/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "vk_format_info.h" /** \file anv_cmd_buffer.c * * This file contains all of the stuff for emitting commands into a command * buffer. This includes implementations of most of the vkCmd* * entrypoints. This file is concerned entirely with state emission and * not with the command buffer data structure itself. As far as this file * is concerned, most of anv_cmd_buffer is magic. */ /* TODO: These are taken from GLES. We should check the Vulkan spec */ const struct anv_dynamic_state default_dynamic_state = { .viewport = { .count = 0, }, .scissor = { .count = 0, }, .line_width = 1.0f, .depth_bias = { .bias = 0.0f, .clamp = 0.0f, .slope = 0.0f, }, .blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f }, .depth_bounds = { .min = 0.0f, .max = 1.0f, }, .stencil_compare_mask = { .front = ~0u, .back = ~0u, }, .stencil_write_mask = { .front = ~0u, .back = ~0u, }, .stencil_reference = { .front = 0u, .back = 0u, }, }; void anv_dynamic_state_copy(struct anv_dynamic_state *dest, const struct anv_dynamic_state *src, uint32_t copy_mask) { if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) { dest->viewport.count = src->viewport.count; typed_memcpy(dest->viewport.viewports, src->viewport.viewports, src->viewport.count); } if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) { dest->scissor.count = src->scissor.count; typed_memcpy(dest->scissor.scissors, src->scissor.scissors, src->scissor.count); } if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) dest->line_width = src->line_width; if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) dest->depth_bias = src->depth_bias; if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) typed_memcpy(dest->blend_constants, src->blend_constants, 4); if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) dest->depth_bounds = src->depth_bounds; if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) dest->stencil_compare_mask = src->stencil_compare_mask; if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) dest->stencil_write_mask = src->stencil_write_mask; if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) dest->stencil_reference = src->stencil_reference; } static void anv_cmd_state_reset(struct anv_cmd_buffer *cmd_buffer) { struct anv_cmd_state *state = &cmd_buffer->state; cmd_buffer->batch.status = VK_SUCCESS; memset(&state->descriptors, 0, sizeof(state->descriptors)); for (uint32_t i = 0; i < ARRAY_SIZE(state->push_descriptors); i++) { vk_free(&cmd_buffer->pool->alloc, state->push_descriptors[i]); state->push_descriptors[i] = NULL; } for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) { vk_free(&cmd_buffer->pool->alloc, state->push_constants[i]); state->push_constants[i] = NULL; } memset(state->binding_tables, 0, sizeof(state->binding_tables)); memset(state->samplers, 0, sizeof(state->samplers)); /* 0 isn't a valid config. This ensures that we always configure L3$. */ cmd_buffer->state.current_l3_config = 0; state->dirty = 0; state->vb_dirty = 0; state->pending_pipe_bits = 0; state->descriptors_dirty = 0; state->push_constants_dirty = 0; state->pipeline = NULL; state->framebuffer = NULL; state->pass = NULL; state->subpass = NULL; state->push_constant_stages = 0; state->restart_index = UINT32_MAX; state->dynamic = default_dynamic_state; state->need_query_wa = true; state->pma_fix_enabled = false; state->hiz_enabled = false; vk_free(&cmd_buffer->pool->alloc, state->attachments); state->attachments = NULL; state->gen7.index_buffer = NULL; } VkResult anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, uint32_t size) { struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage]; if (*ptr == NULL) { *ptr = vk_alloc(&cmd_buffer->pool->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (*ptr == NULL) { anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } } else if ((*ptr)->size < size) { *ptr = vk_realloc(&cmd_buffer->pool->alloc, *ptr, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (*ptr == NULL) { anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } } (*ptr)->size = size; return VK_SUCCESS; } static VkResult anv_create_cmd_buffer( struct anv_device * device, struct anv_cmd_pool * pool, VkCommandBufferLevel level, VkCommandBuffer* pCommandBuffer) { struct anv_cmd_buffer *cmd_buffer; VkResult result; cmd_buffer = vk_alloc(&pool->alloc, sizeof(*cmd_buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (cmd_buffer == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); cmd_buffer->batch.status = VK_SUCCESS; for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) { cmd_buffer->state.push_constants[i] = NULL; } cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC; cmd_buffer->device = device; cmd_buffer->pool = pool; cmd_buffer->level = level; cmd_buffer->state.attachments = NULL; result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer); if (result != VK_SUCCESS) goto fail; anv_state_stream_init(&cmd_buffer->surface_state_stream, &device->surface_state_pool, 4096); anv_state_stream_init(&cmd_buffer->dynamic_state_stream, &device->dynamic_state_pool, 16384); memset(cmd_buffer->state.push_descriptors, 0, sizeof(cmd_buffer->state.push_descriptors)); if (pool) { list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers); } else { /* Init the pool_link so we can safefly call list_del when we destroy * the command buffer */ list_inithead(&cmd_buffer->pool_link); } *pCommandBuffer = anv_cmd_buffer_to_handle(cmd_buffer); return VK_SUCCESS; fail: vk_free(&cmd_buffer->pool->alloc, cmd_buffer); return result; } VkResult anv_AllocateCommandBuffers( VkDevice _device, const VkCommandBufferAllocateInfo* pAllocateInfo, VkCommandBuffer* pCommandBuffers) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_cmd_pool, pool, pAllocateInfo->commandPool); VkResult result = VK_SUCCESS; uint32_t i; for (i = 0; i < pAllocateInfo->commandBufferCount; i++) { result = anv_create_cmd_buffer(device, pool, pAllocateInfo->level, &pCommandBuffers[i]); if (result != VK_SUCCESS) break; } if (result != VK_SUCCESS) { anv_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i, pCommandBuffers); for (i = 0; i < pAllocateInfo->commandBufferCount; i++) pCommandBuffers[i] = VK_NULL_HANDLE; } return result; } static void anv_cmd_buffer_destroy(struct anv_cmd_buffer *cmd_buffer) { list_del(&cmd_buffer->pool_link); anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer); anv_state_stream_finish(&cmd_buffer->surface_state_stream); anv_state_stream_finish(&cmd_buffer->dynamic_state_stream); anv_cmd_state_reset(cmd_buffer); vk_free(&cmd_buffer->pool->alloc, cmd_buffer); } void anv_FreeCommandBuffers( VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount, const VkCommandBuffer* pCommandBuffers) { for (uint32_t i = 0; i < commandBufferCount; i++) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pCommandBuffers[i]); if (!cmd_buffer) continue; anv_cmd_buffer_destroy(cmd_buffer); } } VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer) { cmd_buffer->usage_flags = 0; cmd_buffer->state.current_pipeline = UINT32_MAX; anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer); anv_cmd_state_reset(cmd_buffer); anv_state_stream_finish(&cmd_buffer->surface_state_stream); anv_state_stream_init(&cmd_buffer->surface_state_stream, &cmd_buffer->device->surface_state_pool, 4096); anv_state_stream_finish(&cmd_buffer->dynamic_state_stream); anv_state_stream_init(&cmd_buffer->dynamic_state_stream, &cmd_buffer->device->dynamic_state_pool, 16384); return VK_SUCCESS; } VkResult anv_ResetCommandBuffer( VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); return anv_cmd_buffer_reset(cmd_buffer); } void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer) { switch (cmd_buffer->device->info.gen) { case 7: if (cmd_buffer->device->info.is_haswell) return gen75_cmd_buffer_emit_state_base_address(cmd_buffer); else return gen7_cmd_buffer_emit_state_base_address(cmd_buffer); case 8: return gen8_cmd_buffer_emit_state_base_address(cmd_buffer); case 9: return gen9_cmd_buffer_emit_state_base_address(cmd_buffer); case 10: return gen10_cmd_buffer_emit_state_base_address(cmd_buffer); default: unreachable("unsupported gen\n"); } } void anv_CmdBindPipeline( VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline _pipeline) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline); switch (pipelineBindPoint) { case VK_PIPELINE_BIND_POINT_COMPUTE: cmd_buffer->state.compute_pipeline = pipeline; cmd_buffer->state.compute_dirty |= ANV_CMD_DIRTY_PIPELINE; cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; break; case VK_PIPELINE_BIND_POINT_GRAPHICS: cmd_buffer->state.pipeline = pipeline; cmd_buffer->state.vb_dirty |= pipeline->vb_used; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE; cmd_buffer->state.push_constants_dirty |= pipeline->active_stages; cmd_buffer->state.descriptors_dirty |= pipeline->active_stages; /* Apply the dynamic state from the pipeline */ cmd_buffer->state.dirty |= pipeline->dynamic_state_mask; anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &pipeline->dynamic_state, pipeline->dynamic_state_mask); break; default: assert(!"invalid bind point"); break; } } void anv_CmdSetViewport( VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport* pViewports) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); const uint32_t total_count = firstViewport + viewportCount; if (cmd_buffer->state.dynamic.viewport.count < total_count) cmd_buffer->state.dynamic.viewport.count = total_count; memcpy(cmd_buffer->state.dynamic.viewport.viewports + firstViewport, pViewports, viewportCount * sizeof(*pViewports)); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT; } void anv_CmdSetScissor( VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D* pScissors) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); const uint32_t total_count = firstScissor + scissorCount; if (cmd_buffer->state.dynamic.scissor.count < total_count) cmd_buffer->state.dynamic.scissor.count = total_count; memcpy(cmd_buffer->state.dynamic.scissor.scissors + firstScissor, pScissors, scissorCount * sizeof(*pScissors)); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR; } void anv_CmdSetLineWidth( VkCommandBuffer commandBuffer, float lineWidth) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer->state.dynamic.line_width = lineWidth; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH; } void anv_CmdSetDepthBias( VkCommandBuffer commandBuffer, float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer->state.dynamic.depth_bias.bias = depthBiasConstantFactor; cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp; cmd_buffer->state.dynamic.depth_bias.slope = depthBiasSlopeFactor; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS; } void anv_CmdSetBlendConstants( VkCommandBuffer commandBuffer, const float blendConstants[4]) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); memcpy(cmd_buffer->state.dynamic.blend_constants, blendConstants, sizeof(float) * 4); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS; } void anv_CmdSetDepthBounds( VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds; cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS; } void anv_CmdSetStencilCompareMask( VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (faceMask & VK_STENCIL_FACE_FRONT_BIT) cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask; if (faceMask & VK_STENCIL_FACE_BACK_BIT) cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK; } void anv_CmdSetStencilWriteMask( VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (faceMask & VK_STENCIL_FACE_FRONT_BIT) cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask; if (faceMask & VK_STENCIL_FACE_BACK_BIT) cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK; } void anv_CmdSetStencilReference( VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (faceMask & VK_STENCIL_FACE_FRONT_BIT) cmd_buffer->state.dynamic.stencil_reference.front = reference; if (faceMask & VK_STENCIL_FACE_BACK_BIT) cmd_buffer->state.dynamic.stencil_reference.back = reference; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE; } void anv_CmdBindDescriptorSets( VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout, uint32_t firstSet, uint32_t descriptorSetCount, const VkDescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout); struct anv_descriptor_set_layout *set_layout; assert(firstSet + descriptorSetCount < MAX_SETS); uint32_t dynamic_slot = 0; for (uint32_t i = 0; i < descriptorSetCount; i++) { ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]); set_layout = layout->set[firstSet + i].layout; cmd_buffer->state.descriptors[firstSet + i] = set; if (set_layout->dynamic_offset_count > 0) { uint32_t dynamic_offset_start = layout->set[firstSet + i].dynamic_offset_start; /* Assert that everything is in range */ assert(dynamic_offset_start + set_layout->dynamic_offset_count <= ARRAY_SIZE(cmd_buffer->state.dynamic_offsets)); assert(dynamic_slot + set_layout->dynamic_offset_count <= dynamicOffsetCount); typed_memcpy(&cmd_buffer->state.dynamic_offsets[dynamic_offset_start], &pDynamicOffsets[dynamic_slot], set_layout->dynamic_offset_count); dynamic_slot += set_layout->dynamic_offset_count; } cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages; } } void anv_CmdBindVertexBuffers( VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings; /* We have to defer setting up vertex buffer since we need the buffer * stride from the pipeline. */ assert(firstBinding + bindingCount <= MAX_VBS); for (uint32_t i = 0; i < bindingCount; i++) { vb[firstBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]); vb[firstBinding + i].offset = pOffsets[i]; cmd_buffer->state.vb_dirty |= 1 << (firstBinding + i); } } enum isl_format anv_isl_format_for_descriptor_type(VkDescriptorType type) { switch (type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: return ISL_FORMAT_R32G32B32A32_FLOAT; case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: return ISL_FORMAT_RAW; default: unreachable("Invalid descriptor type"); } } struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer, const void *data, uint32_t size, uint32_t alignment) { struct anv_state state; state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, alignment); memcpy(state.map, data, size); anv_state_flush(cmd_buffer->device, state); VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, size)); return state; } struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer, uint32_t *a, uint32_t *b, uint32_t dwords, uint32_t alignment) { struct anv_state state; uint32_t *p; state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, dwords * 4, alignment); p = state.map; for (uint32_t i = 0; i < dwords; i++) p[i] = a[i] | b[i]; anv_state_flush(cmd_buffer->device, state); VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4)); return state; } struct anv_state anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage) { /* If we don't have this stage, bail. */ if (!anv_pipeline_has_stage(cmd_buffer->state.pipeline, stage)) return (struct anv_state) { .offset = 0 }; struct anv_push_constants *data = cmd_buffer->state.push_constants[stage]; const struct brw_stage_prog_data *prog_data = cmd_buffer->state.pipeline->shaders[stage]->prog_data; /* If we don't actually have any push constants, bail. */ if (data == NULL || prog_data == NULL || prog_data->nr_params == 0) return (struct anv_state) { .offset = 0 }; struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, prog_data->nr_params * sizeof(float), 32 /* bottom 5 bits MBZ */); /* Walk through the param array and fill the buffer with data */ uint32_t *u32_map = state.map; for (unsigned i = 0; i < prog_data->nr_params; i++) { uint32_t offset = (uintptr_t)prog_data->param[i]; u32_map[i] = *(uint32_t *)((uint8_t *)data + offset); } anv_state_flush(cmd_buffer->device, state); return state; } struct anv_state anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer) { struct anv_push_constants *data = cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE]; struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline); const struct brw_stage_prog_data *prog_data = &cs_prog_data->base; /* If we don't actually have any push constants, bail. */ if (cs_prog_data->push.total.size == 0) return (struct anv_state) { .offset = 0 }; const unsigned push_constant_alignment = cmd_buffer->device->info.gen < 8 ? 32 : 64; const unsigned aligned_total_push_constants_size = ALIGN(cs_prog_data->push.total.size, push_constant_alignment); struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, aligned_total_push_constants_size, push_constant_alignment); /* Walk through the param array and fill the buffer with data */ uint32_t *u32_map = state.map; if (cs_prog_data->push.cross_thread.size > 0) { assert(cs_prog_data->thread_local_id_index < 0 || cs_prog_data->thread_local_id_index >= cs_prog_data->push.cross_thread.dwords); for (unsigned i = 0; i < cs_prog_data->push.cross_thread.dwords; i++) { uint32_t offset = (uintptr_t)prog_data->param[i]; u32_map[i] = *(uint32_t *)((uint8_t *)data + offset); } } if (cs_prog_data->push.per_thread.size > 0) { for (unsigned t = 0; t < cs_prog_data->threads; t++) { unsigned dst = 8 * (cs_prog_data->push.per_thread.regs * t + cs_prog_data->push.cross_thread.regs); unsigned src = cs_prog_data->push.cross_thread.dwords; for ( ; src < prog_data->nr_params; src++, dst++) { if (src != cs_prog_data->thread_local_id_index) { uint32_t offset = (uintptr_t)prog_data->param[src]; u32_map[dst] = *(uint32_t *)((uint8_t *)data + offset); } else { u32_map[dst] = t * cs_prog_data->simd_size; } } } } anv_state_flush(cmd_buffer->device, state); return state; } void anv_CmdPushConstants( VkCommandBuffer commandBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); anv_foreach_stage(stage, stageFlags) { VkResult result = anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, client_data); if (result != VK_SUCCESS) return; memcpy(cmd_buffer->state.push_constants[stage]->client_data + offset, pValues, size); } cmd_buffer->state.push_constants_dirty |= stageFlags; } VkResult anv_CreateCommandPool( VkDevice _device, const VkCommandPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkCommandPool* pCmdPool) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_cmd_pool *pool; pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pool == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); if (pAllocator) pool->alloc = *pAllocator; else pool->alloc = device->alloc; list_inithead(&pool->cmd_buffers); *pCmdPool = anv_cmd_pool_to_handle(pool); return VK_SUCCESS; } void anv_DestroyCommandPool( VkDevice _device, VkCommandPool commandPool, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool); if (!pool) return; list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer, &pool->cmd_buffers, pool_link) { anv_cmd_buffer_destroy(cmd_buffer); } vk_free2(&device->alloc, pAllocator, pool); } VkResult anv_ResetCommandPool( VkDevice device, VkCommandPool commandPool, VkCommandPoolResetFlags flags) { ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool); list_for_each_entry(struct anv_cmd_buffer, cmd_buffer, &pool->cmd_buffers, pool_link) { anv_cmd_buffer_reset(cmd_buffer); } return VK_SUCCESS; } void anv_TrimCommandPoolKHR( VkDevice device, VkCommandPool commandPool, VkCommandPoolTrimFlagsKHR flags) { /* Nothing for us to do here. Our pools stay pretty tidy. */ } /** * Return NULL if the current subpass has no depthstencil attachment. */ const struct anv_image_view * anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer) { const struct anv_subpass *subpass = cmd_buffer->state.subpass; const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; if (subpass->depth_stencil_attachment.attachment == VK_ATTACHMENT_UNUSED) return NULL; const struct anv_image_view *iview = fb->attachments[subpass->depth_stencil_attachment.attachment]; assert(iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); return iview; } static VkResult anv_cmd_buffer_ensure_push_descriptor_set(struct anv_cmd_buffer *cmd_buffer, uint32_t set) { struct anv_push_descriptor_set **push_set = &cmd_buffer->state.push_descriptors[set]; if (*push_set == NULL) { *push_set = vk_alloc(&cmd_buffer->pool->alloc, sizeof(struct anv_push_descriptor_set), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (*push_set == NULL) { anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } } return VK_SUCCESS; } void anv_CmdPushDescriptorSetKHR( VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout, uint32_t _set, uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pDescriptorWrites) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout); assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS || pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE); assert(_set < MAX_SETS); const struct anv_descriptor_set_layout *set_layout = layout->set[_set].layout; if (anv_cmd_buffer_ensure_push_descriptor_set(cmd_buffer, _set) != VK_SUCCESS) return; struct anv_push_descriptor_set *push_set = cmd_buffer->state.push_descriptors[_set]; struct anv_descriptor_set *set = &push_set->set; set->layout = set_layout; set->size = anv_descriptor_set_layout_size(set_layout); set->buffer_count = set_layout->buffer_count; set->buffer_views = push_set->buffer_views; /* Go through the user supplied descriptors. */ for (uint32_t i = 0; i < descriptorWriteCount; i++) { const VkWriteDescriptorSet *write = &pDescriptorWrites[i]; switch (write->descriptorType) { case VK_DESCRIPTOR_TYPE_SAMPLER: case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: for (uint32_t j = 0; j < write->descriptorCount; j++) { anv_descriptor_set_write_image_view(set, &cmd_buffer->device->info, write->pImageInfo + j, write->descriptorType, write->dstBinding, write->dstArrayElement + j); } break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: for (uint32_t j = 0; j < write->descriptorCount; j++) { ANV_FROM_HANDLE(anv_buffer_view, bview, write->pTexelBufferView[j]); anv_descriptor_set_write_buffer_view(set, write->descriptorType, bview, write->dstBinding, write->dstArrayElement + j); } break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: for (uint32_t j = 0; j < write->descriptorCount; j++) { assert(write->pBufferInfo[j].buffer); ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer); assert(buffer); anv_descriptor_set_write_buffer(set, cmd_buffer->device, &cmd_buffer->surface_state_stream, write->descriptorType, buffer, write->dstBinding, write->dstArrayElement + j, write->pBufferInfo[j].offset, write->pBufferInfo[j].range); } break; default: break; } } cmd_buffer->state.descriptors[_set] = set; cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages; } void anv_CmdPushDescriptorSetWithTemplateKHR( VkCommandBuffer commandBuffer, VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, VkPipelineLayout _layout, uint32_t _set, const void* pData) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_descriptor_update_template, template, descriptorUpdateTemplate); ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout); assert(_set < MAX_PUSH_DESCRIPTORS); const struct anv_descriptor_set_layout *set_layout = layout->set[_set].layout; if (anv_cmd_buffer_ensure_push_descriptor_set(cmd_buffer, _set) != VK_SUCCESS) return; struct anv_push_descriptor_set *push_set = cmd_buffer->state.push_descriptors[_set]; struct anv_descriptor_set *set = &push_set->set; set->layout = set_layout; set->size = anv_descriptor_set_layout_size(set_layout); set->buffer_count = set_layout->buffer_count; set->buffer_views = push_set->buffer_views; anv_descriptor_set_write_template(set, cmd_buffer->device, &cmd_buffer->surface_state_stream, template, pData); cmd_buffer->state.descriptors[_set] = set; cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages; }