/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include "anv_private.h" #ifdef HAVE_VALGRIND #define VG_NOACCESS_READ(__ptr) ({ \ VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \ __typeof(*(__ptr)) __val = *(__ptr); \ VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\ __val; \ }) #define VG_NOACCESS_WRITE(__ptr, __val) ({ \ VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \ *(__ptr) = (__val); \ VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \ }) #else #define VG_NOACCESS_READ(__ptr) (*(__ptr)) #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val)) #endif /* Design goals: * * - Lock free (except when resizing underlying bos) * * - Constant time allocation with typically only one atomic * * - Multiple allocation sizes without fragmentation * * - Can grow while keeping addresses and offset of contents stable * * - All allocations within one bo so we can point one of the * STATE_BASE_ADDRESS pointers at it. * * The overall design is a two-level allocator: top level is a fixed size, big * block (8k) allocator, which operates out of a bo. Allocation is done by * either pulling a block from the free list or growing the used range of the * bo. Growing the range may run out of space in the bo which we then need to * grow. Growing the bo is tricky in a multi-threaded, lockless environment: * we need to keep all pointers and contents in the old map valid. GEM bos in * general can't grow, but we use a trick: we create a memfd and use ftruncate * to grow it as necessary. We mmap the new size and then create a gem bo for * it using the new gem userptr ioctl. Without heavy-handed locking around * our allocation fast-path, there isn't really a way to munmap the old mmap, * so we just keep it around until garbage collection time. While the block * allocator is lockless for normal operations, we block other threads trying * to allocate while we're growing the map. It sholdn't happen often, and * growing is fast anyway. * * At the next level we can use various sub-allocators. The state pool is a * pool of smaller, fixed size objects, which operates much like the block * pool. It uses a free list for freeing objects, but when it runs out of * space it just allocates a new block from the block pool. This allocator is * intended for longer lived state objects such as SURFACE_STATE and most * other persistent state objects in the API. We may need to track more info * with these object and a pointer back to the CPU object (eg VkImage). In * those cases we just allocate a slightly bigger object and put the extra * state after the GPU state object. * * The state stream allocator works similar to how the i965 DRI driver streams * all its state. Even with Vulkan, we need to emit transient state (whether * surface state base or dynamic state base), and for that we can just get a * block and fill it up. These cases are local to a command buffer and the * sub-allocator need not be thread safe. The streaming allocator gets a new * block when it runs out of space and chains them together so they can be * easily freed. */ /* Allocations are always at least 64 byte aligned, so 1 is an invalid value. * We use it to indicate the free list is empty. */ #define EMPTY 1 struct anv_mmap_cleanup { void *map; size_t size; uint32_t gem_handle; }; #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0}) static inline long sys_futex(void *addr1, int op, int val1, struct timespec *timeout, void *addr2, int val3) { return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3); } static inline int futex_wake(uint32_t *addr, int count) { return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0); } static inline int futex_wait(uint32_t *addr, int32_t value) { return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0); } static inline int memfd_create(const char *name, unsigned int flags) { return syscall(SYS_memfd_create, name, flags); } static inline uint32_t ilog2_round_up(uint32_t value) { assert(value != 0); return 32 - __builtin_clz(value - 1); } static inline uint32_t round_to_power_of_two(uint32_t value) { return 1 << ilog2_round_up(value); } static bool anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset) { union anv_free_list current, new, old; current.u64 = list->u64; while (current.offset != EMPTY) { /* We have to add a memory barrier here so that the list head (and * offset) gets read before we read the map pointer. This way we * know that the map pointer is valid for the given offset at the * point where we read it. */ __sync_synchronize(); int32_t *next_ptr = *map + current.offset; new.offset = VG_NOACCESS_READ(next_ptr); new.count = current.count + 1; old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); if (old.u64 == current.u64) { *offset = current.offset; return true; } current = old; } return false; } static void anv_free_list_push(union anv_free_list *list, void *map, int32_t offset) { union anv_free_list current, old, new; int32_t *next_ptr = map + offset; old = *list; do { current = old; VG_NOACCESS_WRITE(next_ptr, current.offset); new.offset = offset; new.count = current.count + 1; old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); } while (old.u64 != current.u64); } /* All pointers in the ptr_free_list are assumed to be page-aligned. This * means that the bottom 12 bits should all be zero. */ #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff) #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff)) #define PFL_PACK(ptr, count) ({ \ (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \ }) static bool anv_ptr_free_list_pop(void **list, void **elem) { void *current = *list; while (PFL_PTR(current) != NULL) { void **next_ptr = PFL_PTR(current); void *new_ptr = VG_NOACCESS_READ(next_ptr); unsigned new_count = PFL_COUNT(current) + 1; void *new = PFL_PACK(new_ptr, new_count); void *old = __sync_val_compare_and_swap(list, current, new); if (old == current) { *elem = PFL_PTR(current); return true; } current = old; } return false; } static void anv_ptr_free_list_push(void **list, void *elem) { void *old, *current; void **next_ptr = elem; /* The pointer-based free list requires that the pointer be * page-aligned. This is because we use the bottom 12 bits of the * pointer to store a counter to solve the ABA concurrency problem. */ assert(((uintptr_t)elem & 0xfff) == 0); old = *list; do { current = old; VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current)); unsigned new_count = PFL_COUNT(current) + 1; void *new = PFL_PACK(elem, new_count); old = __sync_val_compare_and_swap(list, current, new); } while (old != current); } static uint32_t anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state); void anv_block_pool_init(struct anv_block_pool *pool, struct anv_device *device, uint32_t block_size) { assert(util_is_power_of_two(block_size)); pool->device = device; anv_bo_init(&pool->bo, 0, 0); pool->block_size = block_size; pool->free_list = ANV_FREE_LIST_EMPTY; pool->back_free_list = ANV_FREE_LIST_EMPTY; pool->fd = memfd_create("block pool", MFD_CLOEXEC); if (pool->fd == -1) return; /* Just make it 2GB up-front. The Linux kernel won't actually back it * with pages until we either map and fault on one of them or we use * userptr and send a chunk of it off to the GPU. */ if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) return; u_vector_init(&pool->mmap_cleanups, round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128); pool->state.next = 0; pool->state.end = 0; pool->back_state.next = 0; pool->back_state.end = 0; /* Immediately grow the pool so we'll have a backing bo. */ pool->state.end = anv_block_pool_grow(pool, &pool->state); } void anv_block_pool_finish(struct anv_block_pool *pool) { struct anv_mmap_cleanup *cleanup; u_vector_foreach(cleanup, &pool->mmap_cleanups) { if (cleanup->map) munmap(cleanup->map, cleanup->size); if (cleanup->gem_handle) anv_gem_close(pool->device, cleanup->gem_handle); } u_vector_finish(&pool->mmap_cleanups); close(pool->fd); } #define PAGE_SIZE 4096 /** Grows and re-centers the block pool. * * We grow the block pool in one or both directions in such a way that the * following conditions are met: * * 1) The size of the entire pool is always a power of two. * * 2) The pool only grows on both ends. Neither end can get * shortened. * * 3) At the end of the allocation, we have about twice as much space * allocated for each end as we have used. This way the pool doesn't * grow too far in one direction or the other. * * 4) If the _alloc_back() has never been called, then the back portion of * the pool retains a size of zero. (This makes it easier for users of * the block pool that only want a one-sided pool.) * * 5) We have enough space allocated for at least one more block in * whichever side `state` points to. * * 6) The center of the pool is always aligned to both the block_size of * the pool and a 4K CPU page. */ static uint32_t anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state) { size_t size; void *map; uint32_t gem_handle; struct anv_mmap_cleanup *cleanup; pthread_mutex_lock(&pool->device->mutex); assert(state == &pool->state || state == &pool->back_state); /* Gather a little usage information on the pool. Since we may have * threadsd waiting in queue to get some storage while we resize, it's * actually possible that total_used will be larger than old_size. In * particular, block_pool_alloc() increments state->next prior to * calling block_pool_grow, so this ensures that we get enough space for * which ever side tries to grow the pool. * * We align to a page size because it makes it easier to do our * calculations later in such a way that we state page-aigned. */ uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE); uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE); uint32_t total_used = front_used + back_used; assert(state == &pool->state || back_used > 0); size_t old_size = pool->bo.size; if (old_size != 0 && back_used * 2 <= pool->center_bo_offset && front_used * 2 <= (old_size - pool->center_bo_offset)) { /* If we're in this case then this isn't the firsta allocation and we * already have enough space on both sides to hold double what we * have allocated. There's nothing for us to do. */ goto done; } if (old_size == 0) { /* This is the first allocation */ size = MAX2(32 * pool->block_size, PAGE_SIZE); } else { size = old_size * 2; } /* We can't have a block pool bigger than 1GB because we use signed * 32-bit offsets in the free list and we don't want overflow. We * should never need a block pool bigger than 1GB anyway. */ assert(size <= (1u << 31)); /* We compute a new center_bo_offset such that, when we double the size * of the pool, we maintain the ratio of how much is used by each side. * This way things should remain more-or-less balanced. */ uint32_t center_bo_offset; if (back_used == 0) { /* If we're in this case then we have never called alloc_back(). In * this case, we want keep the offset at 0 to make things as simple * as possible for users that don't care about back allocations. */ center_bo_offset = 0; } else { /* Try to "center" the allocation based on how much is currently in * use on each side of the center line. */ center_bo_offset = ((uint64_t)size * back_used) / total_used; /* Align down to a multiple of both the block size and page size */ uint32_t granularity = MAX2(pool->block_size, PAGE_SIZE); assert(util_is_power_of_two(granularity)); center_bo_offset &= ~(granularity - 1); assert(center_bo_offset >= back_used); /* Make sure we don't shrink the back end of the pool */ if (center_bo_offset < pool->back_state.end) center_bo_offset = pool->back_state.end; /* Make sure that we don't shrink the front end of the pool */ if (size - center_bo_offset < pool->state.end) center_bo_offset = size - pool->state.end; } assert(center_bo_offset % pool->block_size == 0); assert(center_bo_offset % PAGE_SIZE == 0); /* Assert that we only ever grow the pool */ assert(center_bo_offset >= pool->back_state.end); assert(size - center_bo_offset >= pool->state.end); cleanup = u_vector_add(&pool->mmap_cleanups); if (!cleanup) goto fail; *cleanup = ANV_MMAP_CLEANUP_INIT; /* Just leak the old map until we destroy the pool. We can't munmap it * without races or imposing locking on the block allocate fast path. On * the whole the leaked maps adds up to less than the size of the * current map. MAP_POPULATE seems like the right thing to do, but we * should try to get some numbers. */ map = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, pool->fd, BLOCK_POOL_MEMFD_CENTER - center_bo_offset); cleanup->map = map; cleanup->size = size; if (map == MAP_FAILED) goto fail; gem_handle = anv_gem_userptr(pool->device, map, size); if (gem_handle == 0) goto fail; cleanup->gem_handle = gem_handle; #if 0 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are * always created as I915_CACHING_CACHED, which on non-LLC means * snooped. That can be useful but comes with a bit of overheard. Since * we're eplicitly clflushing and don't want the overhead we need to turn * it off. */ if (!pool->device->info.has_llc) { anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE); anv_gem_set_domain(pool->device, gem_handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); } #endif /* Now that we successfull allocated everything, we can write the new * values back into pool. */ pool->map = map + center_bo_offset; pool->center_bo_offset = center_bo_offset; anv_bo_init(&pool->bo, gem_handle, size); pool->bo.map = map; done: pthread_mutex_unlock(&pool->device->mutex); /* Return the appropreate new size. This function never actually * updates state->next. Instead, we let the caller do that because it * needs to do so in order to maintain its concurrency model. */ if (state == &pool->state) { return pool->bo.size - pool->center_bo_offset; } else { assert(pool->center_bo_offset > 0); return pool->center_bo_offset; } fail: pthread_mutex_unlock(&pool->device->mutex); return 0; } static uint32_t anv_block_pool_alloc_new(struct anv_block_pool *pool, struct anv_block_state *pool_state) { struct anv_block_state state, old, new; while (1) { state.u64 = __sync_fetch_and_add(&pool_state->u64, pool->block_size); if (state.next < state.end) { assert(pool->map); return state.next; } else if (state.next == state.end) { /* We allocated the first block outside the pool, we have to grow it. * pool_state->next acts a mutex: threads who try to allocate now will * get block indexes above the current limit and hit futex_wait * below. */ new.next = state.next + pool->block_size; new.end = anv_block_pool_grow(pool, pool_state); assert(new.end >= new.next && new.end % pool->block_size == 0); old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64); if (old.next != state.next) futex_wake(&pool_state->end, INT_MAX); return state.next; } else { futex_wait(&pool_state->end, state.end); continue; } } } int32_t anv_block_pool_alloc(struct anv_block_pool *pool) { int32_t offset; /* Try free list first. */ if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) { assert(offset >= 0); assert(pool->map); return offset; } return anv_block_pool_alloc_new(pool, &pool->state); } /* Allocates a block out of the back of the block pool. * * This will allocated a block earlier than the "start" of the block pool. * The offsets returned from this function will be negative but will still * be correct relative to the block pool's map pointer. * * If you ever use anv_block_pool_alloc_back, then you will have to do * gymnastics with the block pool's BO when doing relocations. */ int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool) { int32_t offset; /* Try free list first. */ if (anv_free_list_pop(&pool->back_free_list, &pool->map, &offset)) { assert(offset < 0); assert(pool->map); return offset; } offset = anv_block_pool_alloc_new(pool, &pool->back_state); /* The offset we get out of anv_block_pool_alloc_new() is actually the * number of bytes downwards from the middle to the end of the block. * We need to turn it into a (negative) offset from the middle to the * start of the block. */ assert(offset >= 0); return -(offset + pool->block_size); } void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset) { if (offset < 0) { anv_free_list_push(&pool->back_free_list, pool->map, offset); } else { anv_free_list_push(&pool->free_list, pool->map, offset); } } static void anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool, size_t state_size) { /* At least a cache line and must divide the block size. */ assert(state_size >= 64 && util_is_power_of_two(state_size)); pool->state_size = state_size; pool->free_list = ANV_FREE_LIST_EMPTY; pool->block.next = 0; pool->block.end = 0; } static uint32_t anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool, struct anv_block_pool *block_pool) { int32_t offset; struct anv_block_state block, old, new; /* Try free list first. */ if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset)) { assert(offset >= 0); return offset; } /* If free list was empty (or somebody raced us and took the items) we * allocate a new item from the end of the block */ restart: block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size); if (block.next < block.end) { return block.next; } else if (block.next == block.end) { offset = anv_block_pool_alloc(block_pool); new.next = offset + pool->state_size; new.end = offset + block_pool->block_size; old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64); if (old.next != block.next) futex_wake(&pool->block.end, INT_MAX); return offset; } else { futex_wait(&pool->block.end, block.end); goto restart; } } static void anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool, struct anv_block_pool *block_pool, uint32_t offset) { anv_free_list_push(&pool->free_list, block_pool->map, offset); } void anv_state_pool_init(struct anv_state_pool *pool, struct anv_block_pool *block_pool) { pool->block_pool = block_pool; for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) { size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i); anv_fixed_size_state_pool_init(&pool->buckets[i], size); } VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); } void anv_state_pool_finish(struct anv_state_pool *pool) { VG(VALGRIND_DESTROY_MEMPOOL(pool)); } struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align) { unsigned size_log2 = ilog2_round_up(size < align ? align : size); assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2); if (size_log2 < ANV_MIN_STATE_SIZE_LOG2) size_log2 = ANV_MIN_STATE_SIZE_LOG2; unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2; struct anv_state state; state.alloc_size = 1 << size_log2; state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket], pool->block_pool); state.map = pool->block_pool->map + state.offset; VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size)); return state; } void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state) { assert(util_is_power_of_two(state.alloc_size)); unsigned size_log2 = ilog2_round_up(state.alloc_size); assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 && size_log2 <= ANV_MAX_STATE_SIZE_LOG2); unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2; VG(VALGRIND_MEMPOOL_FREE(pool, state.map)); anv_fixed_size_state_pool_free(&pool->buckets[bucket], pool->block_pool, state.offset); } #define NULL_BLOCK 1 struct anv_state_stream_block { /* The next block */ struct anv_state_stream_block *next; /* The offset into the block pool at which this block starts */ uint32_t offset; #ifdef HAVE_VALGRIND /* A pointer to the first user-allocated thing in this block. This is * what valgrind sees as the start of the block. */ void *_vg_ptr; #endif }; /* The state stream allocator is a one-shot, single threaded allocator for * variable sized blocks. We use it for allocating dynamic state. */ void anv_state_stream_init(struct anv_state_stream *stream, struct anv_block_pool *block_pool) { stream->block_pool = block_pool; stream->block = NULL; /* Ensure that next + whatever > end. This way the first call to * state_stream_alloc fetches a new block. */ stream->next = 1; stream->end = 0; VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false)); } void anv_state_stream_finish(struct anv_state_stream *stream) { VG(const uint32_t block_size = stream->block_pool->block_size); struct anv_state_stream_block *next = stream->block; while (next != NULL) { VG(VALGRIND_MAKE_MEM_DEFINED(next, sizeof(*next))); struct anv_state_stream_block sb = VG_NOACCESS_READ(next); VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr)); VG(VALGRIND_MAKE_MEM_UNDEFINED(next, block_size)); anv_block_pool_free(stream->block_pool, sb.offset); next = sb.next; } VG(VALGRIND_DESTROY_MEMPOOL(stream)); } struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream, uint32_t size, uint32_t alignment) { struct anv_state_stream_block *sb = stream->block; struct anv_state state; state.offset = align_u32(stream->next, alignment); if (state.offset + size > stream->end) { uint32_t block = anv_block_pool_alloc(stream->block_pool); sb = stream->block_pool->map + block; VG(VALGRIND_MAKE_MEM_UNDEFINED(sb, sizeof(*sb))); sb->next = stream->block; sb->offset = block; VG(sb->_vg_ptr = NULL); VG(VALGRIND_MAKE_MEM_NOACCESS(sb, stream->block_pool->block_size)); stream->block = sb; stream->start = block; stream->next = block + sizeof(*sb); stream->end = block + stream->block_pool->block_size; state.offset = align_u32(stream->next, alignment); assert(state.offset + size <= stream->end); } assert(state.offset > stream->start); state.map = (void *)sb + (state.offset - stream->start); state.alloc_size = size; #ifdef HAVE_VALGRIND void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr); if (vg_ptr == NULL) { vg_ptr = state.map; VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr); VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size); } else { void *state_end = state.map + state.alloc_size; /* This only updates the mempool. The newly allocated chunk is still * marked as NOACCESS. */ VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr); /* Mark the newly allocated chunk as undefined */ VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size); } #endif stream->next = state.offset + size; return state; } struct bo_pool_bo_link { struct bo_pool_bo_link *next; struct anv_bo bo; }; void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device) { pool->device = device; memset(pool->free_list, 0, sizeof(pool->free_list)); VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); } void anv_bo_pool_finish(struct anv_bo_pool *pool) { for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) { struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]); while (link != NULL) { struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link); anv_gem_munmap(link_copy.bo.map, link_copy.bo.size); anv_gem_close(pool->device, link_copy.bo.gem_handle); link = link_copy.next; } } VG(VALGRIND_DESTROY_MEMPOOL(pool)); } VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size) { VkResult result; const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size); const unsigned pow2_size = 1 << size_log2; const unsigned bucket = size_log2 - 12; assert(bucket < ARRAY_SIZE(pool->free_list)); void *next_free_void; if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) { struct bo_pool_bo_link *next_free = next_free_void; *bo = VG_NOACCESS_READ(&next_free->bo); assert(bo->gem_handle); assert(bo->map == next_free); assert(size <= bo->size); VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size)); return VK_SUCCESS; } struct anv_bo new_bo; result = anv_bo_init_new(&new_bo, pool->device, pow2_size); if (result != VK_SUCCESS) return result; assert(new_bo.size == pow2_size); new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0); if (new_bo.map == NULL) { anv_gem_close(pool->device, new_bo.gem_handle); return vk_error(VK_ERROR_MEMORY_MAP_FAILED); } *bo = new_bo; VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size)); return VK_SUCCESS; } void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in) { /* Make a copy in case the anv_bo happens to be storred in the BO */ struct anv_bo bo = *bo_in; VG(VALGRIND_MEMPOOL_FREE(pool, bo.map)); struct bo_pool_bo_link *link = bo.map; VG_NOACCESS_WRITE(&link->bo, bo); assert(util_is_power_of_two(bo.size)); const unsigned size_log2 = ilog2_round_up(bo.size); const unsigned bucket = size_log2 - 12; assert(bucket < ARRAY_SIZE(pool->free_list)); anv_ptr_free_list_push(&pool->free_list[bucket], link); } // Scratch pool void anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool) { memset(pool, 0, sizeof(*pool)); } void anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool) { for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) { for (unsigned i = 0; i < 16; i++) { struct anv_scratch_bo *bo = &pool->bos[i][s]; if (bo->exists > 0) anv_gem_close(device, bo->bo.gem_handle); } } } struct anv_bo * anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool, gl_shader_stage stage, unsigned per_thread_scratch) { if (per_thread_scratch == 0) return NULL; unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048); assert(scratch_size_log2 < 16); struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage]; /* We can use "exists" to shortcut and ignore the critical section */ if (bo->exists) return &bo->bo; pthread_mutex_lock(&device->mutex); __sync_synchronize(); if (bo->exists) return &bo->bo; const struct anv_physical_device *physical_device = &device->instance->physicalDevice; const struct gen_device_info *devinfo = &physical_device->info; /* WaCSScratchSize:hsw * * Haswell's scratch space address calculation appears to be sparse * rather than tightly packed. The Thread ID has bits indicating which * subslice, EU within a subslice, and thread within an EU it is. * There's a maximum of two slices and two subslices, so these can be * stored with a single bit. Even though there are only 10 EUs per * subslice, this is stored in 4 bits, so there's an effective maximum * value of 16 EUs. Similarly, although there are only 7 threads per EU, * this is stored in a 3 bit number, giving an effective maximum value * of 8 threads per EU. * * This means that we need to use 16 * 8 instead of 10 * 7 for the * number of threads per subslice. */ const unsigned subslices = MAX2(physical_device->subslice_total, 1); const unsigned scratch_ids_per_subslice = device->info.is_haswell ? 16 * 8 : devinfo->max_cs_threads; uint32_t max_threads[] = { [MESA_SHADER_VERTEX] = devinfo->max_vs_threads, [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads, [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads, [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads, [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads, [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices, }; uint32_t size = per_thread_scratch * max_threads[stage]; anv_bo_init_new(&bo->bo, device, size); /* Set the exists last because it may be read by other threads */ __sync_synchronize(); bo->exists = true; pthread_mutex_unlock(&device->mutex); return &bo->bo; }