mem); return result; } VkResult anv_GetMemoryFdKHR( VkDevice device_h, const VkMemoryGetFdInfoKHR* pGetFdInfo, int* pFd) { ANV_FROM_HANDLE(anv_device, dev, device_h); ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory); assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR); assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT || pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd); } VkResult anv_GetMemoryFdPropertiesKHR( VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, int fd, VkMemoryFdPropertiesKHR* pMemoryFdProperties) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_physical_device *pdevice = &device->instance->physicalDevice; switch (handleType) { case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: /* dma-buf can be imported as any memory type */ pMemoryFdProperties->memoryTypeBits = (1 << pdevice->memory.type_count) - 1; return VK_SUCCESS; default: /* The valid usage section for this function says: * * "handleType must not be one of the handle types defined as * opaque." * * So opaque handle types fall into the default "unsupported" case. */ return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); } } VkResult anv_GetMemoryHostPointerPropertiesEXT( VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, const void* pHostPointer, VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties) { ANV_FROM_HANDLE(anv_device, device, _device); assert(pMemoryHostPointerProperties->sType == VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT); switch (handleType) { case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: { struct anv_physical_device *pdevice = &device->instance->physicalDevice; /* Host memory can be imported as any memory type. */ pMemoryHostPointerProperties->memoryTypeBits = (1ull << pdevice->memory.type_count) - 1; return VK_SUCCESS; } default: return VK_ERROR_INVALID_EXTERNAL_HANDLE; } } void anv_FreeMemory( VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_device_memory, mem, _mem); if (mem == NULL) return; if (mem->map) anv_UnmapMemory(_device, _mem); anv_bo_cache_release(device, &device->bo_cache, mem->bo); #if defined(ANDROID) && ANDROID_API_LEVEL >= 26 if (mem->ahw) AHardwareBuffer_release(mem->ahw); #endif vk_free2(&device->alloc, pAllocator, mem); } VkResult anv_MapMemory( VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_device_memory, mem, _memory); if (mem == NULL) { *ppData = NULL; return VK_SUCCESS; } if (mem->host_ptr) { *ppData = mem->host_ptr + offset; return VK_SUCCESS; } if (size == VK_WHOLE_SIZE) size = mem->bo->size - offset; /* From the Vulkan spec version 1.0.32 docs for MapMemory: * * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0 * assert(size != 0); * * If size is not equal to VK_WHOLE_SIZE, size must be less than or * equal to the size of the memory minus offset */ assert(size > 0); assert(offset + size <= mem->bo->size); /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only * takes a VkDeviceMemory pointer, it seems like only one map of the memory * at a time is valid. We could just mmap up front and return an offset * pointer here, but that may exhaust virtual memory on 32 bit * userspace. */ uint32_t gem_flags = 0; if (!device->info.has_llc && (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) gem_flags |= I915_MMAP_WC; /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */ uint64_t map_offset = offset & ~4095ull; assert(offset >= map_offset); uint64_t map_size = (offset + size) - map_offset; /* Let's map whole pages */ map_size = align_u64(map_size, 4096); void *map = anv_gem_mmap(device, mem->bo->gem_handle, map_offset, map_size, gem_flags); if (map == MAP_FAILED) return vk_error(VK_ERROR_MEMORY_MAP_FAILED); mem->map = map; mem->map_size = map_size; *ppData = mem->map + (offset - map_offset); return VK_SUCCESS; } void anv_UnmapMemory( VkDevice _device, VkDeviceMemory _memory) { ANV_FROM_HANDLE(anv_device_memory, mem, _memory); if (mem == NULL || mem->host_ptr) return; anv_gem_munmap(mem->map, mem->map_size); mem->map = NULL; mem->map_size = 0; } static void clflush_mapped_ranges(struct anv_device *device, uint32_t count, const VkMappedMemoryRange *ranges) { for (uint32_t i = 0; i < count; i++) { ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory); if (ranges[i].offset >= mem->map_size) continue; gen_clflush_range(mem->map + ranges[i].offset, MIN2(ranges[i].size, mem->map_size - ranges[i].offset)); } } VkResult anv_FlushMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { ANV_FROM_HANDLE(anv_device, device, _device); if (device->info.has_llc) return VK_SUCCESS; /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges); return VK_SUCCESS; } VkResult anv_InvalidateMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { ANV_FROM_HANDLE(anv_device, device, _device); if (device->info.has_llc) return VK_SUCCESS; clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges); /* Make sure no reads get moved up above the invalidate. */ __builtin_ia32_mfence(); return VK_SUCCESS; } void anv_GetBufferMemoryRequirements( VkDevice _device, VkBuffer _buffer, VkMemoryRequirements* pMemoryRequirements) { ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); ANV_FROM_HANDLE(anv_device, device, _device); struct anv_physical_device *pdevice = &device->instance->physicalDevice; /* The Vulkan spec (git aaed022) says: * * memoryTypeBits is a bitfield and contains one bit set for every * supported memory type for the resource. The bit `1<memory.type_count; i++) { uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage; if ((valid_usage & buffer->usage) == buffer->usage) memory_types |= (1u << i); } /* Base alignment requirement of a cache line */ uint32_t alignment = 16; /* We need an alignment of 32 for pushing UBOs */ if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) alignment = MAX2(alignment, 32); pMemoryRequirements->size = buffer->size; pMemoryRequirements->alignment = alignment; /* Storage and Uniform buffers should have their size aligned to * 32-bits to avoid boundary checks when last DWord is not complete. * This would ensure that not internal padding would be needed for * 16-bit types. */ if (device->robust_buffer_access && (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT || buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)) pMemoryRequirements->size = align_u64(buffer->size, 4); pMemoryRequirements->memoryTypeBits = memory_types; } void anv_GetBufferMemoryRequirements2( VkDevice _device, const VkBufferMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements) { anv_GetBufferMemoryRequirements(_device, pInfo->buffer, &pMemoryRequirements->memoryRequirements); vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *requirements = (void *)ext; requirements->prefersDedicatedAllocation = false; requirements->requiresDedicatedAllocation = false; break; } default: anv_debug_ignored_stype(ext->sType); break; } } } void anv_GetImageMemoryRequirements( VkDevice _device, VkImage _image, VkMemoryRequirements* pMemoryRequirements) { ANV_FROM_HANDLE(anv_image, image, _image); ANV_FROM_HANDLE(anv_device, device, _device); struct anv_physical_device *pdevice = &device->instance->physicalDevice; /* The Vulkan spec (git aaed022) says: * * memoryTypeBits is a bitfield and contains one bit set for every * supported memory type for the resource. The bit `1<memory.type_count) - 1; /* We must have image allocated or imported at this point. According to the * specification, external images must have been bound to memory before * calling GetImageMemoryRequirements. */ assert(image->size > 0); pMemoryRequirements->size = image->size; pMemoryRequirements->alignment = image->alignment; pMemoryRequirements->memoryTypeBits = memory_types; } void anv_GetImageMemoryRequirements2( VkDevice _device, const VkImageMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, pInfo->image); anv_GetImageMemoryRequirements(_device, pInfo->image, &pMemoryRequirements->memoryRequirements); vk_foreach_struct_const(ext, pInfo->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: { struct anv_physical_device *pdevice = &device->instance->physicalDevice; const VkImagePlaneMemoryRequirementsInfo *plane_reqs = (const VkImagePlaneMemoryRequirementsInfo *) ext; uint32_t plane = anv_image_aspect_to_plane(image->aspects, plane_reqs->planeAspect); assert(image->planes[plane].offset == 0); /* The Vulkan spec (git aaed022) says: * * memoryTypeBits is a bitfield and contains one bit set for every * supported memory type for the resource. The bit `1<memoryRequirements.memoryTypeBits = (1ull << pdevice->memory.type_count) - 1; /* We must have image allocated or imported at this point. According to the * specification, external images must have been bound to memory before * calling GetImageMemoryRequirements. */ assert(image->planes[plane].size > 0); pMemoryRequirements->memoryRequirements.size = image->planes[plane].size; pMemoryRequirements->memoryRequirements.alignment = image->planes[plane].alignment; break; } default: anv_debug_ignored_stype(ext->sType); break; } } vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *requirements = (void *)ext; if (image->needs_set_tiling || image->external_format) { /* If we need to set the tiling for external consumers, we need a * dedicated allocation. * * See also anv_AllocateMemory. */ requirements->prefersDedicatedAllocation = true; requirements->requiresDedicatedAllocation = true; } else { requirements->prefersDedicatedAllocation = false; requirements->requiresDedicatedAllocation = false; } break; } default: anv_debug_ignored_stype(ext->sType); break; } } } void anv_GetImageSparseMemoryRequirements( VkDevice device, VkImage image, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements* pSparseMemoryRequirements) { *pSparseMemoryRequirementCount = 0; } void anv_GetImageSparseMemoryRequirements2( VkDevice device, const VkImageSparseMemoryRequirementsInfo2* pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements) { *pSparseMemoryRequirementCount = 0; } void anv_GetDeviceMemoryCommitment( VkDevice device, VkDeviceMemory memory, VkDeviceSize* pCommittedMemoryInBytes) { *pCommittedMemoryInBytes = 0; } static void anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo) { ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory); ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer); assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO); if (mem) { assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage); buffer->address = (struct anv_address) { .bo = mem->bo, .offset = pBindInfo->memoryOffset, }; } else { buffer->address = ANV_NULL_ADDRESS; } } VkResult anv_BindBufferMemory( VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset) { anv_bind_buffer_memory( &(VkBindBufferMemoryInfo) { .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO, .buffer = buffer, .memory = memory, .memoryOffset = memoryOffset, }); return VK_SUCCESS; } VkResult anv_BindBufferMemory2( VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo* pBindInfos) { for (uint32_t i = 0; i < bindInfoCount; i++) anv_bind_buffer_memory(&pBindInfos[i]); return VK_SUCCESS; } VkResult anv_QueueBindSparse( VkQueue _queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence) { ANV_FROM_HANDLE(anv_queue, queue, _queue); if (anv_device_is_lost(queue->device)) return VK_ERROR_DEVICE_LOST; return vk_error(VK_ERROR_FEATURE_NOT_PRESENT); } // Event functions VkResult anv_CreateEvent( VkDevice _device, const VkEventCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkEvent* pEvent) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_state state; struct anv_event *event; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO); state = anv_state_pool_alloc(&device->dynamic_state_pool, sizeof(*event), 8); event = state.map; event->state = state; event->semaphore = VK_EVENT_RESET; if (!device->info.has_llc) { /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); __builtin_ia32_clflush(event); } *pEvent = anv_event_to_handle(event); return VK_SUCCESS; } void anv_DestroyEvent( VkDevice _device, VkEvent _event, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); if (!event) return; anv_state_pool_free(&device->dynamic_state_pool, event->state); } VkResult anv_GetEventStatus( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); if (anv_device_is_lost(device)) return VK_ERROR_DEVICE_LOST; if (!device->info.has_llc) { /* Invalidate read cache before reading event written by GPU. */ __builtin_ia32_clflush(event); __builtin_ia32_mfence(); } return event->semaphore; } VkResult anv_SetEvent( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); event->semaphore = VK_EVENT_SET; if (!device->info.has_llc) { /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); __builtin_ia32_clflush(event); } return VK_SUCCESS; } VkResult anv_ResetEvent( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); event->semaphore = VK_EVENT_RESET; if (!device->info.has_llc) { /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); __builtin_ia32_clflush(event); } return VK_SUCCESS; } // Buffer functions VkResult anv_CreateBuffer( VkDevice _device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_buffer *buffer; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO); buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (buffer == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); buffer->size = pCreateInfo->size; buffer->usage = pCreateInfo->usage; buffer->address = ANV_NULL_ADDRESS; if (buffer->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) { pthread_mutex_lock(&device->mutex); _mesa_set_add(device->pinned_buffers, buffer); pthread_mutex_unlock(&device->mutex); } *pBuffer = anv_buffer_to_handle(buffer); return VK_SUCCESS; } void anv_DestroyBuffer( VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); if (!buffer) return; if (buffer->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) { pthread_mutex_lock(&device->mutex); _mesa_set_remove_key(device->pinned_buffers, buffer); pthread_mutex_unlock(&device->mutex); } vk_free2(&device->alloc, pAllocator, buffer); } VkDeviceAddress anv_GetBufferDeviceAddressEXT( VkDevice device, const VkBufferDeviceAddressInfoEXT* pInfo) { ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer); assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED); return anv_address_physical(buffer->address); } void anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state, enum isl_format format, struct anv_address address, uint32_t range, uint32_t stride) { isl_buffer_fill_state(&device->isl_dev, state.map, .address = anv_address_physical(address), .mocs = device->default_mocs, .size_B = range, .format = format, .swizzle = ISL_SWIZZLE_IDENTITY, .stride_B = stride); } void anv_DestroySampler( VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_sampler, sampler, _sampler); if (!sampler) return; vk_free2(&device->alloc, pAllocator, sampler); } VkResult anv_CreateFramebuffer( VkDevice _device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_framebuffer *framebuffer; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO); size_t size = sizeof(*framebuffer) + sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount; framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (framebuffer == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); framebuffer->attachment_count = pCreateInfo->attachmentCount; for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) { VkImageView _iview = pCreateInfo->pAttachments[i]; framebuffer->attachments[i] = anv_image_view_from_handle(_iview); } framebuffer->width = pCreateInfo->width; framebuffer->height = pCreateInfo->height; framebuffer->layers = pCreateInfo->layers; *pFramebuffer = anv_framebuffer_to_handle(framebuffer); return VK_SUCCESS; } void anv_DestroyFramebuffer( VkDevice _device, VkFramebuffer _fb, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_framebuffer, fb, _fb); if (!fb) return; vk_free2(&device->alloc, pAllocator, fb); } static const VkTimeDomainEXT anv_time_domains[] = { VK_TIME_DOMAIN_DEVICE_EXT, VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT, VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT, }; VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT( VkPhysicalDevice physicalDevice, uint32_t *pTimeDomainCount, VkTimeDomainEXT *pTimeDomains) { int d; VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount); for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) { vk_outarray_append(&out, i) { *i = anv_time_domains[d]; } } return vk_outarray_status(&out); } static uint64_t anv_clock_gettime(clockid_t clock_id) { struct timespec current; int ret; ret = clock_gettime(clock_id, ¤t); if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW) ret = clock_gettime(CLOCK_MONOTONIC, ¤t); if (ret < 0) return 0; return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec; } #define TIMESTAMP 0x2358 VkResult anv_GetCalibratedTimestampsEXT( VkDevice _device, uint32_t timestampCount, const VkCalibratedTimestampInfoEXT *pTimestampInfos, uint64_t *pTimestamps, uint64_t *pMaxDeviation) { ANV_FROM_HANDLE(anv_device, device, _device); uint64_t timestamp_frequency = device->info.timestamp_frequency; int ret; int d; uint64_t begin, end; uint64_t max_clock_period = 0; begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW); for (d = 0; d < timestampCount; d++) { switch (pTimestampInfos[d].timeDomain) { case VK_TIME_DOMAIN_DEVICE_EXT: ret = anv_gem_reg_read(device, TIMESTAMP | 1, &pTimestamps[d]); if (ret != 0) { return anv_device_set_lost(device, "Failed to read the TIMESTAMP " "register: %m"); } uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency); max_clock_period = MAX2(max_clock_period, device_period); break; case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT: pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC); max_clock_period = MAX2(max_clock_period, 1); break; case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT: pTimestamps[d] = begin; break; default: pTimestamps[d] = 0; break; } } end = anv_clock_gettime(CLOCK_MONOTONIC_RAW); /* * The maximum deviation is the sum of the interval over which we * perform the sampling and the maximum period of any sampled * clock. That's because the maximum skew between any two sampled * clock edges is when the sampled clock with the largest period is * sampled at the end of that period but right at the beginning of the * sampling interval and some other clock is sampled right at the * begining of its sampling period and right at the end of the * sampling interval. Let's assume the GPU has the longest clock * period and that the application is sampling GPU and monotonic: * * s e * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- * * g * 0 1 2 3 * GPU -----_____-----_____-----_____-----_____ * * m * x y z 0 1 2 3 4 5 6 7 8 9 a b c * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- * * Interval <-----------------> * Deviation <--------------------------> * * s = read(raw) 2 * g = read(GPU) 1 * m = read(monotonic) 2 * e = read(raw) b * * We round the sample interval up by one tick to cover sampling error * in the interval clock */ uint64_t sample_interval = end - begin + 1; *pMaxDeviation = sample_interval + max_clock_period; return VK_SUCCESS; } /* vk_icd.h does not declare this function, so we declare it here to * suppress Wmissing-prototypes. */ PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion); PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion) { /* For the full details on loader interface versioning, see * . * What follows is a condensed summary, to help you navigate the large and * confusing official doc. * * - Loader interface v0 is incompatible with later versions. We don't * support it. * * - In loader interface v1: * - The first ICD entrypoint called by the loader is * vk_icdGetInstanceProcAddr(). The ICD must statically expose this * entrypoint. * - The ICD must statically expose no other Vulkan symbol unless it is * linked with -Bsymbolic. * - Each dispatchable Vulkan handle created by the ICD must be * a pointer to a struct whose first member is VK_LOADER_DATA. The * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC. * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and * vkDestroySurfaceKHR(). The ICD must be capable of working with * such loader-managed surfaces. * * - Loader interface v2 differs from v1 in: * - The first ICD entrypoint called by the loader is * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must * statically expose this entrypoint. * * - Loader interface v3 differs from v2 in: * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(), * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR, * because the loader no longer does so. */ *pSupportedVersion = MIN2(*pSupportedVersion, 3u); return VK_SUCCESS; }