/* * Copyright © 2017, Google Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #if ANDROID_API_LEVEL >= 26 #include #endif #include #include #include #include #include #include "anv_private.h" #include "vk_format_info.h" #include "vk_util.h" static int anv_hal_open(const struct hw_module_t* mod, const char* id, struct hw_device_t** dev); static int anv_hal_close(struct hw_device_t *dev); static void UNUSED static_asserts(void) { STATIC_ASSERT(HWVULKAN_DISPATCH_MAGIC == ICD_LOADER_MAGIC); } PUBLIC struct hwvulkan_module_t HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = HWVULKAN_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_MAKE_API_VERSION(1, 0), .id = HWVULKAN_HARDWARE_MODULE_ID, .name = "Intel Vulkan HAL", .author = "Intel", .methods = &(hw_module_methods_t) { .open = anv_hal_open, }, }, }; /* If any bits in test_mask are set, then unset them and return true. */ static inline bool unmask32(uint32_t *inout_mask, uint32_t test_mask) { uint32_t orig_mask = *inout_mask; *inout_mask &= ~test_mask; return *inout_mask != orig_mask; } static int anv_hal_open(const struct hw_module_t* mod, const char* id, struct hw_device_t** dev) { assert(mod == &HAL_MODULE_INFO_SYM.common); assert(strcmp(id, HWVULKAN_DEVICE_0) == 0); hwvulkan_device_t *hal_dev = malloc(sizeof(*hal_dev)); if (!hal_dev) return -1; *hal_dev = (hwvulkan_device_t) { .common = { .tag = HARDWARE_DEVICE_TAG, .version = HWVULKAN_DEVICE_API_VERSION_0_1, .module = &HAL_MODULE_INFO_SYM.common, .close = anv_hal_close, }, .EnumerateInstanceExtensionProperties = anv_EnumerateInstanceExtensionProperties, .CreateInstance = anv_CreateInstance, .GetInstanceProcAddr = anv_GetInstanceProcAddr, }; *dev = &hal_dev->common; return 0; } static int anv_hal_close(struct hw_device_t *dev) { /* hwvulkan.h claims that hw_device_t::close() is never called. */ return -1; } #if ANDROID_API_LEVEL >= 26 static VkResult get_ahw_buffer_format_properties( VkDevice device_h, const struct AHardwareBuffer *buffer, VkAndroidHardwareBufferFormatPropertiesANDROID *pProperties) { ANV_FROM_HANDLE(anv_device, device, device_h); /* Get a description of buffer contents . */ AHardwareBuffer_Desc desc; AHardwareBuffer_describe(buffer, &desc); /* Verify description. */ uint64_t gpu_usage = AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE | AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT | AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER; /* "Buffer must be a valid Android hardware buffer object with at least * one of the AHARDWAREBUFFER_USAGE_GPU_* usage flags." */ if (!(desc.usage & (gpu_usage))) return VK_ERROR_INVALID_EXTERNAL_HANDLE; /* Fill properties fields based on description. */ VkAndroidHardwareBufferFormatPropertiesANDROID *p = pProperties; p->format = vk_format_from_android(desc.format, desc.usage); const struct anv_format *anv_format = anv_get_format(p->format); p->externalFormat = (uint64_t) (uintptr_t) anv_format; /* Default to OPTIMAL tiling but set to linear in case * of AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER usage. */ VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL; if (desc.usage & AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER) tiling = VK_IMAGE_TILING_LINEAR; p->formatFeatures = anv_get_image_format_features(&device->info, p->format, anv_format, tiling); /* "Images can be created with an external format even if the Android hardware * buffer has a format which has an equivalent Vulkan format to enable * consistent handling of images from sources that might use either category * of format. However, all images created with an external format are subject * to the valid usage requirements associated with external formats, even if * the Android hardware buffer’s format has a Vulkan equivalent." * * "The formatFeatures member *must* include * VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT and at least one of * VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT or * VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT" */ p->formatFeatures |= VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT; /* "Implementations may not always be able to determine the color model, * numerical range, or chroma offsets of the image contents, so the values * in VkAndroidHardwareBufferFormatPropertiesANDROID are only suggestions. * Applications should treat these values as sensible defaults to use in * the absence of more reliable information obtained through some other * means." */ p->samplerYcbcrConversionComponents.r = VK_COMPONENT_SWIZZLE_IDENTITY; p->samplerYcbcrConversionComponents.g = VK_COMPONENT_SWIZZLE_IDENTITY; p->samplerYcbcrConversionComponents.b = VK_COMPONENT_SWIZZLE_IDENTITY; p->samplerYcbcrConversionComponents.a = VK_COMPONENT_SWIZZLE_IDENTITY; p->suggestedYcbcrModel = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601; p->suggestedYcbcrRange = VK_SAMPLER_YCBCR_RANGE_ITU_FULL; p->suggestedXChromaOffset = VK_CHROMA_LOCATION_MIDPOINT; p->suggestedYChromaOffset = VK_CHROMA_LOCATION_MIDPOINT; return VK_SUCCESS; } VkResult anv_GetAndroidHardwareBufferPropertiesANDROID( VkDevice device_h, const struct AHardwareBuffer *buffer, VkAndroidHardwareBufferPropertiesANDROID *pProperties) { ANV_FROM_HANDLE(anv_device, dev, device_h); VkAndroidHardwareBufferFormatPropertiesANDROID *format_prop = vk_find_struct(pProperties->pNext, ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID); /* Fill format properties of an Android hardware buffer. */ if (format_prop) get_ahw_buffer_format_properties(device_h, buffer, format_prop); /* NOTE - We support buffers with only one handle but do not error on * multiple handle case. Reason is that we want to support YUV formats * where we have many logical planes but they all point to the same * buffer, like is the case with VK_FORMAT_G8_B8R8_2PLANE_420_UNORM. */ const native_handle_t *handle = AHardwareBuffer_getNativeHandle(buffer); int dma_buf = (handle && handle->numFds) ? handle->data[0] : -1; if (dma_buf < 0) return VK_ERROR_INVALID_EXTERNAL_HANDLE; /* All memory types. */ uint32_t memory_types = (1ull << dev->physical->memory.type_count) - 1; pProperties->allocationSize = lseek(dma_buf, 0, SEEK_END); pProperties->memoryTypeBits = memory_types; return VK_SUCCESS; } VkResult anv_GetMemoryAndroidHardwareBufferANDROID( VkDevice device_h, const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo, struct AHardwareBuffer **pBuffer) { ANV_FROM_HANDLE(anv_device_memory, mem, pInfo->memory); /* Some quotes from Vulkan spec: * * "If the device memory was created by importing an Android hardware * buffer, vkGetMemoryAndroidHardwareBufferANDROID must return that same * Android hardware buffer object." * * "VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID must * have been included in VkExportMemoryAllocateInfo::handleTypes when * memory was created." */ if (mem->ahw) { *pBuffer = mem->ahw; /* Increase refcount. */ AHardwareBuffer_acquire(mem->ahw); return VK_SUCCESS; } return VK_ERROR_OUT_OF_HOST_MEMORY; } #endif /* Construct ahw usage mask from image usage bits, see * 'AHardwareBuffer Usage Equivalence' in Vulkan spec. */ uint64_t anv_ahw_usage_from_vk_usage(const VkImageCreateFlags vk_create, const VkImageUsageFlags vk_usage) { uint64_t ahw_usage = 0; #if ANDROID_API_LEVEL >= 26 if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT) ahw_usage |= AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE; if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) ahw_usage |= AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE; if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) ahw_usage |= AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT; if (vk_create & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) ahw_usage |= AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP; if (vk_create & VK_IMAGE_CREATE_PROTECTED_BIT) ahw_usage |= AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT; /* No usage bits set - set at least one GPU usage. */ if (ahw_usage == 0) ahw_usage = AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE; #endif return ahw_usage; } /* * Called from anv_AllocateMemory when import AHardwareBuffer. */ VkResult anv_import_ahw_memory(VkDevice device_h, struct anv_device_memory *mem, const VkImportAndroidHardwareBufferInfoANDROID *info) { #if ANDROID_API_LEVEL >= 26 ANV_FROM_HANDLE(anv_device, device, device_h); /* Import from AHardwareBuffer to anv_device_memory. */ const native_handle_t *handle = AHardwareBuffer_getNativeHandle(info->buffer); /* NOTE - We support buffers with only one handle but do not error on * multiple handle case. Reason is that we want to support YUV formats * where we have many logical planes but they all point to the same * buffer, like is the case with VK_FORMAT_G8_B8R8_2PLANE_420_UNORM. */ int dma_buf = (handle && handle->numFds) ? handle->data[0] : -1; if (dma_buf < 0) return VK_ERROR_INVALID_EXTERNAL_HANDLE; VkResult result = anv_device_import_bo(device, dma_buf, 0, 0 /* client_address */, &mem->bo); assert(VK_SUCCESS); /* "If the vkAllocateMemory command succeeds, the implementation must * acquire a reference to the imported hardware buffer, which it must * release when the device memory object is freed. If the command fails, * the implementation must not retain a reference." */ AHardwareBuffer_acquire(info->buffer); mem->ahw = info->buffer; return VK_SUCCESS; #else return VK_ERROR_EXTENSION_NOT_PRESENT; #endif } VkResult anv_create_ahw_memory(VkDevice device_h, struct anv_device_memory *mem, const VkMemoryAllocateInfo *pAllocateInfo) { #if ANDROID_API_LEVEL >= 26 ANV_FROM_HANDLE(anv_device, dev, device_h); const VkMemoryDedicatedAllocateInfo *dedicated_info = vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO); uint32_t w = 0; uint32_t h = 1; uint32_t layers = 1; uint32_t format = 0; uint64_t usage = 0; /* If caller passed dedicated information. */ if (dedicated_info && dedicated_info->image) { ANV_FROM_HANDLE(anv_image, image, dedicated_info->image); w = image->extent.width; h = image->extent.height; layers = image->array_size; format = android_format_from_vk(image->vk_format); usage = anv_ahw_usage_from_vk_usage(image->create_flags, image->usage); } else if (dedicated_info && dedicated_info->buffer) { ANV_FROM_HANDLE(anv_buffer, buffer, dedicated_info->buffer); w = buffer->size; format = AHARDWAREBUFFER_FORMAT_BLOB; usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN; } else { w = pAllocateInfo->allocationSize; format = AHARDWAREBUFFER_FORMAT_BLOB; usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN; } struct AHardwareBuffer *ahw = NULL; struct AHardwareBuffer_Desc desc = { .width = w, .height = h, .layers = layers, .format = format, .usage = usage, }; if (AHardwareBuffer_allocate(&desc, &ahw) != 0) return VK_ERROR_OUT_OF_HOST_MEMORY; mem->ahw = ahw; return VK_SUCCESS; #else return VK_ERROR_EXTENSION_NOT_PRESENT; #endif } VkResult anv_image_from_external( VkDevice device_h, const VkImageCreateInfo *base_info, const VkExternalMemoryImageCreateInfo *create_info, const VkAllocationCallbacks *alloc, VkImage *out_image_h) { #if ANDROID_API_LEVEL >= 26 ANV_FROM_HANDLE(anv_device, device, device_h); const VkExternalFormatANDROID *ext_info = vk_find_struct_const(base_info->pNext, EXTERNAL_FORMAT_ANDROID); if (ext_info && ext_info->externalFormat != 0) { assert(base_info->format == VK_FORMAT_UNDEFINED); assert(base_info->imageType == VK_IMAGE_TYPE_2D); assert(base_info->usage == VK_IMAGE_USAGE_SAMPLED_BIT); assert(base_info->tiling == VK_IMAGE_TILING_OPTIMAL); } struct anv_image_create_info anv_info = { .vk_info = base_info, .isl_extra_usage_flags = ISL_SURF_USAGE_DISABLE_AUX_BIT, .external_format = true, }; VkImage image_h; VkResult result = anv_image_create(device_h, &anv_info, alloc, &image_h); if (result != VK_SUCCESS) return result; *out_image_h = image_h; return VK_SUCCESS; #else return VK_ERROR_EXTENSION_NOT_PRESENT; #endif } VkResult anv_image_from_gralloc(VkDevice device_h, const VkImageCreateInfo *base_info, const VkNativeBufferANDROID *gralloc_info, const VkAllocationCallbacks *alloc, VkImage *out_image_h) { ANV_FROM_HANDLE(anv_device, device, device_h); VkImage image_h = VK_NULL_HANDLE; struct anv_image *image = NULL; struct anv_bo *bo = NULL; VkResult result; struct anv_image_create_info anv_info = { .vk_info = base_info, .isl_extra_usage_flags = ISL_SURF_USAGE_DISABLE_AUX_BIT, }; if (gralloc_info->handle->numFds != 1) { return vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE, "VkNativeBufferANDROID::handle::numFds is %d, " "expected 1", gralloc_info->handle->numFds); } /* Do not close the gralloc handle's dma_buf. The lifetime of the dma_buf * must exceed that of the gralloc handle, and we do not own the gralloc * handle. */ int dma_buf = gralloc_info->handle->data[0]; /* We need to set the WRITE flag on window system buffers so that GEM will * know we're writing to them and synchronize uses on other rings (for * example, if the display server uses the blitter ring). * * If this function fails and if the imported bo was resident in the cache, * we should avoid updating the bo's flags. Therefore, we defer updating * the flags until success is certain. * */ result = anv_device_import_bo(device, dma_buf, ANV_BO_ALLOC_IMPLICIT_SYNC | ANV_BO_ALLOC_IMPLICIT_WRITE, 0 /* client_address */, &bo); if (result != VK_SUCCESS) { return vk_errorf(device, device, result, "failed to import dma-buf from VkNativeBufferANDROID"); } int i915_tiling = anv_gem_get_tiling(device, bo->gem_handle); switch (i915_tiling) { case I915_TILING_NONE: anv_info.isl_tiling_flags = ISL_TILING_LINEAR_BIT; break; case I915_TILING_X: anv_info.isl_tiling_flags = ISL_TILING_X_BIT; break; case I915_TILING_Y: anv_info.isl_tiling_flags = ISL_TILING_Y0_BIT; break; case -1: result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE, "DRM_IOCTL_I915_GEM_GET_TILING failed for " "VkNativeBufferANDROID"); goto fail_tiling; default: result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE, "DRM_IOCTL_I915_GEM_GET_TILING returned unknown " "tiling %d for VkNativeBufferANDROID", i915_tiling); goto fail_tiling; } enum isl_format format = anv_get_isl_format(&device->info, base_info->format, VK_IMAGE_ASPECT_COLOR_BIT, base_info->tiling); assert(format != ISL_FORMAT_UNSUPPORTED); anv_info.stride = gralloc_info->stride * (isl_format_get_layout(format)->bpb / 8); result = anv_image_create(device_h, &anv_info, alloc, &image_h); image = anv_image_from_handle(image_h); if (result != VK_SUCCESS) goto fail_create; if (bo->size < image->size) { result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE, "dma-buf from VkNativeBufferANDROID is too small for " "VkImage: %"PRIu64"B < %"PRIu64"B", bo->size, image->size); goto fail_size; } assert(image->n_planes == 1); assert(image->planes[0].address.offset == 0); image->planes[0].address.bo = bo; image->planes[0].bo_is_owned = true; /* Don't clobber the out-parameter until success is certain. */ *out_image_h = image_h; return VK_SUCCESS; fail_size: anv_DestroyImage(device_h, image_h, alloc); fail_create: fail_tiling: anv_device_release_bo(device, bo); return result; } static VkResult format_supported_with_usage(VkDevice device_h, VkFormat format, VkImageUsageFlags imageUsage) { ANV_FROM_HANDLE(anv_device, device, device_h); VkPhysicalDevice phys_dev_h = anv_physical_device_to_handle(device->physical); VkResult result; const VkPhysicalDeviceImageFormatInfo2 image_format_info = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, .format = format, .type = VK_IMAGE_TYPE_2D, .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = imageUsage, }; VkImageFormatProperties2 image_format_props = { .sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2, }; /* Check that requested format and usage are supported. */ result = anv_GetPhysicalDeviceImageFormatProperties2(phys_dev_h, &image_format_info, &image_format_props); if (result != VK_SUCCESS) { return vk_errorf(device, device, result, "anv_GetPhysicalDeviceImageFormatProperties2 failed " "inside %s", __func__); } return VK_SUCCESS; } static VkResult setup_gralloc0_usage(VkFormat format, VkImageUsageFlags imageUsage, int *grallocUsage) { /* WARNING: Android's libvulkan.so hardcodes the VkImageUsageFlags * returned to applications via VkSurfaceCapabilitiesKHR::supportedUsageFlags. * The relevant code in libvulkan/swapchain.cpp contains this fun comment: * * TODO(jessehall): I think these are right, but haven't thought hard * about it. Do we need to query the driver for support of any of * these? * * Any disagreement between this function and the hardcoded * VkSurfaceCapabilitiesKHR:supportedUsageFlags causes tests * dEQP-VK.wsi.android.swapchain.*.image_usage to fail. */ if (unmask32(&imageUsage, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)) *grallocUsage |= GRALLOC_USAGE_HW_RENDER; if (unmask32(&imageUsage, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) *grallocUsage |= GRALLOC_USAGE_HW_TEXTURE; /* All VkImageUsageFlags not explicitly checked here are unsupported for * gralloc swapchains. */ if (imageUsage != 0) { return vk_errorf(device, device, VK_ERROR_FORMAT_NOT_SUPPORTED, "unsupported VkImageUsageFlags(0x%x) for gralloc " "swapchain", imageUsage); } /* The below formats support GRALLOC_USAGE_HW_FB (that is, display * scanout). This short list of formats is univserally supported on Intel * but is incomplete. The full set of supported formats is dependent on * kernel and hardware. * * FINISHME: Advertise all display-supported formats. */ switch (format) { case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_B5G6R5_UNORM_PACK16: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_SRGB: *grallocUsage |= GRALLOC_USAGE_HW_FB | GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_EXTERNAL_DISP; break; default: intel_logw("%s: unsupported format=%d", __func__, format); } if (*grallocUsage == 0) return VK_ERROR_FORMAT_NOT_SUPPORTED; return VK_SUCCESS; } #if ANDROID_API_LEVEL >= 26 VkResult anv_GetSwapchainGrallocUsage2ANDROID( VkDevice device_h, VkFormat format, VkImageUsageFlags imageUsage, VkSwapchainImageUsageFlagsANDROID swapchainImageUsage, uint64_t* grallocConsumerUsage, uint64_t* grallocProducerUsage) { ANV_FROM_HANDLE(anv_device, device, device_h); VkResult result; *grallocConsumerUsage = 0; *grallocProducerUsage = 0; intel_logd("%s: format=%d, usage=0x%x", __func__, format, imageUsage); result = format_supported_with_usage(device_h, format, imageUsage); if (result != VK_SUCCESS) return result; int32_t grallocUsage = 0; result = setup_gralloc0_usage(format, imageUsage, &grallocUsage); if (result != VK_SUCCESS) return result; /* Setup gralloc1 usage flags from gralloc0 flags. */ if (grallocUsage & GRALLOC_USAGE_HW_RENDER) { *grallocProducerUsage |= GRALLOC1_PRODUCER_USAGE_GPU_RENDER_TARGET; *grallocConsumerUsage |= GRALLOC1_CONSUMER_USAGE_CLIENT_TARGET; } if (grallocUsage & GRALLOC_USAGE_HW_TEXTURE) { *grallocConsumerUsage |= GRALLOC1_CONSUMER_USAGE_GPU_TEXTURE; } if (grallocUsage & (GRALLOC_USAGE_HW_FB | GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_EXTERNAL_DISP)) { *grallocProducerUsage |= GRALLOC1_PRODUCER_USAGE_GPU_RENDER_TARGET; *grallocConsumerUsage |= GRALLOC1_CONSUMER_USAGE_HWCOMPOSER; } return VK_SUCCESS; } #endif VkResult anv_GetSwapchainGrallocUsageANDROID( VkDevice device_h, VkFormat format, VkImageUsageFlags imageUsage, int* grallocUsage) { VkResult result; *grallocUsage = 0; intel_logd("%s: format=%d, usage=0x%x", __func__, format, imageUsage); result = format_supported_with_usage(device_h, format, imageUsage); if (result != VK_SUCCESS) return result; return setup_gralloc0_usage(format, imageUsage, grallocUsage); } VkResult anv_AcquireImageANDROID( VkDevice device_h, VkImage image_h, int nativeFenceFd, VkSemaphore semaphore_h, VkFence fence_h) { ANV_FROM_HANDLE(anv_device, device, device_h); VkResult result = VK_SUCCESS; if (nativeFenceFd != -1) { /* As a simple, firstpass implementation of VK_ANDROID_native_buffer, we * block on the nativeFenceFd. This may introduce latency and is * definitiely inefficient, yet it's correct. * * FINISHME(chadv): Import the nativeFenceFd into the VkSemaphore and * VkFence. */ if (sync_wait(nativeFenceFd, /*timeout*/ -1) < 0) { result = vk_errorf(device, device, VK_ERROR_DEVICE_LOST, "%s: failed to wait on nativeFenceFd=%d", __func__, nativeFenceFd); } /* From VK_ANDROID_native_buffer's pseudo spec * (https://source.android.com/devices/graphics/implement-vulkan): * * The driver takes ownership of the fence fd and is responsible for * closing it [...] even if vkAcquireImageANDROID fails and returns * an error. */ close(nativeFenceFd); if (result != VK_SUCCESS) return result; } if (semaphore_h || fence_h) { /* Thanks to implicit sync, the image is ready for GPU access. But we * must still put the semaphore into the "submit" state; otherwise the * client may get unexpected behavior if the client later uses it as * a wait semaphore. * * Because we blocked above on the nativeFenceFd, the image is also * ready for foreign-device access (including CPU access). But we must * still signal the fence; otherwise the client may get unexpected * behavior if the client later waits on it. * * For some values of anv_semaphore_type, we must submit the semaphore * to execbuf in order to signal it. Likewise for anv_fence_type. * Instead of open-coding here the signal operation for each * anv_semaphore_type and anv_fence_type, we piggy-back on * vkQueueSubmit. */ const VkSubmitInfo submit = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .waitSemaphoreCount = 0, .commandBufferCount = 0, .signalSemaphoreCount = (semaphore_h ? 1 : 0), .pSignalSemaphores = &semaphore_h, }; result = anv_QueueSubmit(anv_queue_to_handle(&device->queue), 1, &submit, fence_h); if (result != VK_SUCCESS) { return vk_errorf(device, device, result, "anv_QueueSubmit failed inside %s", __func__); } } return VK_SUCCESS; } VkResult anv_QueueSignalReleaseImageANDROID( VkQueue queue, uint32_t waitSemaphoreCount, const VkSemaphore* pWaitSemaphores, VkImage image, int* pNativeFenceFd) { VkResult result; if (waitSemaphoreCount == 0) goto done; result = anv_QueueSubmit(queue, 1, &(VkSubmitInfo) { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .waitSemaphoreCount = 1, .pWaitSemaphores = pWaitSemaphores, }, (VkFence) VK_NULL_HANDLE); if (result != VK_SUCCESS) return result; done: if (pNativeFenceFd) { /* We can rely implicit on sync because above we submitted all * semaphores to the queue. */ *pNativeFenceFd = -1; } return VK_SUCCESS; }