/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "decoder.h" #include "genxml/gen6_xml.h" #include "genxml/gen7_xml.h" #include "genxml/gen75_xml.h" #include "genxml/gen8_xml.h" #include "genxml/gen9_xml.h" #define XML_BUFFER_SIZE 4096 #define MAKE_GEN(major, minor) ( ((major) << 8) | (minor) ) struct gen_spec { uint32_t gen; int ncommands; struct gen_group *commands[256]; int nstructs; struct gen_group *structs[256]; int nregisters; struct gen_group *registers[256]; int nenums; struct gen_enum *enums[256]; }; struct location { const char *filename; int line_number; }; struct parser_context { XML_Parser parser; int foo; struct location loc; const char *platform; struct gen_group *group; struct gen_enum *enoom; int nfields; struct gen_field *fields[128]; int nvalues; struct gen_value *values[256]; struct gen_spec *spec; }; const char * gen_group_get_name(struct gen_group *group) { return group->name; } uint32_t gen_group_get_opcode(struct gen_group *group) { return group->opcode; } struct gen_group * gen_spec_find_struct(struct gen_spec *spec, const char *name) { for (int i = 0; i < spec->nstructs; i++) if (strcmp(spec->structs[i]->name, name) == 0) return spec->structs[i]; return NULL; } struct gen_group * gen_spec_find_register(struct gen_spec *spec, uint32_t offset) { for (int i = 0; i < spec->nregisters; i++) if (spec->registers[i]->register_offset == offset) return spec->registers[i]; return NULL; } struct gen_enum * gen_spec_find_enum(struct gen_spec *spec, const char *name) { for (int i = 0; i < spec->nenums; i++) if (strcmp(spec->enums[i]->name, name) == 0) return spec->enums[i]; return NULL; } uint32_t gen_spec_get_gen(struct gen_spec *spec) { return spec->gen; } static void __attribute__((noreturn)) fail(struct location *loc, const char *msg, ...) { va_list ap; va_start(ap, msg); fprintf(stderr, "%s:%d: error: ", loc->filename, loc->line_number); vfprintf(stderr, msg, ap); fprintf(stderr, "\n"); va_end(ap); exit(EXIT_FAILURE); } static void * fail_on_null(void *p) { if (p == NULL) { fprintf(stderr, "aubinator: out of memory\n"); exit(EXIT_FAILURE); } return p; } static char * xstrdup(const char *s) { return fail_on_null(strdup(s)); } static void * zalloc(size_t s) { return calloc(s, 1); } static void * xzalloc(size_t s) { return fail_on_null(zalloc(s)); } static struct gen_group * create_group(struct parser_context *ctx, const char *name, const char **atts) { struct gen_group *group; group = xzalloc(sizeof(*group)); if (name) group->name = xstrdup(name); group->spec = ctx->spec; group->group_offset = 0; group->group_count = 0; return group; } static struct gen_enum * create_enum(struct parser_context *ctx, const char *name, const char **atts) { struct gen_enum *e; e = xzalloc(sizeof(*e)); if (name) e->name = xstrdup(name); e->nvalues = 0; return e; } static void get_group_offset_count(struct parser_context *ctx, const char *name, const char **atts, uint32_t *offset, uint32_t *count) { char *p; int i; for (i = 0; atts[i]; i += 2) { if (strcmp(atts[i], "count") == 0) *count = strtoul(atts[i + 1], &p, 0); else if (strcmp(atts[i], "start") == 0) *offset = strtoul(atts[i + 1], &p, 0); } return; } static void get_register_offset(const char **atts, uint32_t *offset) { char *p; int i; for (i = 0; atts[i]; i += 2) { if (strcmp(atts[i], "num") == 0) *offset = strtoul(atts[i + 1], &p, 0); } return; } static void get_start_end_pos(int *start, int *end) { /* start value has to be mod with 32 as we need the relative * start position in the first DWord. For the end position, add * the length of the field to the start position to get the * relative postion in the 64 bit address. */ if (*end - *start > 32) { int len = *end - *start; *start = *start % 32; *end = *start + len; } else { *start = *start % 32; *end = *end % 32; } return; } static inline uint64_t mask(int start, int end) { uint64_t v; v = ~0ULL >> (63 - end + start); return v << start; } static inline uint64_t field(uint64_t value, int start, int end) { get_start_end_pos(&start, &end); return (value & mask(start, end)) >> (start); } static inline uint64_t field_address(uint64_t value, int start, int end) { /* no need to right shift for address/offset */ get_start_end_pos(&start, &end); return (value & mask(start, end)); } static struct gen_type string_to_type(struct parser_context *ctx, const char *s) { int i, f; struct gen_group *g; struct gen_enum *e; if (strcmp(s, "int") == 0) return (struct gen_type) { .kind = GEN_TYPE_INT }; else if (strcmp(s, "uint") == 0) return (struct gen_type) { .kind = GEN_TYPE_UINT }; else if (strcmp(s, "bool") == 0) return (struct gen_type) { .kind = GEN_TYPE_BOOL }; else if (strcmp(s, "float") == 0) return (struct gen_type) { .kind = GEN_TYPE_FLOAT }; else if (strcmp(s, "address") == 0) return (struct gen_type) { .kind = GEN_TYPE_ADDRESS }; else if (strcmp(s, "offset") == 0) return (struct gen_type) { .kind = GEN_TYPE_OFFSET }; else if (sscanf(s, "u%d.%d", &i, &f) == 2) return (struct gen_type) { .kind = GEN_TYPE_UFIXED, .i = i, .f = f }; else if (sscanf(s, "s%d.%d", &i, &f) == 2) return (struct gen_type) { .kind = GEN_TYPE_SFIXED, .i = i, .f = f }; else if (g = gen_spec_find_struct(ctx->spec, s), g != NULL) return (struct gen_type) { .kind = GEN_TYPE_STRUCT, .gen_struct = g }; else if (e = gen_spec_find_enum(ctx->spec, s), e != NULL) return (struct gen_type) { .kind = GEN_TYPE_ENUM, .gen_enum = e }; else if (strcmp(s, "mbo") == 0) return (struct gen_type) { .kind = GEN_TYPE_MBO }; else fail(&ctx->loc, "invalid type: %s", s); } static struct gen_field * create_field(struct parser_context *ctx, const char **atts) { struct gen_field *field; char *p; int i; field = xzalloc(sizeof(*field)); for (i = 0; atts[i]; i += 2) { if (strcmp(atts[i], "name") == 0) field->name = xstrdup(atts[i + 1]); else if (strcmp(atts[i], "start") == 0) field->start = ctx->group->group_offset+strtoul(atts[i + 1], &p, 0); else if (strcmp(atts[i], "end") == 0) { field->end = ctx->group->group_offset+strtoul(atts[i + 1], &p, 0); if (ctx->group->group_offset) ctx->group->group_offset = field->end+1; } else if (strcmp(atts[i], "type") == 0) field->type = string_to_type(ctx, atts[i + 1]); else if (strcmp(atts[i], "default") == 0 && field->start >= 16 && field->end <= 31) { field->has_default = true; field->default_value = strtoul(atts[i + 1], &p, 0); } } return field; } static struct gen_value * create_value(struct parser_context *ctx, const char **atts) { struct gen_value *value = xzalloc(sizeof(*value)); for (int i = 0; atts[i]; i += 2) { if (strcmp(atts[i], "name") == 0) value->name = xstrdup(atts[i + 1]); else if (strcmp(atts[i], "value") == 0) value->value = strtoul(atts[i + 1], NULL, 0); } return value; } static void start_element(void *data, const char *element_name, const char **atts) { struct parser_context *ctx = data; int i; const char *name = NULL; const char *gen = NULL; ctx->loc.line_number = XML_GetCurrentLineNumber(ctx->parser); for (i = 0; atts[i]; i += 2) { if (strcmp(atts[i], "name") == 0) name = atts[i + 1]; else if (strcmp(atts[i], "gen") == 0) gen = atts[i + 1]; } if (strcmp(element_name, "genxml") == 0) { if (name == NULL) fail(&ctx->loc, "no platform name given"); if (gen == NULL) fail(&ctx->loc, "no gen given"); ctx->platform = xstrdup(name); int major, minor; int n = sscanf(gen, "%d.%d", &major, &minor); if (n == 0) fail(&ctx->loc, "invalid gen given: %s", gen); if (n == 1) minor = 0; ctx->spec->gen = MAKE_GEN(major, minor); } else if (strcmp(element_name, "instruction") == 0 || strcmp(element_name, "struct") == 0) { ctx->group = create_group(ctx, name, atts); } else if (strcmp(element_name, "register") == 0) { ctx->group = create_group(ctx, name, atts); get_register_offset(atts, &ctx->group->register_offset); } else if (strcmp(element_name, "group") == 0) { get_group_offset_count(ctx, name, atts, &ctx->group->group_offset, &ctx->group->group_count); } else if (strcmp(element_name, "field") == 0) { do { ctx->fields[ctx->nfields++] = create_field(ctx, atts); if (ctx->group->group_count) ctx->group->group_count--; } while (ctx->group->group_count > 0); } else if (strcmp(element_name, "enum") == 0) { ctx->enoom = create_enum(ctx, name, atts); } else if (strcmp(element_name, "value") == 0) { ctx->values[ctx->nvalues++] = create_value(ctx, atts); } } static void end_element(void *data, const char *name) { struct parser_context *ctx = data; struct gen_spec *spec = ctx->spec; if (strcmp(name, "instruction") == 0 || strcmp(name, "struct") == 0 || strcmp(name, "register") == 0) { size_t size = ctx->nfields * sizeof(ctx->fields[0]); struct gen_group *group = ctx->group; group->fields = xzalloc(size); group->nfields = ctx->nfields; memcpy(group->fields, ctx->fields, size); ctx->nfields = 0; ctx->group = NULL; for (int i = 0; i < group->nfields; i++) { if (group->fields[i]->start >= 16 && group->fields[i]->end <= 31 && group->fields[i]->has_default) { group->opcode_mask |= mask(group->fields[i]->start % 32, group->fields[i]->end % 32); group->opcode |= group->fields[i]->default_value << group->fields[i]->start; } } if (strcmp(name, "instruction") == 0) spec->commands[spec->ncommands++] = group; else if (strcmp(name, "struct") == 0) spec->structs[spec->nstructs++] = group; else if (strcmp(name, "register") == 0) spec->registers[spec->nregisters++] = group; } else if (strcmp(name, "group") == 0) { ctx->group->group_offset = 0; ctx->group->group_count = 0; } else if (strcmp(name, "field") == 0) { assert(ctx->nfields > 0); struct gen_field *field = ctx->fields[ctx->nfields - 1]; size_t size = ctx->nvalues * sizeof(ctx->values[0]); field->inline_enum.values = xzalloc(size); field->inline_enum.nvalues = ctx->nvalues; memcpy(field->inline_enum.values, ctx->values, size); ctx->nvalues = 0; } else if (strcmp(name, "enum") == 0) { struct gen_enum *e = ctx->enoom; size_t size = ctx->nvalues * sizeof(ctx->values[0]); e->values = xzalloc(size); e->nvalues = ctx->nvalues; memcpy(e->values, ctx->values, size); ctx->nvalues = 0; ctx->enoom = NULL; spec->enums[spec->nenums++] = e; } } static void character_data(void *data, const XML_Char *s, int len) { } static int devinfo_to_gen(const struct gen_device_info *devinfo) { int value = 10 * devinfo->gen; if (devinfo->is_baytrail || devinfo->is_haswell) value += 5; return value; } static const struct { int gen; const uint8_t *data; size_t data_length; } gen_data[] = { { .gen = 60, .data = gen6_xml, .data_length = sizeof(gen6_xml) }, { .gen = 70, .data = gen7_xml, .data_length = sizeof(gen7_xml) }, { .gen = 75, .data = gen75_xml, .data_length = sizeof(gen75_xml) }, { .gen = 80, .data = gen8_xml, .data_length = sizeof(gen8_xml) }, { .gen = 90, .data = gen9_xml, .data_length = sizeof(gen9_xml) } }; static const uint8_t * devinfo_to_xml_data(const struct gen_device_info *devinfo, uint32_t *data_length) { int i, gen = devinfo_to_gen(devinfo); for (i = 0; i < ARRAY_SIZE(gen_data); i++) { if (gen_data[i].gen == gen) { *data_length = gen_data[i].data_length; return gen_data[i].data; } } unreachable("Unknown generation"); return NULL; } static uint32_t zlib_inflate(const void *compressed_data, uint32_t compressed_len, void **out_ptr) { struct z_stream_s zstream; void *out; memset(&zstream, 0, sizeof(zstream)); zstream.next_in = (unsigned char *)compressed_data; zstream.avail_in = compressed_len; if (inflateInit(&zstream) != Z_OK) return 0; out = malloc(4096); zstream.next_out = out; zstream.avail_out = 4096; do { switch (inflate(&zstream, Z_SYNC_FLUSH)) { case Z_STREAM_END: goto end; case Z_OK: break; default: inflateEnd(&zstream); return 0; } if (zstream.avail_out) break; out = realloc(out, 2*zstream.total_out); if (out == NULL) { inflateEnd(&zstream); return 0; } zstream.next_out = (unsigned char *)out + zstream.total_out; zstream.avail_out = zstream.total_out; } while (1); end: inflateEnd(&zstream); *out_ptr = out; return zstream.total_out; } struct gen_spec * gen_spec_load(const struct gen_device_info *devinfo) { struct parser_context ctx; void *buf; const void *zlib_data; void *text_data; uint32_t zlib_length = 0, text_length; memset(&ctx, 0, sizeof ctx); ctx.parser = XML_ParserCreate(NULL); XML_SetUserData(ctx.parser, &ctx); if (ctx.parser == NULL) { fprintf(stderr, "failed to create parser\n"); return NULL; } XML_SetElementHandler(ctx.parser, start_element, end_element); XML_SetCharacterDataHandler(ctx.parser, character_data); ctx.spec = xzalloc(sizeof(*ctx.spec)); zlib_data = devinfo_to_xml_data(devinfo, &zlib_length); text_length = zlib_inflate(zlib_data, zlib_length, &text_data); buf = XML_GetBuffer(ctx.parser, text_length); memcpy(buf, text_data, text_length); if (XML_ParseBuffer(ctx.parser, text_length, true) == 0) { fprintf(stderr, "Error parsing XML at line %ld col %ld byte %ld/%u: %s\n", XML_GetCurrentLineNumber(ctx.parser), XML_GetCurrentColumnNumber(ctx.parser), XML_GetCurrentByteIndex(ctx.parser), text_length, XML_ErrorString(XML_GetErrorCode(ctx.parser))); XML_ParserFree(ctx.parser); free(text_data); return NULL; } XML_ParserFree(ctx.parser); free(text_data); return ctx.spec; } struct gen_spec * gen_spec_load_from_path(const struct gen_device_info *devinfo, const char *path) { struct parser_context ctx; size_t len, filename_len = strlen(path) + 20; char *filename = malloc(filename_len); void *buf; FILE *input; len = snprintf(filename, filename_len, "%s/gen%i.xml", path, devinfo_to_gen(devinfo)); assert(len < filename_len); input = fopen(filename, "r"); if (input == NULL) { fprintf(stderr, "failed to open xml description\n"); free(filename); return NULL; } memset(&ctx, 0, sizeof ctx); ctx.parser = XML_ParserCreate(NULL); XML_SetUserData(ctx.parser, &ctx); if (ctx.parser == NULL) { fprintf(stderr, "failed to create parser\n"); fclose(input); free(filename); return NULL; } XML_SetElementHandler(ctx.parser, start_element, end_element); XML_SetCharacterDataHandler(ctx.parser, character_data); ctx.loc.filename = filename; ctx.spec = xzalloc(sizeof(*ctx.spec)); do { buf = XML_GetBuffer(ctx.parser, XML_BUFFER_SIZE); len = fread(buf, 1, XML_BUFFER_SIZE, input); if (len < 0) { fprintf(stderr, "fread: %m\n"); fclose(input); free(filename); return NULL; } if (XML_ParseBuffer(ctx.parser, len, len == 0) == 0) { fprintf(stderr, "Error parsing XML at line %ld col %ld: %s\n", XML_GetCurrentLineNumber(ctx.parser), XML_GetCurrentColumnNumber(ctx.parser), XML_ErrorString(XML_GetErrorCode(ctx.parser))); fclose(input); free(filename); return NULL; } } while (len > 0); XML_ParserFree(ctx.parser); fclose(input); free(filename); return ctx.spec; } struct gen_group * gen_spec_find_instruction(struct gen_spec *spec, const uint32_t *p) { for (int i = 0; i < spec->ncommands; i++) { uint32_t opcode = *p & spec->commands[i]->opcode_mask; if (opcode == spec->commands[i]->opcode) return spec->commands[i]; } return NULL; } int gen_group_get_length(struct gen_group *group, const uint32_t *p) { uint32_t h = p[0]; uint32_t type = field(h, 29, 31); switch (type) { case 0: /* MI */ { uint32_t opcode = field(h, 23, 28); if (opcode < 16) return 1; else return field(h, 0, 7) + 2; break; } case 3: /* Render */ { uint32_t subtype = field(h, 27, 28); switch (subtype) { case 0: return field(h, 0, 7) + 2; case 1: return 1; case 2: return 2; case 3: return field(h, 0, 7) + 2; } } } unreachable("bad opcode"); } void gen_field_iterator_init(struct gen_field_iterator *iter, struct gen_group *group, const uint32_t *p, bool print_colors) { iter->group = group; iter->p = p; iter->i = 0; iter->print_colors = print_colors; } static const char * gen_get_enum_name(struct gen_enum *e, uint64_t value) { for (int i = 0; i < e->nvalues; i++) { if (e->values[i]->value == value) { return e->values[i]->name; } } return NULL; } bool gen_field_iterator_next(struct gen_field_iterator *iter) { struct gen_field *f; union { uint64_t qw; float f; } v; if (iter->i == iter->group->nfields) return false; f = iter->group->fields[iter->i++]; iter->name = f->name; int index = f->start / 32; if ((f->end - f->start) > 32) v.qw = ((uint64_t) iter->p[index+1] << 32) | iter->p[index]; else v.qw = iter->p[index]; const char *enum_name = NULL; switch (f->type.kind) { case GEN_TYPE_UNKNOWN: case GEN_TYPE_INT: { uint64_t value = field(v.qw, f->start, f->end); snprintf(iter->value, sizeof(iter->value), "%"PRId64, value); enum_name = gen_get_enum_name(&f->inline_enum, value); break; } case GEN_TYPE_UINT: { uint64_t value = field(v.qw, f->start, f->end); snprintf(iter->value, sizeof(iter->value), "%"PRIu64, value); enum_name = gen_get_enum_name(&f->inline_enum, value); break; } case GEN_TYPE_BOOL: { const char *true_string = iter->print_colors ? "\e[0;35mtrue\e[0m" : "true"; snprintf(iter->value, sizeof(iter->value), "%s", field(v.qw, f->start, f->end) ? true_string : "false"); break; } case GEN_TYPE_FLOAT: snprintf(iter->value, sizeof(iter->value), "%f", v.f); break; case GEN_TYPE_ADDRESS: case GEN_TYPE_OFFSET: snprintf(iter->value, sizeof(iter->value), "0x%08"PRIx64, field_address(v.qw, f->start, f->end)); break; case GEN_TYPE_STRUCT: snprintf(iter->value, sizeof(iter->value), "", f->type.gen_struct->name, (f->start / 32)); break; case GEN_TYPE_UFIXED: snprintf(iter->value, sizeof(iter->value), "%f", (float) field(v.qw, f->start, f->end) / (1 << f->type.f)); break; case GEN_TYPE_SFIXED: /* FIXME: Sign extend extracted field. */ snprintf(iter->value, sizeof(iter->value), "%s", "foo"); break; case GEN_TYPE_MBO: break; case GEN_TYPE_ENUM: { uint64_t value = field(v.qw, f->start, f->end); snprintf(iter->value, sizeof(iter->value), "%"PRId64, value); enum_name = gen_get_enum_name(f->type.gen_enum, value); break; } } if (enum_name) { int length = strlen(iter->value); snprintf(iter->value + length, sizeof(iter->value) - length, " (%s)", enum_name); } return true; }