/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "anv_private.h" #include "util/strtod.h" #include "util/debug.h" #include "util/build_id.h" #include "util/vk_util.h" #include "genxml/gen7_pack.h" static void compiler_debug_log(void *data, const char *fmt, ...) { } static void compiler_perf_log(void *data, const char *fmt, ...) { va_list args; va_start(args, fmt); if (unlikely(INTEL_DEBUG & DEBUG_PERF)) vfprintf(stderr, fmt, args); va_end(args); } static VkResult anv_compute_heap_size(int fd, uint64_t *heap_size) { uint64_t gtt_size; if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE, >t_size) == -1) { /* If, for whatever reason, we can't actually get the GTT size from the * kernel (too old?) fall back to the aperture size. */ anv_perf_warn("Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m"); if (anv_gem_get_aperture(fd, >t_size) == -1) { return vk_errorf(VK_ERROR_INITIALIZATION_FAILED, "failed to get aperture size: %m"); } } /* Query the total ram from the system */ struct sysinfo info; sysinfo(&info); uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit; /* We don't want to burn too much ram with the GPU. If the user has 4GiB * or less, we use at most half. If they have more than 4GiB, we use 3/4. */ uint64_t available_ram; if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull) available_ram = total_ram / 2; else available_ram = total_ram * 3 / 4; /* We also want to leave some padding for things we allocate in the driver, * so don't go over 3/4 of the GTT either. */ uint64_t available_gtt = gtt_size * 3 / 4; *heap_size = MIN2(available_ram, available_gtt); return VK_SUCCESS; } static bool anv_device_get_cache_uuid(void *uuid) { const struct build_id_note *note = build_id_find_nhdr("libvulkan_intel.so"); if (!note) return false; unsigned len = build_id_length(note); if (len < VK_UUID_SIZE) return false; memcpy(uuid, build_id_data(note), VK_UUID_SIZE); return true; } static VkResult anv_physical_device_init(struct anv_physical_device *device, struct anv_instance *instance, const char *path) { VkResult result; int fd; fd = open(path, O_RDWR | O_CLOEXEC); if (fd < 0) return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; device->instance = instance; assert(strlen(path) < ARRAY_SIZE(device->path)); strncpy(device->path, path, ARRAY_SIZE(device->path)); device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID); if (!device->chipset_id) { result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); goto fail; } device->name = gen_get_device_name(device->chipset_id); if (!gen_get_device_info(device->chipset_id, &device->info)) { result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER); goto fail; } if (device->info.is_haswell) { fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n"); } else if (device->info.gen == 7 && !device->info.is_baytrail) { fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n"); } else if (device->info.gen == 7 && device->info.is_baytrail) { fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n"); } else if (device->info.gen >= 8) { /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully * supported as anything */ } else { result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER, "Vulkan not yet supported on %s", device->name); goto fail; } device->cmd_parser_version = -1; if (device->info.gen == 7) { device->cmd_parser_version = anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION); if (device->cmd_parser_version == -1) { result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED, "failed to get command parser version"); goto fail; } } if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) { result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED, "kernel missing gem wait"); goto fail; } if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) { result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED, "kernel missing execbuf2"); goto fail; } if (!device->info.has_llc && anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) { result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED, "kernel missing wc mmap"); goto fail; } device->supports_48bit_addresses = anv_gem_supports_48b_addresses(fd); result = anv_compute_heap_size(fd, &device->heap_size); if (result != VK_SUCCESS) goto fail; if (!anv_device_get_cache_uuid(device->uuid)) { result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID"); goto fail; } bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X); /* GENs prior to 8 do not support EU/Subslice info */ if (device->info.gen >= 8) { device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL); device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL); /* Without this information, we cannot get the right Braswell * brandstrings, and we have to use conservative numbers for GPGPU on * many platforms, but otherwise, things will just work. */ if (device->subslice_total < 1 || device->eu_total < 1) { fprintf(stderr, "WARNING: Kernel 4.1 required to properly" " query GPU properties.\n"); } } else if (device->info.gen == 7) { device->subslice_total = 1 << (device->info.gt - 1); } if (device->info.is_cherryview && device->subslice_total > 0 && device->eu_total > 0) { /* Logical CS threads = EUs per subslice * 7 threads per EU */ uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7; /* Fuse configurations may give more threads than expected, never less. */ if (max_cs_threads > device->info.max_cs_threads) device->info.max_cs_threads = max_cs_threads; } brw_process_intel_debug_variable(); device->compiler = brw_compiler_create(NULL, &device->info); if (device->compiler == NULL) { result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); goto fail; } device->compiler->shader_debug_log = compiler_debug_log; device->compiler->shader_perf_log = compiler_perf_log; result = anv_init_wsi(device); if (result != VK_SUCCESS) { ralloc_free(device->compiler); goto fail; } isl_device_init(&device->isl_dev, &device->info, swizzled); device->local_fd = fd; return VK_SUCCESS; fail: close(fd); return result; } static void anv_physical_device_finish(struct anv_physical_device *device) { anv_finish_wsi(device); ralloc_free(device->compiler); close(device->local_fd); } static const VkExtensionProperties global_extensions[] = { { .extensionName = VK_KHR_SURFACE_EXTENSION_NAME, .specVersion = 25, }, #ifdef VK_USE_PLATFORM_XCB_KHR { .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME, .specVersion = 6, }, #endif #ifdef VK_USE_PLATFORM_XLIB_KHR { .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME, .specVersion = 6, }, #endif #ifdef VK_USE_PLATFORM_WAYLAND_KHR { .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, .specVersion = 5, }, #endif { .extensionName = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, .specVersion = 1, }, }; static const VkExtensionProperties device_extensions[] = { { .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME, .specVersion = 68, }, { .extensionName = VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME, .specVersion = 1, }, { .extensionName = VK_KHR_MAINTENANCE1_EXTENSION_NAME, .specVersion = 1, }, { .extensionName = VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, .specVersion = 1, }, { .extensionName = VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME, .specVersion = 1, }, { .extensionName = VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME, .specVersion = 1, }, { .extensionName = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, .specVersion = 1, }, }; static void * default_alloc_func(void *pUserData, size_t size, size_t align, VkSystemAllocationScope allocationScope) { return malloc(size); } static void * default_realloc_func(void *pUserData, void *pOriginal, size_t size, size_t align, VkSystemAllocationScope allocationScope) { return realloc(pOriginal, size); } static void default_free_func(void *pUserData, void *pMemory) { free(pMemory); } static const VkAllocationCallbacks default_alloc = { .pUserData = NULL, .pfnAllocation = default_alloc_func, .pfnReallocation = default_realloc_func, .pfnFree = default_free_func, }; VkResult anv_CreateInstance( const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) { struct anv_instance *instance; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO); uint32_t client_version; if (pCreateInfo->pApplicationInfo && pCreateInfo->pApplicationInfo->apiVersion != 0) { client_version = pCreateInfo->pApplicationInfo->apiVersion; } else { client_version = VK_MAKE_VERSION(1, 0, 0); } if (VK_MAKE_VERSION(1, 0, 0) > client_version || client_version > VK_MAKE_VERSION(1, 0, 0xfff)) { return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER, "Client requested version %d.%d.%d", VK_VERSION_MAJOR(client_version), VK_VERSION_MINOR(client_version), VK_VERSION_PATCH(client_version)); } for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { bool found = false; for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) { if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], global_extensions[j].extensionName) == 0) { found = true; break; } } if (!found) return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); } instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!instance) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC; if (pAllocator) instance->alloc = *pAllocator; else instance->alloc = default_alloc; instance->apiVersion = client_version; instance->physicalDeviceCount = -1; _mesa_locale_init(); VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false)); *pInstance = anv_instance_to_handle(instance); return VK_SUCCESS; } void anv_DestroyInstance( VkInstance _instance, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_instance, instance, _instance); if (!instance) return; if (instance->physicalDeviceCount > 0) { /* We support at most one physical device. */ assert(instance->physicalDeviceCount == 1); anv_physical_device_finish(&instance->physicalDevice); } VG(VALGRIND_DESTROY_MEMPOOL(instance)); _mesa_locale_fini(); vk_free(&instance->alloc, instance); } static VkResult anv_enumerate_devices(struct anv_instance *instance) { /* TODO: Check for more devices ? */ drmDevicePtr devices[8]; VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER; int max_devices; instance->physicalDeviceCount = 0; max_devices = drmGetDevices2(0, devices, sizeof(devices)); if (max_devices < 1) return VK_ERROR_INCOMPATIBLE_DRIVER; for (unsigned i = 0; i < (unsigned)max_devices; i++) { if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER && devices[i]->bustype == DRM_BUS_PCI && devices[i]->deviceinfo.pci->vendor_id == 0x8086) { result = anv_physical_device_init(&instance->physicalDevice, instance, devices[i]->nodes[DRM_NODE_RENDER]); if (result != VK_ERROR_INCOMPATIBLE_DRIVER) break; } } if (result == VK_SUCCESS) instance->physicalDeviceCount = 1; return result; } VkResult anv_EnumeratePhysicalDevices( VkInstance _instance, uint32_t* pPhysicalDeviceCount, VkPhysicalDevice* pPhysicalDevices) { ANV_FROM_HANDLE(anv_instance, instance, _instance); VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount); VkResult result; if (instance->physicalDeviceCount < 0) { result = anv_enumerate_devices(instance); if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER) return result; } if (instance->physicalDeviceCount > 0) { assert(instance->physicalDeviceCount == 1); vk_outarray_append(&out, i) { *i = anv_physical_device_to_handle(&instance->physicalDevice); } } return vk_outarray_status(&out); } void anv_GetPhysicalDeviceFeatures( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); *pFeatures = (VkPhysicalDeviceFeatures) { .robustBufferAccess = true, .fullDrawIndexUint32 = true, .imageCubeArray = true, .independentBlend = true, .geometryShader = true, .tessellationShader = true, .sampleRateShading = true, .dualSrcBlend = true, .logicOp = true, .multiDrawIndirect = false, .drawIndirectFirstInstance = true, .depthClamp = true, .depthBiasClamp = true, .fillModeNonSolid = true, .depthBounds = false, .wideLines = true, .largePoints = true, .alphaToOne = true, .multiViewport = true, .samplerAnisotropy = true, .textureCompressionETC2 = pdevice->info.gen >= 8 || pdevice->info.is_baytrail, .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */ .textureCompressionBC = true, .occlusionQueryPrecise = true, .pipelineStatisticsQuery = true, .fragmentStoresAndAtomics = true, .shaderTessellationAndGeometryPointSize = true, .shaderImageGatherExtended = true, .shaderStorageImageExtendedFormats = true, .shaderStorageImageMultisample = false, .shaderStorageImageReadWithoutFormat = false, .shaderStorageImageWriteWithoutFormat = true, .shaderUniformBufferArrayDynamicIndexing = true, .shaderSampledImageArrayDynamicIndexing = true, .shaderStorageBufferArrayDynamicIndexing = true, .shaderStorageImageArrayDynamicIndexing = true, .shaderClipDistance = true, .shaderCullDistance = true, .shaderFloat64 = pdevice->info.gen >= 8, .shaderInt64 = pdevice->info.gen >= 8, .shaderInt16 = false, .shaderResourceMinLod = false, .variableMultisampleRate = false, .inheritedQueries = true, }; /* We can't do image stores in vec4 shaders */ pFeatures->vertexPipelineStoresAndAtomics = pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] && pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY]; } void anv_GetPhysicalDeviceFeatures2KHR( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2KHR* pFeatures) { anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features); vk_foreach_struct(ext, pFeatures->pNext) { switch (ext->sType) { default: anv_debug_ignored_stype(ext->sType); break; } } } void anv_GetPhysicalDeviceProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties* pProperties) { ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice); const struct gen_device_info *devinfo = &pdevice->info; /* See assertions made when programming the buffer surface state. */ const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ? (1ul << 30) : (1ul << 27); VkSampleCountFlags sample_counts = isl_device_get_sample_counts(&pdevice->isl_dev); VkPhysicalDeviceLimits limits = { .maxImageDimension1D = (1 << 14), .maxImageDimension2D = (1 << 14), .maxImageDimension3D = (1 << 11), .maxImageDimensionCube = (1 << 14), .maxImageArrayLayers = (1 << 11), .maxTexelBufferElements = 128 * 1024 * 1024, .maxUniformBufferRange = (1ul << 27), .maxStorageBufferRange = max_raw_buffer_sz, .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE, .maxMemoryAllocationCount = UINT32_MAX, .maxSamplerAllocationCount = 64 * 1024, .bufferImageGranularity = 64, /* A cache line */ .sparseAddressSpaceSize = 0, .maxBoundDescriptorSets = MAX_SETS, .maxPerStageDescriptorSamplers = 64, .maxPerStageDescriptorUniformBuffers = 64, .maxPerStageDescriptorStorageBuffers = 64, .maxPerStageDescriptorSampledImages = 64, .maxPerStageDescriptorStorageImages = 64, .maxPerStageDescriptorInputAttachments = 64, .maxPerStageResources = 128, .maxDescriptorSetSamplers = 256, .maxDescriptorSetUniformBuffers = 256, .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2, .maxDescriptorSetStorageBuffers = 256, .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2, .maxDescriptorSetSampledImages = 256, .maxDescriptorSetStorageImages = 256, .maxDescriptorSetInputAttachments = 256, .maxVertexInputAttributes = MAX_VBS, .maxVertexInputBindings = MAX_VBS, .maxVertexInputAttributeOffset = 2047, .maxVertexInputBindingStride = 2048, .maxVertexOutputComponents = 128, .maxTessellationGenerationLevel = 64, .maxTessellationPatchSize = 32, .maxTessellationControlPerVertexInputComponents = 128, .maxTessellationControlPerVertexOutputComponents = 128, .maxTessellationControlPerPatchOutputComponents = 128, .maxTessellationControlTotalOutputComponents = 2048, .maxTessellationEvaluationInputComponents = 128, .maxTessellationEvaluationOutputComponents = 128, .maxGeometryShaderInvocations = 32, .maxGeometryInputComponents = 64, .maxGeometryOutputComponents = 128, .maxGeometryOutputVertices = 256, .maxGeometryTotalOutputComponents = 1024, .maxFragmentInputComponents = 128, .maxFragmentOutputAttachments = 8, .maxFragmentDualSrcAttachments = 1, .maxFragmentCombinedOutputResources = 8, .maxComputeSharedMemorySize = 32768, .maxComputeWorkGroupCount = { 65535, 65535, 65535 }, .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads, .maxComputeWorkGroupSize = { 16 * devinfo->max_cs_threads, 16 * devinfo->max_cs_threads, 16 * devinfo->max_cs_threads, }, .subPixelPrecisionBits = 4 /* FIXME */, .subTexelPrecisionBits = 4 /* FIXME */, .mipmapPrecisionBits = 4 /* FIXME */, .maxDrawIndexedIndexValue = UINT32_MAX, .maxDrawIndirectCount = UINT32_MAX, .maxSamplerLodBias = 16, .maxSamplerAnisotropy = 16, .maxViewports = MAX_VIEWPORTS, .maxViewportDimensions = { (1 << 14), (1 << 14) }, .viewportBoundsRange = { INT16_MIN, INT16_MAX }, .viewportSubPixelBits = 13, /* We take a float? */ .minMemoryMapAlignment = 4096, /* A page */ .minTexelBufferOffsetAlignment = 1, .minUniformBufferOffsetAlignment = 16, .minStorageBufferOffsetAlignment = 4, .minTexelOffset = -8, .maxTexelOffset = 7, .minTexelGatherOffset = -32, .maxTexelGatherOffset = 31, .minInterpolationOffset = -0.5, .maxInterpolationOffset = 0.4375, .subPixelInterpolationOffsetBits = 4, .maxFramebufferWidth = (1 << 14), .maxFramebufferHeight = (1 << 14), .maxFramebufferLayers = (1 << 11), .framebufferColorSampleCounts = sample_counts, .framebufferDepthSampleCounts = sample_counts, .framebufferStencilSampleCounts = sample_counts, .framebufferNoAttachmentsSampleCounts = sample_counts, .maxColorAttachments = MAX_RTS, .sampledImageColorSampleCounts = sample_counts, .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT, .sampledImageDepthSampleCounts = sample_counts, .sampledImageStencilSampleCounts = sample_counts, .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT, .maxSampleMaskWords = 1, .timestampComputeAndGraphics = false, .timestampPeriod = devinfo->timebase_scale, .maxClipDistances = 8, .maxCullDistances = 8, .maxCombinedClipAndCullDistances = 8, .discreteQueuePriorities = 1, .pointSizeRange = { 0.125, 255.875 }, .lineWidthRange = { 0.0, 7.9921875 }, .pointSizeGranularity = (1.0 / 8.0), .lineWidthGranularity = (1.0 / 128.0), .strictLines = false, /* FINISHME */ .standardSampleLocations = true, .optimalBufferCopyOffsetAlignment = 128, .optimalBufferCopyRowPitchAlignment = 128, .nonCoherentAtomSize = 64, }; *pProperties = (VkPhysicalDeviceProperties) { .apiVersion = VK_MAKE_VERSION(1, 0, 42), .driverVersion = 1, .vendorID = 0x8086, .deviceID = pdevice->chipset_id, .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU, .limits = limits, .sparseProperties = {0}, /* Broadwell doesn't do sparse. */ }; strcpy(pProperties->deviceName, pdevice->name); memcpy(pProperties->pipelineCacheUUID, pdevice->uuid, VK_UUID_SIZE); } void anv_GetPhysicalDeviceProperties2KHR( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2KHR* pProperties) { anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties); vk_foreach_struct(ext, pProperties->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: { VkPhysicalDevicePushDescriptorPropertiesKHR *properties = (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext; properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS; break; } default: anv_debug_ignored_stype(ext->sType); break; } } } /* We support exactly one queue family. */ static const VkQueueFamilyProperties anv_queue_family_properties = { .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT, .queueCount = 1, .timestampValidBits = 36, /* XXX: Real value here */ .minImageTransferGranularity = { 1, 1, 1 }, }; void anv_GetPhysicalDeviceQueueFamilyProperties( VkPhysicalDevice physicalDevice, uint32_t* pCount, VkQueueFamilyProperties* pQueueFamilyProperties) { VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount); vk_outarray_append(&out, p) { *p = anv_queue_family_properties; } } void anv_GetPhysicalDeviceQueueFamilyProperties2KHR( VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties2KHR* pQueueFamilyProperties) { VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount); vk_outarray_append(&out, p) { p->queueFamilyProperties = anv_queue_family_properties; vk_foreach_struct(s, p->pNext) { anv_debug_ignored_stype(s->sType); } } } void anv_GetPhysicalDeviceMemoryProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties* pMemoryProperties) { ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); if (physical_device->info.has_llc) { /* Big core GPUs share LLC with the CPU and thus one memory type can be * both cached and coherent at the same time. */ pMemoryProperties->memoryTypeCount = 1; pMemoryProperties->memoryTypes[0] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, .heapIndex = 0, }; } else { /* The spec requires that we expose a host-visible, coherent memory * type, but Atom GPUs don't share LLC. Thus we offer two memory types * to give the application a choice between cached, but not coherent and * coherent but uncached (WC though). */ pMemoryProperties->memoryTypeCount = 2; pMemoryProperties->memoryTypes[0] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = 0, }; pMemoryProperties->memoryTypes[1] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, .heapIndex = 0, }; } pMemoryProperties->memoryHeapCount = 1; pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) { .size = physical_device->heap_size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, }; } void anv_GetPhysicalDeviceMemoryProperties2KHR( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties) { anv_GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties); vk_foreach_struct(ext, pMemoryProperties->pNext) { switch (ext->sType) { default: anv_debug_ignored_stype(ext->sType); break; } } } PFN_vkVoidFunction anv_GetInstanceProcAddr( VkInstance instance, const char* pName) { return anv_lookup_entrypoint(NULL, pName); } /* With version 1+ of the loader interface the ICD should expose * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps. */ PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName); PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName) { return anv_GetInstanceProcAddr(instance, pName); } PFN_vkVoidFunction anv_GetDeviceProcAddr( VkDevice _device, const char* pName) { ANV_FROM_HANDLE(anv_device, device, _device); return anv_lookup_entrypoint(&device->info, pName); } static void anv_queue_init(struct anv_device *device, struct anv_queue *queue) { queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC; queue->device = device; queue->pool = &device->surface_state_pool; } static void anv_queue_finish(struct anv_queue *queue) { } static struct anv_state anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p) { struct anv_state state; state = anv_state_pool_alloc(pool, size, align); memcpy(state.map, p, size); anv_state_flush(pool->block_pool->device, state); return state; } struct gen8_border_color { union { float float32[4]; uint32_t uint32[4]; }; /* Pad out to 64 bytes */ uint32_t _pad[12]; }; static void anv_device_init_border_colors(struct anv_device *device) { static const struct gen8_border_color border_colors[] = { [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } }, [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } }, [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } }, [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } }, [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } }, [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } }, }; device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool, sizeof(border_colors), 64, border_colors); } VkResult anv_device_submit_simple_batch(struct anv_device *device, struct anv_batch *batch) { struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 exec2_objects[1]; struct anv_bo bo, *exec_bos[1]; VkResult result = VK_SUCCESS; uint32_t size; /* Kernel driver requires 8 byte aligned batch length */ size = align_u32(batch->next - batch->start, 8); result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size); if (result != VK_SUCCESS) return result; memcpy(bo.map, batch->start, size); if (!device->info.has_llc) anv_flush_range(bo.map, size); exec_bos[0] = &bo; exec2_objects[0].handle = bo.gem_handle; exec2_objects[0].relocation_count = 0; exec2_objects[0].relocs_ptr = 0; exec2_objects[0].alignment = 0; exec2_objects[0].offset = bo.offset; exec2_objects[0].flags = 0; exec2_objects[0].rsvd1 = 0; exec2_objects[0].rsvd2 = 0; execbuf.buffers_ptr = (uintptr_t) exec2_objects; execbuf.buffer_count = 1; execbuf.batch_start_offset = 0; execbuf.batch_len = size; execbuf.cliprects_ptr = 0; execbuf.num_cliprects = 0; execbuf.DR1 = 0; execbuf.DR4 = 0; execbuf.flags = I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER; execbuf.rsvd1 = device->context_id; execbuf.rsvd2 = 0; result = anv_device_execbuf(device, &execbuf, exec_bos); if (result != VK_SUCCESS) goto fail; result = anv_device_wait(device, &bo, INT64_MAX); fail: anv_bo_pool_free(&device->batch_bo_pool, &bo); return result; } VkResult anv_CreateDevice( VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) { ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice); VkResult result; struct anv_device *device; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO); for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { bool found = false; for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) { if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], device_extensions[j].extensionName) == 0) { found = true; break; } } if (!found) return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT); } device = vk_alloc2(&physical_device->instance->alloc, pAllocator, sizeof(*device), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!device) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; device->instance = physical_device->instance; device->chipset_id = physical_device->chipset_id; device->lost = false; if (pAllocator) device->alloc = *pAllocator; else device->alloc = physical_device->instance->alloc; /* XXX(chadv): Can we dup() physicalDevice->fd here? */ device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC); if (device->fd == -1) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_device; } device->context_id = anv_gem_create_context(device); if (device->context_id == -1) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_fd; } device->info = physical_device->info; device->isl_dev = physical_device->isl_dev; /* On Broadwell and later, we can use batch chaining to more efficiently * implement growing command buffers. Prior to Haswell, the kernel * command parser gets in the way and we have to fall back to growing * the batch. */ device->can_chain_batches = device->info.gen >= 8; device->robust_buffer_access = pCreateInfo->pEnabledFeatures && pCreateInfo->pEnabledFeatures->robustBufferAccess; if (pthread_mutex_init(&device->mutex, NULL) != 0) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_context_id; } pthread_condattr_t condattr; if (pthread_condattr_init(&condattr) != 0) { result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) { pthread_condattr_destroy(&condattr); result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } if (pthread_cond_init(&device->queue_submit, NULL) != 0) { pthread_condattr_destroy(&condattr); result = vk_error(VK_ERROR_INITIALIZATION_FAILED); goto fail_mutex; } pthread_condattr_destroy(&condattr); anv_bo_pool_init(&device->batch_bo_pool, device); result = anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384); if (result != VK_SUCCESS) goto fail_batch_bo_pool; anv_state_pool_init(&device->dynamic_state_pool, &device->dynamic_state_block_pool); result = anv_block_pool_init(&device->instruction_block_pool, device, 1024 * 1024); if (result != VK_SUCCESS) goto fail_dynamic_state_pool; anv_state_pool_init(&device->instruction_state_pool, &device->instruction_block_pool); result = anv_block_pool_init(&device->surface_state_block_pool, device, 4096); if (result != VK_SUCCESS) goto fail_instruction_state_pool; anv_state_pool_init(&device->surface_state_pool, &device->surface_state_block_pool); result = anv_bo_init_new(&device->workaround_bo, device, 1024); if (result != VK_SUCCESS) goto fail_surface_state_pool; anv_scratch_pool_init(device, &device->scratch_pool); anv_queue_init(device, &device->queue); switch (device->info.gen) { case 7: if (!device->info.is_haswell) result = gen7_init_device_state(device); else result = gen75_init_device_state(device); break; case 8: result = gen8_init_device_state(device); break; case 9: result = gen9_init_device_state(device); break; default: /* Shouldn't get here as we don't create physical devices for any other * gens. */ unreachable("unhandled gen"); } if (result != VK_SUCCESS) goto fail_workaround_bo; anv_device_init_blorp(device); anv_device_init_border_colors(device); *pDevice = anv_device_to_handle(device); return VK_SUCCESS; fail_workaround_bo: anv_queue_finish(&device->queue); anv_scratch_pool_finish(device, &device->scratch_pool); anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size); anv_gem_close(device, device->workaround_bo.gem_handle); fail_surface_state_pool: anv_state_pool_finish(&device->surface_state_pool); anv_block_pool_finish(&device->surface_state_block_pool); fail_instruction_state_pool: anv_state_pool_finish(&device->instruction_state_pool); anv_block_pool_finish(&device->instruction_block_pool); fail_dynamic_state_pool: anv_state_pool_finish(&device->dynamic_state_pool); anv_block_pool_finish(&device->dynamic_state_block_pool); fail_batch_bo_pool: anv_bo_pool_finish(&device->batch_bo_pool); pthread_cond_destroy(&device->queue_submit); fail_mutex: pthread_mutex_destroy(&device->mutex); fail_context_id: anv_gem_destroy_context(device, device->context_id); fail_fd: close(device->fd); fail_device: vk_free(&device->alloc, device); return result; } void anv_DestroyDevice( VkDevice _device, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); if (!device) return; anv_device_finish_blorp(device); anv_queue_finish(&device->queue); #ifdef HAVE_VALGRIND /* We only need to free these to prevent valgrind errors. The backing * BO will go away in a couple of lines so we don't actually leak. */ anv_state_pool_free(&device->dynamic_state_pool, device->border_colors); #endif anv_scratch_pool_finish(device, &device->scratch_pool); anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size); anv_gem_close(device, device->workaround_bo.gem_handle); anv_state_pool_finish(&device->surface_state_pool); anv_block_pool_finish(&device->surface_state_block_pool); anv_state_pool_finish(&device->instruction_state_pool); anv_block_pool_finish(&device->instruction_block_pool); anv_state_pool_finish(&device->dynamic_state_pool); anv_block_pool_finish(&device->dynamic_state_block_pool); anv_bo_pool_finish(&device->batch_bo_pool); pthread_cond_destroy(&device->queue_submit); pthread_mutex_destroy(&device->mutex); anv_gem_destroy_context(device, device->context_id); close(device->fd); vk_free(&device->alloc, device); } VkResult anv_EnumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = ARRAY_SIZE(global_extensions); return VK_SUCCESS; } *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions)); typed_memcpy(pProperties, global_extensions, *pPropertyCount); if (*pPropertyCount < ARRAY_SIZE(global_extensions)) return VK_INCOMPLETE; return VK_SUCCESS; } VkResult anv_EnumerateDeviceExtensionProperties( VkPhysicalDevice physicalDevice, const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = ARRAY_SIZE(device_extensions); return VK_SUCCESS; } *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions)); typed_memcpy(pProperties, device_extensions, *pPropertyCount); if (*pPropertyCount < ARRAY_SIZE(device_extensions)) return VK_INCOMPLETE; return VK_SUCCESS; } VkResult anv_EnumerateInstanceLayerProperties( uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(VK_ERROR_LAYER_NOT_PRESENT); } VkResult anv_EnumerateDeviceLayerProperties( VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(VK_ERROR_LAYER_NOT_PRESENT); } void anv_GetDeviceQueue( VkDevice _device, uint32_t queueNodeIndex, uint32_t queueIndex, VkQueue* pQueue) { ANV_FROM_HANDLE(anv_device, device, _device); assert(queueIndex == 0); *pQueue = anv_queue_to_handle(&device->queue); } VkResult anv_device_execbuf(struct anv_device *device, struct drm_i915_gem_execbuffer2 *execbuf, struct anv_bo **execbuf_bos) { int ret = anv_gem_execbuffer(device, execbuf); if (ret != 0) { /* We don't know the real error. */ device->lost = true; return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m"); } struct drm_i915_gem_exec_object2 *objects = (void *)(uintptr_t)execbuf->buffers_ptr; for (uint32_t k = 0; k < execbuf->buffer_count; k++) execbuf_bos[k]->offset = objects[k].offset; return VK_SUCCESS; } VkResult anv_device_query_status(struct anv_device *device) { /* This isn't likely as most of the callers of this function already check * for it. However, it doesn't hurt to check and it potentially lets us * avoid an ioctl. */ if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; uint32_t active, pending; int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending); if (ret == -1) { /* We don't know the real error. */ device->lost = true; return vk_errorf(VK_ERROR_DEVICE_LOST, "get_reset_stats failed: %m"); } if (active) { device->lost = true; return vk_errorf(VK_ERROR_DEVICE_LOST, "GPU hung on one of our command buffers"); } else if (pending) { device->lost = true; return vk_errorf(VK_ERROR_DEVICE_LOST, "GPU hung with commands in-flight"); } return VK_SUCCESS; } VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo, int64_t timeout) { int ret = anv_gem_wait(device, bo->gem_handle, &timeout); if (ret == -1 && errno == ETIME) { return VK_TIMEOUT; } else if (ret == -1) { /* We don't know the real error. */ device->lost = true; return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m"); } /* Query for device status after the wait. If the BO we're waiting on got * caught in a GPU hang we don't want to return VK_SUCCESS to the client * because it clearly doesn't have valid data. Yes, this most likely means * an ioctl, but we just did an ioctl to wait so it's no great loss. */ return anv_device_query_status(device); } VkResult anv_QueueSubmit( VkQueue _queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence _fence) { ANV_FROM_HANDLE(anv_queue, queue, _queue); ANV_FROM_HANDLE(anv_fence, fence, _fence); struct anv_device *device = queue->device; /* Query for device status prior to submitting. Technically, we don't need * to do this. However, if we have a client that's submitting piles of * garbage, we would rather break as early as possible to keep the GPU * hanging contained. If we don't check here, we'll either be waiting for * the kernel to kick us or we'll have to wait until the client waits on a * fence before we actually know whether or not we've hung. */ VkResult result = anv_device_query_status(device); if (result != VK_SUCCESS) return result; /* We lock around QueueSubmit for three main reasons: * * 1) When a block pool is resized, we create a new gem handle with a * different size and, in the case of surface states, possibly a * different center offset but we re-use the same anv_bo struct when * we do so. If this happens in the middle of setting up an execbuf, * we could end up with our list of BOs out of sync with our list of * gem handles. * * 2) The algorithm we use for building the list of unique buffers isn't * thread-safe. While the client is supposed to syncronize around * QueueSubmit, this would be extremely difficult to debug if it ever * came up in the wild due to a broken app. It's better to play it * safe and just lock around QueueSubmit. * * 3) The anv_cmd_buffer_execbuf function may perform relocations in * userspace. Due to the fact that the surface state buffer is shared * between batches, we can't afford to have that happen from multiple * threads at the same time. Even though the user is supposed to * ensure this doesn't happen, we play it safe as in (2) above. * * Since the only other things that ever take the device lock such as block * pool resize only rarely happen, this will almost never be contended so * taking a lock isn't really an expensive operation in this case. */ pthread_mutex_lock(&device->mutex); for (uint32_t i = 0; i < submitCount; i++) { for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pSubmits[i].pCommandBuffers[j]); assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); assert(!anv_batch_has_error(&cmd_buffer->batch)); result = anv_cmd_buffer_execbuf(device, cmd_buffer); if (result != VK_SUCCESS) goto out; } } if (fence) { struct anv_bo *fence_bo = &fence->bo; result = anv_device_execbuf(device, &fence->execbuf, &fence_bo); if (result != VK_SUCCESS) goto out; /* Update the fence and wake up any waiters */ assert(fence->state == ANV_FENCE_STATE_RESET); fence->state = ANV_FENCE_STATE_SUBMITTED; pthread_cond_broadcast(&device->queue_submit); } out: if (result != VK_SUCCESS) { /* In the case that something has gone wrong we may end up with an * inconsistent state from which it may not be trivial to recover. * For example, we might have computed address relocations and * any future attempt to re-submit this job will need to know about * this and avoid computing relocation addresses again. * * To avoid this sort of issues, we assume that if something was * wrong during submission we must already be in a really bad situation * anyway (such us being out of memory) and return * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to * submit the same job again to this device. */ result = VK_ERROR_DEVICE_LOST; device->lost = true; /* If we return VK_ERROR_DEVICE LOST here, we need to ensure that * vkWaitForFences() and vkGetFenceStatus() return a valid result * (VK_SUCCESS or VK_ERROR_DEVICE_LOST) in a finite amount of time. * Setting the fence status to SIGNALED ensures this will happen in * any case. */ if (fence) fence->state = ANV_FENCE_STATE_SIGNALED; } pthread_mutex_unlock(&device->mutex); return result; } VkResult anv_QueueWaitIdle( VkQueue _queue) { ANV_FROM_HANDLE(anv_queue, queue, _queue); return anv_DeviceWaitIdle(anv_device_to_handle(queue->device)); } VkResult anv_DeviceWaitIdle( VkDevice _device) { ANV_FROM_HANDLE(anv_device, device, _device); if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; struct anv_batch batch; uint32_t cmds[8]; batch.start = batch.next = cmds; batch.end = (void *) cmds + sizeof(cmds); anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe); anv_batch_emit(&batch, GEN7_MI_NOOP, noop); return anv_device_submit_simple_batch(device, &batch); } VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size) { uint32_t gem_handle = anv_gem_create(device, size); if (!gem_handle) return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY); anv_bo_init(bo, gem_handle, size); if (device->instance->physicalDevice.supports_48bit_addresses) bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; return VK_SUCCESS; } VkResult anv_AllocateMemory( VkDevice _device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMem) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_device_memory *mem; VkResult result; assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO); /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */ assert(pAllocateInfo->allocationSize > 0); /* We support exactly one memory heap. */ assert(pAllocateInfo->memoryTypeIndex == 0 || (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2)); /* FINISHME: Fail if allocation request exceeds heap size. */ mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (mem == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); /* The kernel is going to give us whole pages anyway */ uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096); result = anv_bo_init_new(&mem->bo, device, alloc_size); if (result != VK_SUCCESS) goto fail; mem->type_index = pAllocateInfo->memoryTypeIndex; mem->map = NULL; mem->map_size = 0; *pMem = anv_device_memory_to_handle(mem); return VK_SUCCESS; fail: vk_free2(&device->alloc, pAllocator, mem); return result; } void anv_FreeMemory( VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_device_memory, mem, _mem); if (mem == NULL) return; if (mem->map) anv_UnmapMemory(_device, _mem); if (mem->bo.map) anv_gem_munmap(mem->bo.map, mem->bo.size); if (mem->bo.gem_handle != 0) anv_gem_close(device, mem->bo.gem_handle); vk_free2(&device->alloc, pAllocator, mem); } VkResult anv_MapMemory( VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_device_memory, mem, _memory); if (mem == NULL) { *ppData = NULL; return VK_SUCCESS; } if (size == VK_WHOLE_SIZE) size = mem->bo.size - offset; /* From the Vulkan spec version 1.0.32 docs for MapMemory: * * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0 * assert(size != 0); * * If size is not equal to VK_WHOLE_SIZE, size must be less than or * equal to the size of the memory minus offset */ assert(size > 0); assert(offset + size <= mem->bo.size); /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only * takes a VkDeviceMemory pointer, it seems like only one map of the memory * at a time is valid. We could just mmap up front and return an offset * pointer here, but that may exhaust virtual memory on 32 bit * userspace. */ uint32_t gem_flags = 0; if (!device->info.has_llc && mem->type_index == 0) gem_flags |= I915_MMAP_WC; /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */ uint64_t map_offset = offset & ~4095ull; assert(offset >= map_offset); uint64_t map_size = (offset + size) - map_offset; /* Let's map whole pages */ map_size = align_u64(map_size, 4096); void *map = anv_gem_mmap(device, mem->bo.gem_handle, map_offset, map_size, gem_flags); if (map == MAP_FAILED) return vk_error(VK_ERROR_MEMORY_MAP_FAILED); mem->map = map; mem->map_size = map_size; *ppData = mem->map + (offset - map_offset); return VK_SUCCESS; } void anv_UnmapMemory( VkDevice _device, VkDeviceMemory _memory) { ANV_FROM_HANDLE(anv_device_memory, mem, _memory); if (mem == NULL) return; anv_gem_munmap(mem->map, mem->map_size); mem->map = NULL; mem->map_size = 0; } static void clflush_mapped_ranges(struct anv_device *device, uint32_t count, const VkMappedMemoryRange *ranges) { for (uint32_t i = 0; i < count; i++) { ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory); if (ranges[i].offset >= mem->map_size) continue; anv_clflush_range(mem->map + ranges[i].offset, MIN2(ranges[i].size, mem->map_size - ranges[i].offset)); } } VkResult anv_FlushMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { ANV_FROM_HANDLE(anv_device, device, _device); if (device->info.has_llc) return VK_SUCCESS; /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges); return VK_SUCCESS; } VkResult anv_InvalidateMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { ANV_FROM_HANDLE(anv_device, device, _device); if (device->info.has_llc) return VK_SUCCESS; clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges); /* Make sure no reads get moved up above the invalidate. */ __builtin_ia32_mfence(); return VK_SUCCESS; } void anv_GetBufferMemoryRequirements( VkDevice _device, VkBuffer _buffer, VkMemoryRequirements* pMemoryRequirements) { ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); ANV_FROM_HANDLE(anv_device, device, _device); /* The Vulkan spec (git aaed022) says: * * memoryTypeBits is a bitfield and contains one bit set for every * supported memory type for the resource. The bit `1<memoryTypeBits = device->info.has_llc ? 1 : 3; pMemoryRequirements->size = buffer->size; pMemoryRequirements->alignment = 16; } void anv_GetImageMemoryRequirements( VkDevice _device, VkImage _image, VkMemoryRequirements* pMemoryRequirements) { ANV_FROM_HANDLE(anv_image, image, _image); ANV_FROM_HANDLE(anv_device, device, _device); /* The Vulkan spec (git aaed022) says: * * memoryTypeBits is a bitfield and contains one bit set for every * supported memory type for the resource. The bit `1<memoryTypeBits = device->info.has_llc ? 1 : 3; pMemoryRequirements->size = image->size; pMemoryRequirements->alignment = image->alignment; } void anv_GetImageSparseMemoryRequirements( VkDevice device, VkImage image, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements* pSparseMemoryRequirements) { *pSparseMemoryRequirementCount = 0; } void anv_GetDeviceMemoryCommitment( VkDevice device, VkDeviceMemory memory, VkDeviceSize* pCommittedMemoryInBytes) { *pCommittedMemoryInBytes = 0; } VkResult anv_BindBufferMemory( VkDevice device, VkBuffer _buffer, VkDeviceMemory _memory, VkDeviceSize memoryOffset) { ANV_FROM_HANDLE(anv_device_memory, mem, _memory); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); if (mem) { buffer->bo = &mem->bo; buffer->offset = memoryOffset; } else { buffer->bo = NULL; buffer->offset = 0; } return VK_SUCCESS; } VkResult anv_QueueBindSparse( VkQueue _queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence) { ANV_FROM_HANDLE(anv_queue, queue, _queue); if (unlikely(queue->device->lost)) return VK_ERROR_DEVICE_LOST; return vk_error(VK_ERROR_FEATURE_NOT_PRESENT); } VkResult anv_CreateFence( VkDevice _device, const VkFenceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFence* pFence) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_bo fence_bo; struct anv_fence *fence; struct anv_batch batch; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO); result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096); if (result != VK_SUCCESS) return result; /* Fences are small. Just store the CPU data structure in the BO. */ fence = fence_bo.map; fence->bo = fence_bo; /* Place the batch after the CPU data but on its own cache line. */ const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE); batch.next = batch.start = fence->bo.map + batch_offset; batch.end = fence->bo.map + fence->bo.size; anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe); anv_batch_emit(&batch, GEN7_MI_NOOP, noop); if (!device->info.has_llc) { assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0); assert(batch.next - batch.start <= CACHELINE_SIZE); __builtin_ia32_mfence(); __builtin_ia32_clflush(batch.start); } fence->exec2_objects[0].handle = fence->bo.gem_handle; fence->exec2_objects[0].relocation_count = 0; fence->exec2_objects[0].relocs_ptr = 0; fence->exec2_objects[0].alignment = 0; fence->exec2_objects[0].offset = fence->bo.offset; fence->exec2_objects[0].flags = 0; fence->exec2_objects[0].rsvd1 = 0; fence->exec2_objects[0].rsvd2 = 0; fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects; fence->execbuf.buffer_count = 1; fence->execbuf.batch_start_offset = batch.start - fence->bo.map; fence->execbuf.batch_len = batch.next - batch.start; fence->execbuf.cliprects_ptr = 0; fence->execbuf.num_cliprects = 0; fence->execbuf.DR1 = 0; fence->execbuf.DR4 = 0; fence->execbuf.flags = I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER; fence->execbuf.rsvd1 = device->context_id; fence->execbuf.rsvd2 = 0; if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) { fence->state = ANV_FENCE_STATE_SIGNALED; } else { fence->state = ANV_FENCE_STATE_RESET; } *pFence = anv_fence_to_handle(fence); return VK_SUCCESS; } void anv_DestroyFence( VkDevice _device, VkFence _fence, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_fence, fence, _fence); if (!fence) return; assert(fence->bo.map == fence); anv_bo_pool_free(&device->batch_bo_pool, &fence->bo); } VkResult anv_ResetFences( VkDevice _device, uint32_t fenceCount, const VkFence* pFences) { for (uint32_t i = 0; i < fenceCount; i++) { ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); fence->state = ANV_FENCE_STATE_RESET; } return VK_SUCCESS; } VkResult anv_GetFenceStatus( VkDevice _device, VkFence _fence) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_fence, fence, _fence); if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; switch (fence->state) { case ANV_FENCE_STATE_RESET: /* If it hasn't even been sent off to the GPU yet, it's not ready */ return VK_NOT_READY; case ANV_FENCE_STATE_SIGNALED: /* It's been signaled, return success */ return VK_SUCCESS; case ANV_FENCE_STATE_SUBMITTED: { VkResult result = anv_device_wait(device, &fence->bo, 0); switch (result) { case VK_SUCCESS: fence->state = ANV_FENCE_STATE_SIGNALED; return VK_SUCCESS; case VK_TIMEOUT: return VK_NOT_READY; default: return result; } } default: unreachable("Invalid fence status"); } } #define NSEC_PER_SEC 1000000000 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1) VkResult anv_WaitForFences( VkDevice _device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t _timeout) { ANV_FROM_HANDLE(anv_device, device, _device); int ret; if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed * to block indefinitely timeouts <= 0. Unfortunately, this was broken * for a couple of kernel releases. Since there's no way to know * whether or not the kernel we're using is one of the broken ones, the * best we can do is to clamp the timeout to INT64_MAX. This limits the * maximum timeout from 584 years to 292 years - likely not a big deal. */ int64_t timeout = MIN2(_timeout, INT64_MAX); VkResult result = VK_SUCCESS; uint32_t pending_fences = fenceCount; while (pending_fences) { pending_fences = 0; bool signaled_fences = false; for (uint32_t i = 0; i < fenceCount; i++) { ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); switch (fence->state) { case ANV_FENCE_STATE_RESET: /* This fence hasn't been submitted yet, we'll catch it the next * time around. Yes, this may mean we dead-loop but, short of * lots of locking and a condition variable, there's not much that * we can do about that. */ pending_fences++; continue; case ANV_FENCE_STATE_SIGNALED: /* This fence is not pending. If waitAll isn't set, we can return * early. Otherwise, we have to keep going. */ if (!waitAll) { result = VK_SUCCESS; goto done; } continue; case ANV_FENCE_STATE_SUBMITTED: /* These are the fences we really care about. Go ahead and wait * on it until we hit a timeout. */ result = anv_device_wait(device, &fence->bo, timeout); switch (result) { case VK_SUCCESS: fence->state = ANV_FENCE_STATE_SIGNALED; signaled_fences = true; if (!waitAll) goto done; break; case VK_TIMEOUT: goto done; default: return result; } } } if (pending_fences && !signaled_fences) { /* If we've hit this then someone decided to vkWaitForFences before * they've actually submitted any of them to a queue. This is a * fairly pessimal case, so it's ok to lock here and use a standard * pthreads condition variable. */ pthread_mutex_lock(&device->mutex); /* It's possible that some of the fences have changed state since the * last time we checked. Now that we have the lock, check for * pending fences again and don't wait if it's changed. */ uint32_t now_pending_fences = 0; for (uint32_t i = 0; i < fenceCount; i++) { ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); if (fence->state == ANV_FENCE_STATE_RESET) now_pending_fences++; } assert(now_pending_fences <= pending_fences); if (now_pending_fences == pending_fences) { struct timespec before; clock_gettime(CLOCK_MONOTONIC, &before); uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC; uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) + (timeout / NSEC_PER_SEC); abs_nsec %= NSEC_PER_SEC; /* Avoid roll-over in tv_sec on 32-bit systems if the user * provided timeout is UINT64_MAX */ struct timespec abstime; abstime.tv_nsec = abs_nsec; abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec)); ret = pthread_cond_timedwait(&device->queue_submit, &device->mutex, &abstime); assert(ret != EINVAL); struct timespec after; clock_gettime(CLOCK_MONOTONIC, &after); uint64_t time_elapsed = ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) - ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec); if (time_elapsed >= timeout) { pthread_mutex_unlock(&device->mutex); result = VK_TIMEOUT; goto done; } timeout -= time_elapsed; } pthread_mutex_unlock(&device->mutex); } } done: if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; return result; } // Queue semaphore functions VkResult anv_CreateSemaphore( VkDevice device, const VkSemaphoreCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSemaphore* pSemaphore) { /* The DRM execbuffer ioctl always execute in-oder, even between different * rings. As such, there's nothing to do for the user space semaphore. */ *pSemaphore = (VkSemaphore)1; return VK_SUCCESS; } void anv_DestroySemaphore( VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks* pAllocator) { } // Event functions VkResult anv_CreateEvent( VkDevice _device, const VkEventCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkEvent* pEvent) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_state state; struct anv_event *event; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO); state = anv_state_pool_alloc(&device->dynamic_state_pool, sizeof(*event), 8); event = state.map; event->state = state; event->semaphore = VK_EVENT_RESET; if (!device->info.has_llc) { /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); __builtin_ia32_clflush(event); } *pEvent = anv_event_to_handle(event); return VK_SUCCESS; } void anv_DestroyEvent( VkDevice _device, VkEvent _event, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); if (!event) return; anv_state_pool_free(&device->dynamic_state_pool, event->state); } VkResult anv_GetEventStatus( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); if (unlikely(device->lost)) return VK_ERROR_DEVICE_LOST; if (!device->info.has_llc) { /* Invalidate read cache before reading event written by GPU. */ __builtin_ia32_clflush(event); __builtin_ia32_mfence(); } return event->semaphore; } VkResult anv_SetEvent( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); event->semaphore = VK_EVENT_SET; if (!device->info.has_llc) { /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); __builtin_ia32_clflush(event); } return VK_SUCCESS; } VkResult anv_ResetEvent( VkDevice _device, VkEvent _event) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_event, event, _event); event->semaphore = VK_EVENT_RESET; if (!device->info.has_llc) { /* Make sure the writes we're flushing have landed. */ __builtin_ia32_mfence(); __builtin_ia32_clflush(event); } return VK_SUCCESS; } // Buffer functions VkResult anv_CreateBuffer( VkDevice _device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_buffer *buffer; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO); buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (buffer == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); buffer->size = pCreateInfo->size; buffer->usage = pCreateInfo->usage; buffer->bo = NULL; buffer->offset = 0; *pBuffer = anv_buffer_to_handle(buffer); return VK_SUCCESS; } void anv_DestroyBuffer( VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); if (!buffer) return; vk_free2(&device->alloc, pAllocator, buffer); } void anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state, enum isl_format format, uint32_t offset, uint32_t range, uint32_t stride) { isl_buffer_fill_state(&device->isl_dev, state.map, .address = offset, .mocs = device->default_mocs, .size = range, .format = format, .stride = stride); anv_state_flush(device, state); } void anv_DestroySampler( VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_sampler, sampler, _sampler); if (!sampler) return; vk_free2(&device->alloc, pAllocator, sampler); } VkResult anv_CreateFramebuffer( VkDevice _device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_framebuffer *framebuffer; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO); size_t size = sizeof(*framebuffer) + sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount; framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (framebuffer == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); framebuffer->attachment_count = pCreateInfo->attachmentCount; for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) { VkImageView _iview = pCreateInfo->pAttachments[i]; framebuffer->attachments[i] = anv_image_view_from_handle(_iview); } framebuffer->width = pCreateInfo->width; framebuffer->height = pCreateInfo->height; framebuffer->layers = pCreateInfo->layers; *pFramebuffer = anv_framebuffer_to_handle(framebuffer); return VK_SUCCESS; } void anv_DestroyFramebuffer( VkDevice _device, VkFramebuffer _fb, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_framebuffer, fb, _fb); if (!fb) return; vk_free2(&device->alloc, pAllocator, fb); } /* vk_icd.h does not declare this function, so we declare it here to * suppress Wmissing-prototypes. */ PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion); PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion) { /* For the full details on loader interface versioning, see * . * What follows is a condensed summary, to help you navigate the large and * confusing official doc. * * - Loader interface v0 is incompatible with later versions. We don't * support it. * * - In loader interface v1: * - The first ICD entrypoint called by the loader is * vk_icdGetInstanceProcAddr(). The ICD must statically expose this * entrypoint. * - The ICD must statically expose no other Vulkan symbol unless it is * linked with -Bsymbolic. * - Each dispatchable Vulkan handle created by the ICD must be * a pointer to a struct whose first member is VK_LOADER_DATA. The * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC. * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and * vkDestroySurfaceKHR(). The ICD must be capable of working with * such loader-managed surfaces. * * - Loader interface v2 differs from v1 in: * - The first ICD entrypoint called by the loader is * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must * statically expose this entrypoint. * * - Loader interface v3 differs from v2 in: * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(), * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR, * because the loader no longer does so. */ *pSupportedVersion = MIN2(*pSupportedVersion, 3u); return VK_SUCCESS; }