/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" /** \file anv_cmd_buffer.c * * This file contains all of the stuff for emitting commands into a command * buffer. This includes implementations of most of the vkCmd* * entrypoints. This file is concerned entirely with state emission and * not with the command buffer data structure itself. As far as this file * is concerned, most of anv_cmd_buffer is magic. */ /* TODO: These are taken from GLES. We should check the Vulkan spec */ const struct anv_dynamic_state default_dynamic_state = { .viewport = { .count = 0, }, .scissor = { .count = 0, }, .line_width = 1.0f, .depth_bias = { .bias = 0.0f, .clamp = 0.0f, .slope = 0.0f, }, .blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f }, .depth_bounds = { .min = 0.0f, .max = 1.0f, }, .stencil_compare_mask = { .front = ~0u, .back = ~0u, }, .stencil_write_mask = { .front = ~0u, .back = ~0u, }, .stencil_reference = { .front = 0u, .back = 0u, }, }; void anv_dynamic_state_copy(struct anv_dynamic_state *dest, const struct anv_dynamic_state *src, uint32_t copy_mask) { if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) { dest->viewport.count = src->viewport.count; typed_memcpy(dest->viewport.viewports, src->viewport.viewports, src->viewport.count); } if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) { dest->scissor.count = src->scissor.count; typed_memcpy(dest->scissor.scissors, src->scissor.scissors, src->scissor.count); } if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) dest->line_width = src->line_width; if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) dest->depth_bias = src->depth_bias; if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) typed_memcpy(dest->blend_constants, src->blend_constants, 4); if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) dest->depth_bounds = src->depth_bounds; if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) dest->stencil_compare_mask = src->stencil_compare_mask; if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) dest->stencil_write_mask = src->stencil_write_mask; if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) dest->stencil_reference = src->stencil_reference; } static void anv_cmd_state_reset(struct anv_cmd_buffer *cmd_buffer) { struct anv_cmd_state *state = &cmd_buffer->state; memset(&state->descriptors, 0, sizeof(state->descriptors)); memset(&state->push_constants, 0, sizeof(state->push_constants)); memset(state->binding_tables, 0, sizeof(state->binding_tables)); memset(state->samplers, 0, sizeof(state->samplers)); /* 0 isn't a valid config. This ensures that we always configure L3$. */ cmd_buffer->state.current_l3_config = 0; state->dirty = ~0; state->vb_dirty = 0; state->descriptors_dirty = 0; state->push_constants_dirty = 0; state->pipeline = NULL; state->restart_index = UINT32_MAX; state->dynamic = default_dynamic_state; state->need_query_wa = true; if (state->attachments != NULL) { anv_free(&cmd_buffer->pool->alloc, state->attachments); state->attachments = NULL; } state->gen7.index_buffer = NULL; } /** * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass. */ void anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer, const VkRenderPassBeginInfo *info) { struct anv_cmd_state *state = &cmd_buffer->state; ANV_FROM_HANDLE(anv_render_pass, pass, info->renderPass); anv_free(&cmd_buffer->pool->alloc, state->attachments); if (pass->attachment_count == 0) { state->attachments = NULL; return; } state->attachments = anv_alloc(&cmd_buffer->pool->alloc, pass->attachment_count * sizeof(state->attachments[0]), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (state->attachments == NULL) { /* FIXME: Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */ abort(); } for (uint32_t i = 0; i < pass->attachment_count; ++i) { struct anv_render_pass_attachment *att = &pass->attachments[i]; VkImageAspectFlags clear_aspects = 0; if (anv_format_is_color(att->format)) { /* color attachment */ if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT; } } else { /* depthstencil attachment */ if (att->format->has_depth && att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; } if (att->format->has_stencil && att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; } } state->attachments[i].pending_clear_aspects = clear_aspects; if (clear_aspects) { assert(info->clearValueCount > i); state->attachments[i].clear_value = info->pClearValues[i]; } } } static VkResult anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, uint32_t size) { struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage]; if (*ptr == NULL) { *ptr = anv_alloc(&cmd_buffer->pool->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (*ptr == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } else if ((*ptr)->size < size) { *ptr = anv_realloc(&cmd_buffer->pool->alloc, *ptr, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (*ptr == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } (*ptr)->size = size; return VK_SUCCESS; } #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \ anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \ (offsetof(struct anv_push_constants, field) + \ sizeof(cmd_buffer->state.push_constants[0]->field))) static VkResult anv_create_cmd_buffer( struct anv_device * device, struct anv_cmd_pool * pool, VkCommandBufferLevel level, VkCommandBuffer* pCommandBuffer) { struct anv_cmd_buffer *cmd_buffer; VkResult result; cmd_buffer = anv_alloc(&pool->alloc, sizeof(*cmd_buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (cmd_buffer == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC; cmd_buffer->device = device; cmd_buffer->pool = pool; cmd_buffer->level = level; cmd_buffer->state.attachments = NULL; result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer); if (result != VK_SUCCESS) goto fail; anv_state_stream_init(&cmd_buffer->surface_state_stream, &device->surface_state_block_pool); anv_state_stream_init(&cmd_buffer->dynamic_state_stream, &device->dynamic_state_block_pool); if (pool) { list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers); } else { /* Init the pool_link so we can safefly call list_del when we destroy * the command buffer */ list_inithead(&cmd_buffer->pool_link); } *pCommandBuffer = anv_cmd_buffer_to_handle(cmd_buffer); return VK_SUCCESS; fail: anv_free(&cmd_buffer->pool->alloc, cmd_buffer); return result; } VkResult anv_AllocateCommandBuffers( VkDevice _device, const VkCommandBufferAllocateInfo* pAllocateInfo, VkCommandBuffer* pCommandBuffers) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_cmd_pool, pool, pAllocateInfo->commandPool); VkResult result = VK_SUCCESS; uint32_t i; for (i = 0; i < pAllocateInfo->commandBufferCount; i++) { result = anv_create_cmd_buffer(device, pool, pAllocateInfo->level, &pCommandBuffers[i]); if (result != VK_SUCCESS) break; } if (result != VK_SUCCESS) anv_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i, pCommandBuffers); return result; } static void anv_cmd_buffer_destroy(struct anv_cmd_buffer *cmd_buffer) { list_del(&cmd_buffer->pool_link); anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer); anv_state_stream_finish(&cmd_buffer->surface_state_stream); anv_state_stream_finish(&cmd_buffer->dynamic_state_stream); anv_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments); anv_free(&cmd_buffer->pool->alloc, cmd_buffer); } void anv_FreeCommandBuffers( VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount, const VkCommandBuffer* pCommandBuffers) { for (uint32_t i = 0; i < commandBufferCount; i++) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pCommandBuffers[i]); anv_cmd_buffer_destroy(cmd_buffer); } } VkResult anv_ResetCommandBuffer( VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer->usage_flags = 0; cmd_buffer->state.current_pipeline = UINT32_MAX; anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer); anv_cmd_state_reset(cmd_buffer); anv_state_stream_finish(&cmd_buffer->surface_state_stream); anv_state_stream_init(&cmd_buffer->surface_state_stream, &cmd_buffer->device->surface_state_block_pool); anv_state_stream_finish(&cmd_buffer->dynamic_state_stream); anv_state_stream_init(&cmd_buffer->dynamic_state_stream, &cmd_buffer->device->dynamic_state_block_pool); return VK_SUCCESS; } void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer) { switch (cmd_buffer->device->info.gen) { case 7: if (cmd_buffer->device->info.is_haswell) return gen7_cmd_buffer_emit_state_base_address(cmd_buffer); else return gen7_cmd_buffer_emit_state_base_address(cmd_buffer); case 8: return gen8_cmd_buffer_emit_state_base_address(cmd_buffer); case 9: return gen9_cmd_buffer_emit_state_base_address(cmd_buffer); default: unreachable("unsupported gen\n"); } } VkResult anv_BeginCommandBuffer( VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo* pBeginInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); /* If this is the first vkBeginCommandBuffer, we must *initialize* the * command buffer's state. Otherwise, we must *reset* its state. In both * cases we reset it. * * From the Vulkan 1.0 spec: * * If a command buffer is in the executable state and the command buffer * was allocated from a command pool with the * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then * vkBeginCommandBuffer implicitly resets the command buffer, behaving * as if vkResetCommandBuffer had been called with * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts * the command buffer in the recording state. */ anv_ResetCommandBuffer(commandBuffer, /*flags*/ 0); cmd_buffer->usage_flags = pBeginInfo->flags; assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY || !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)); anv_cmd_buffer_emit_state_base_address(cmd_buffer); if (cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { cmd_buffer->state.framebuffer = anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer); cmd_buffer->state.pass = anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass); struct anv_subpass *subpass = &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass]; anv_cmd_buffer_set_subpass(cmd_buffer, subpass); } return VK_SUCCESS; } VkResult anv_EndCommandBuffer( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_device *device = cmd_buffer->device; anv_cmd_buffer_end_batch_buffer(cmd_buffer); if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) { /* The algorithm used to compute the validate list is not threadsafe as * it uses the bo->index field. We have to lock the device around it. * Fortunately, the chances for contention here are probably very low. */ pthread_mutex_lock(&device->mutex); anv_cmd_buffer_prepare_execbuf(cmd_buffer); pthread_mutex_unlock(&device->mutex); } return VK_SUCCESS; } void anv_CmdBindPipeline( VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline _pipeline) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline); switch (pipelineBindPoint) { case VK_PIPELINE_BIND_POINT_COMPUTE: cmd_buffer->state.compute_pipeline = pipeline; cmd_buffer->state.compute_dirty |= ANV_CMD_DIRTY_PIPELINE; cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; break; case VK_PIPELINE_BIND_POINT_GRAPHICS: cmd_buffer->state.pipeline = pipeline; cmd_buffer->state.vb_dirty |= pipeline->vb_used; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE; cmd_buffer->state.push_constants_dirty |= pipeline->active_stages; cmd_buffer->state.descriptors_dirty |= pipeline->active_stages; /* Apply the dynamic state from the pipeline */ cmd_buffer->state.dirty |= pipeline->dynamic_state_mask; anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &pipeline->dynamic_state, pipeline->dynamic_state_mask); break; default: assert(!"invalid bind point"); break; } } void anv_CmdSetViewport( VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport* pViewports) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); const uint32_t total_count = firstViewport + viewportCount; if (cmd_buffer->state.dynamic.viewport.count < total_count) cmd_buffer->state.dynamic.viewport.count = total_count; memcpy(cmd_buffer->state.dynamic.viewport.viewports + firstViewport, pViewports, viewportCount * sizeof(*pViewports)); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT; } void anv_CmdSetScissor( VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D* pScissors) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); const uint32_t total_count = firstScissor + scissorCount; if (cmd_buffer->state.dynamic.scissor.count < total_count) cmd_buffer->state.dynamic.scissor.count = total_count; memcpy(cmd_buffer->state.dynamic.scissor.scissors + firstScissor, pScissors, scissorCount * sizeof(*pScissors)); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR; } void anv_CmdSetLineWidth( VkCommandBuffer commandBuffer, float lineWidth) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer->state.dynamic.line_width = lineWidth; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH; } void anv_CmdSetDepthBias( VkCommandBuffer commandBuffer, float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer->state.dynamic.depth_bias.bias = depthBiasConstantFactor; cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp; cmd_buffer->state.dynamic.depth_bias.slope = depthBiasSlopeFactor; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS; } void anv_CmdSetBlendConstants( VkCommandBuffer commandBuffer, const float blendConstants[4]) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); memcpy(cmd_buffer->state.dynamic.blend_constants, blendConstants, sizeof(float) * 4); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS; } void anv_CmdSetDepthBounds( VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds; cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS; } void anv_CmdSetStencilCompareMask( VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (faceMask & VK_STENCIL_FACE_FRONT_BIT) cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask; if (faceMask & VK_STENCIL_FACE_BACK_BIT) cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK; } void anv_CmdSetStencilWriteMask( VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (faceMask & VK_STENCIL_FACE_FRONT_BIT) cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask; if (faceMask & VK_STENCIL_FACE_BACK_BIT) cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK; } void anv_CmdSetStencilReference( VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (faceMask & VK_STENCIL_FACE_FRONT_BIT) cmd_buffer->state.dynamic.stencil_reference.front = reference; if (faceMask & VK_STENCIL_FACE_BACK_BIT) cmd_buffer->state.dynamic.stencil_reference.back = reference; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE; } void anv_CmdBindDescriptorSets( VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout, uint32_t firstSet, uint32_t descriptorSetCount, const VkDescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout); struct anv_descriptor_set_layout *set_layout; assert(firstSet + descriptorSetCount < MAX_SETS); uint32_t dynamic_slot = 0; for (uint32_t i = 0; i < descriptorSetCount; i++) { ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]); set_layout = layout->set[firstSet + i].layout; if (cmd_buffer->state.descriptors[firstSet + i] != set) { cmd_buffer->state.descriptors[firstSet + i] = set; cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages; } if (set_layout->dynamic_offset_count > 0) { anv_foreach_stage(s, set_layout->shader_stages) { anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, s, dynamic); struct anv_push_constants *push = cmd_buffer->state.push_constants[s]; unsigned d = layout->set[firstSet + i].dynamic_offset_start; const uint32_t *offsets = pDynamicOffsets + dynamic_slot; struct anv_descriptor *desc = set->descriptors; for (unsigned b = 0; b < set_layout->binding_count; b++) { if (set_layout->binding[b].dynamic_offset_index < 0) continue; unsigned array_size = set_layout->binding[b].array_size; for (unsigned j = 0; j < array_size; j++) { uint32_t range = 0; if (desc->buffer_view) range = desc->buffer_view->range; push->dynamic[d].offset = *(offsets++); push->dynamic[d].range = range; desc++; d++; } } } cmd_buffer->state.push_constants_dirty |= set_layout->shader_stages; } } } void anv_CmdBindVertexBuffers( VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings; /* We have to defer setting up vertex buffer since we need the buffer * stride from the pipeline. */ assert(firstBinding + bindingCount < MAX_VBS); for (uint32_t i = 0; i < bindingCount; i++) { vb[firstBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]); vb[firstBinding + i].offset = pOffsets[i]; cmd_buffer->state.vb_dirty |= 1 << (firstBinding + i); } } static void add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer, struct anv_state state, struct anv_bo *bo, uint32_t offset) { /* The address goes in SURFACE_STATE dword 1 for gens < 8 and dwords 8 and * 9 for gen8+. We only write the first dword for gen8+ here and rely on * the initial state to set the high bits to 0. */ const uint32_t dword = cmd_buffer->device->info.gen < 8 ? 1 : 8; anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc, state.offset + dword * 4, bo, offset); } const struct anv_format * anv_format_for_descriptor_type(VkDescriptorType type) { switch (type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: return anv_format_for_vk_format(VK_FORMAT_R32G32B32A32_SFLOAT); case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: return anv_format_for_vk_format(VK_FORMAT_UNDEFINED); default: unreachable("Invalid descriptor type"); } } VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, struct anv_state *bt_state) { struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; struct anv_subpass *subpass = cmd_buffer->state.subpass; struct anv_pipeline_bind_map *map; uint32_t color_count, bias, state_offset; switch (stage) { case MESA_SHADER_FRAGMENT: map = &cmd_buffer->state.pipeline->bindings[stage]; bias = MAX_RTS; color_count = subpass->color_count; break; case MESA_SHADER_COMPUTE: map = &cmd_buffer->state.compute_pipeline->bindings[stage]; bias = 1; color_count = 0; break; default: map = &cmd_buffer->state.pipeline->bindings[stage]; bias = 0; color_count = 0; break; } if (color_count + map->surface_count == 0) { *bt_state = (struct anv_state) { 0, }; return VK_SUCCESS; } *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, bias + map->surface_count, &state_offset); uint32_t *bt_map = bt_state->map; if (bt_state->map == NULL) return VK_ERROR_OUT_OF_DEVICE_MEMORY; for (uint32_t a = 0; a < color_count; a++) { const struct anv_image_view *iview = fb->attachments[subpass->color_attachments[a]]; assert(iview->color_rt_surface_state.alloc_size); bt_map[a] = iview->color_rt_surface_state.offset + state_offset; add_surface_state_reloc(cmd_buffer, iview->color_rt_surface_state, iview->bo, iview->offset); } if (stage == MESA_SHADER_COMPUTE && cmd_buffer->state.compute_pipeline->cs_prog_data.uses_num_work_groups) { struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo; uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset; struct anv_state surface_state; surface_state = anv_cmd_buffer_alloc_surface_state(cmd_buffer); const struct anv_format *format = anv_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER); anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format->isl_format, bo_offset, 12, 1); bt_map[0] = surface_state.offset + state_offset; add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset); } if (map->surface_count == 0) goto out; if (map->image_count > 0) { VkResult result = anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images); if (result != VK_SUCCESS) return result; cmd_buffer->state.push_constants_dirty |= 1 << stage; } uint32_t image = 0; for (uint32_t s = 0; s < map->surface_count; s++) { struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s]; struct anv_descriptor_set *set = cmd_buffer->state.descriptors[binding->set]; struct anv_descriptor *desc = &set->descriptors[binding->offset]; struct anv_state surface_state; struct anv_bo *bo; uint32_t bo_offset; switch (desc->type) { case VK_DESCRIPTOR_TYPE_SAMPLER: /* Nothing for us to do here */ continue; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: surface_state = desc->image_view->sampler_surface_state; assert(surface_state.alloc_size); bo = desc->image_view->bo; bo_offset = desc->image_view->offset; break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: { surface_state = desc->image_view->storage_surface_state; assert(surface_state.alloc_size); bo = desc->image_view->bo; bo_offset = desc->image_view->offset; struct brw_image_param *image_param = &cmd_buffer->state.push_constants[stage]->images[image++]; *image_param = desc->image_view->storage_image_param; image_param->surface_idx = bias + s; break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: surface_state = desc->buffer_view->surface_state; assert(surface_state.alloc_size); bo = desc->buffer_view->bo; bo_offset = desc->buffer_view->offset; break; case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: surface_state = desc->buffer_view->storage_surface_state; assert(surface_state.alloc_size); bo = desc->buffer_view->bo; bo_offset = desc->buffer_view->offset; struct brw_image_param *image_param = &cmd_buffer->state.push_constants[stage]->images[image++]; *image_param = desc->buffer_view->storage_image_param; image_param->surface_idx = bias + s; break; default: assert(!"Invalid descriptor type"); continue; } bt_map[bias + s] = surface_state.offset + state_offset; add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset); } assert(image == map->image_count); out: if (!cmd_buffer->device->info.has_llc) anv_state_clflush(*bt_state); return VK_SUCCESS; } VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, struct anv_state *state) { struct anv_pipeline_bind_map *map; if (stage == MESA_SHADER_COMPUTE) map = &cmd_buffer->state.compute_pipeline->bindings[stage]; else map = &cmd_buffer->state.pipeline->bindings[stage]; if (map->sampler_count == 0) { *state = (struct anv_state) { 0, }; return VK_SUCCESS; } uint32_t size = map->sampler_count * 16; *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32); if (state->map == NULL) return VK_ERROR_OUT_OF_DEVICE_MEMORY; for (uint32_t s = 0; s < map->sampler_count; s++) { struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s]; struct anv_descriptor_set *set = cmd_buffer->state.descriptors[binding->set]; struct anv_descriptor *desc = &set->descriptors[binding->offset]; if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER && desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) continue; struct anv_sampler *sampler = desc->sampler; /* This can happen if we have an unfilled slot since TYPE_SAMPLER * happens to be zero. */ if (sampler == NULL) continue; memcpy(state->map + (s * 16), sampler->state, sizeof(sampler->state)); } if (!cmd_buffer->device->info.has_llc) anv_state_clflush(*state); return VK_SUCCESS; } struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer, const void *data, uint32_t size, uint32_t alignment) { struct anv_state state; state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, alignment); memcpy(state.map, data, size); if (!cmd_buffer->device->info.has_llc) anv_state_clflush(state); VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, size)); return state; } struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer, uint32_t *a, uint32_t *b, uint32_t dwords, uint32_t alignment) { struct anv_state state; uint32_t *p; state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, dwords * 4, alignment); p = state.map; for (uint32_t i = 0; i < dwords; i++) p[i] = a[i] | b[i]; if (!cmd_buffer->device->info.has_llc) anv_state_clflush(state); VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4)); return state; } /** * @brief Setup the command buffer for recording commands inside the given * subpass. * * This does not record all commands needed for starting the subpass. * Starting the subpass may require additional commands. * * Note that vkCmdBeginRenderPass, vkCmdNextSubpass, and vkBeginCommandBuffer * with VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, all setup the * command buffer for recording commands for some subpass. But only the first * two, vkCmdBeginRenderPass and vkCmdNextSubpass, can start a subpass. */ void anv_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer, struct anv_subpass *subpass) { switch (cmd_buffer->device->info.gen) { case 7: if (cmd_buffer->device->info.is_haswell) { gen75_cmd_buffer_set_subpass(cmd_buffer, subpass); } else { gen7_cmd_buffer_set_subpass(cmd_buffer, subpass); } break; case 8: gen8_cmd_buffer_set_subpass(cmd_buffer, subpass); break; case 9: gen9_cmd_buffer_set_subpass(cmd_buffer, subpass); break; default: unreachable("unsupported gen\n"); } } struct anv_state anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage) { struct anv_push_constants *data = cmd_buffer->state.push_constants[stage]; struct brw_stage_prog_data *prog_data = cmd_buffer->state.pipeline->prog_data[stage]; /* If we don't actually have any push constants, bail. */ if (data == NULL || prog_data->nr_params == 0) return (struct anv_state) { .offset = 0 }; struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, prog_data->nr_params * sizeof(float), 32 /* bottom 5 bits MBZ */); /* Walk through the param array and fill the buffer with data */ uint32_t *u32_map = state.map; for (unsigned i = 0; i < prog_data->nr_params; i++) { uint32_t offset = (uintptr_t)prog_data->param[i]; u32_map[i] = *(uint32_t *)((uint8_t *)data + offset); } if (!cmd_buffer->device->info.has_llc) anv_state_clflush(state); return state; } struct anv_state anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer) { struct anv_push_constants *data = cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE]; struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data; const struct brw_stage_prog_data *prog_data = &cs_prog_data->base; const unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8; const unsigned push_constant_data_size = (local_id_dwords + prog_data->nr_params) * 4; const unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32); const unsigned param_aligned_count = reg_aligned_constant_size / sizeof(uint32_t); /* If we don't actually have any push constants, bail. */ if (reg_aligned_constant_size == 0) return (struct anv_state) { .offset = 0 }; const unsigned threads = pipeline->cs_thread_width_max; const unsigned total_push_constants_size = reg_aligned_constant_size * threads; const unsigned push_constant_alignment = cmd_buffer->device->info.gen < 8 ? 32 : 64; const unsigned aligned_total_push_constants_size = ALIGN(total_push_constants_size, push_constant_alignment); struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, aligned_total_push_constants_size, push_constant_alignment); /* Walk through the param array and fill the buffer with data */ uint32_t *u32_map = state.map; brw_cs_fill_local_id_payload(cs_prog_data, u32_map, threads, reg_aligned_constant_size); /* Setup uniform data for the first thread */ for (unsigned i = 0; i < prog_data->nr_params; i++) { uint32_t offset = (uintptr_t)prog_data->param[i]; u32_map[local_id_dwords + i] = *(uint32_t *)((uint8_t *)data + offset); } /* Copy uniform data from the first thread to every other thread */ const size_t uniform_data_size = prog_data->nr_params * sizeof(uint32_t); for (unsigned t = 1; t < threads; t++) { memcpy(&u32_map[t * param_aligned_count + local_id_dwords], &u32_map[local_id_dwords], uniform_data_size); } if (!cmd_buffer->device->info.has_llc) anv_state_clflush(state); return state; } void anv_CmdPushConstants( VkCommandBuffer commandBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); anv_foreach_stage(stage, stageFlags) { anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, client_data); memcpy(cmd_buffer->state.push_constants[stage]->client_data + offset, pValues, size); } cmd_buffer->state.push_constants_dirty |= stageFlags; } void anv_CmdExecuteCommands( VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer* pCmdBuffers) { ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer); assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); for (uint32_t i = 0; i < commandBufferCount; i++) { ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]); assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); anv_cmd_buffer_add_secondary(primary, secondary); } } VkResult anv_CreateCommandPool( VkDevice _device, const VkCommandPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkCommandPool* pCmdPool) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_cmd_pool *pool; pool = anv_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pool == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); if (pAllocator) pool->alloc = *pAllocator; else pool->alloc = device->alloc; list_inithead(&pool->cmd_buffers); *pCmdPool = anv_cmd_pool_to_handle(pool); return VK_SUCCESS; } void anv_DestroyCommandPool( VkDevice _device, VkCommandPool commandPool, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool); anv_ResetCommandPool(_device, commandPool, 0); anv_free2(&device->alloc, pAllocator, pool); } VkResult anv_ResetCommandPool( VkDevice device, VkCommandPool commandPool, VkCommandPoolResetFlags flags) { ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool); /* FIXME: vkResetCommandPool must not destroy its command buffers. The * Vulkan 1.0 spec requires that it only reset them: * * Resetting a command pool recycles all of the resources from all of * the command buffers allocated from the command pool back to the * command pool. All command buffers that have been allocated from the * command pool are put in the initial state. */ list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer, &pool->cmd_buffers, pool_link) { anv_cmd_buffer_destroy(cmd_buffer); } return VK_SUCCESS; } /** * Return NULL if the current subpass has no depthstencil attachment. */ const struct anv_image_view * anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer) { const struct anv_subpass *subpass = cmd_buffer->state.subpass; const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; if (subpass->depth_stencil_attachment == VK_ATTACHMENT_UNUSED) return NULL; const struct anv_image_view *iview = fb->attachments[subpass->depth_stencil_attachment]; assert(iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); return iview; }