/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "aub_write.h" #include #include #include #include #include #include "drm-uapi/i915_drm.h" #include "intel_aub.h" #include "gen_context.h" #ifndef ALIGN #define ALIGN(x, y) (((x) + (y)-1) & ~((y)-1)) #endif #define MI_BATCH_NON_SECURE_I965 (1 << 8) #define min(a, b) ({ \ __typeof(a) _a = (a); \ __typeof(b) _b = (b); \ _a < _b ? _a : _b; \ }) #define max(a, b) ({ \ __typeof(a) _a = (a); \ __typeof(b) _b = (b); \ _a > _b ? _a : _b; \ }) static struct aub_context *aub_context_new(struct aub_file *aub, uint32_t new_id); static void mem_trace_memory_write_header_out(struct aub_file *aub, uint64_t addr, uint32_t len, uint32_t addr_space, const char *desc); static void __attribute__ ((format(__printf__, 2, 3))) fail_if(int cond, const char *format, ...) { va_list args; if (!cond) return; va_start(args, format); vfprintf(stderr, format, args); va_end(args); raise(SIGTRAP); } static inline uint32_t align_u32(uint32_t v, uint32_t a) { return (v + a - 1) & ~(a - 1); } static void aub_ppgtt_table_finish(struct aub_ppgtt_table *table, int level) { if (level == 1) return; for (unsigned i = 0; i < ARRAY_SIZE(table->subtables); i++) { if (table->subtables[i]) { aub_ppgtt_table_finish(table->subtables[i], level - 1); free(table->subtables[i]); } } } static void data_out(struct aub_file *aub, const void *data, size_t size) { if (size == 0) return; fail_if(fwrite(data, 1, size, aub->file) == 0, "Writing to output failed\n"); } static void dword_out(struct aub_file *aub, uint32_t data) { data_out(aub, &data, sizeof(data)); } static void write_execlists_header(struct aub_file *aub, const char *name) { char app_name[8 * 4]; int app_name_len, dwords; app_name_len = snprintf(app_name, sizeof(app_name), "PCI-ID=0x%X %s", aub->pci_id, name); app_name_len = ALIGN(app_name_len, sizeof(uint32_t)); dwords = 5 + app_name_len / sizeof(uint32_t); dword_out(aub, CMD_MEM_TRACE_VERSION | (dwords - 1)); dword_out(aub, AUB_MEM_TRACE_VERSION_FILE_VERSION); dword_out(aub, aub->devinfo.simulator_id << AUB_MEM_TRACE_VERSION_DEVICE_SHIFT); dword_out(aub, 0); /* version */ dword_out(aub, 0); /* version */ data_out(aub, app_name, app_name_len); } static void write_legacy_header(struct aub_file *aub, const char *name) { char app_name[8 * 4]; char comment[16]; int comment_len, comment_dwords, dwords; comment_len = snprintf(comment, sizeof(comment), "PCI-ID=0x%x", aub->pci_id); comment_dwords = ((comment_len + 3) / 4); /* Start with a (required) version packet. */ dwords = 13 + comment_dwords; dword_out(aub, CMD_AUB_HEADER | (dwords - 2)); dword_out(aub, (4 << AUB_HEADER_MAJOR_SHIFT) | (0 << AUB_HEADER_MINOR_SHIFT)); /* Next comes a 32-byte application name. */ strncpy(app_name, name, sizeof(app_name)); app_name[sizeof(app_name) - 1] = 0; data_out(aub, app_name, sizeof(app_name)); dword_out(aub, 0); /* timestamp */ dword_out(aub, 0); /* timestamp */ dword_out(aub, comment_len); data_out(aub, comment, comment_dwords * 4); } static void aub_write_header(struct aub_file *aub, const char *app_name) { if (aub_use_execlists(aub)) write_execlists_header(aub, app_name); else write_legacy_header(aub, app_name); } void aub_file_init(struct aub_file *aub, FILE *file, FILE *debug, uint16_t pci_id, const char *app_name) { memset(aub, 0, sizeof(*aub)); aub->verbose_log_file = debug; aub->file = file; aub->pci_id = pci_id; fail_if(!gen_get_device_info_from_pci_id(pci_id, &aub->devinfo), "failed to identify chipset=0x%x\n", pci_id); aub->addr_bits = aub->devinfo.gen >= 8 ? 48 : 32; aub_write_header(aub, app_name); aub->phys_addrs_allocator = 0; aub->ggtt_addrs_allocator = 0; aub->pml4.phys_addr = aub->phys_addrs_allocator++ << 12; mem_trace_memory_write_header_out(aub, aub->ggtt_addrs_allocator++, GEN8_PTE_SIZE, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY, "GGTT PT"); dword_out(aub, 1); dword_out(aub, 0); aub->next_context_handle = 1; aub_context_new(aub, 0); /* Default context */ } void aub_file_finish(struct aub_file *aub) { aub_ppgtt_table_finish(&aub->pml4, 4); fclose(aub->file); } uint32_t aub_gtt_size(struct aub_file *aub) { return NUM_PT_ENTRIES * (aub->addr_bits > 32 ? GEN8_PTE_SIZE : PTE_SIZE); } static void mem_trace_memory_write_header_out(struct aub_file *aub, uint64_t addr, uint32_t len, uint32_t addr_space, const char *desc) { uint32_t dwords = ALIGN(len, sizeof(uint32_t)) / sizeof(uint32_t); if (aub->verbose_log_file) { fprintf(aub->verbose_log_file, " MEM WRITE (0x%016" PRIx64 "-0x%016" PRIx64 ") %s\n", addr, addr + len, desc); } dword_out(aub, CMD_MEM_TRACE_MEMORY_WRITE | (5 + dwords - 1)); dword_out(aub, addr & 0xFFFFFFFF); /* addr lo */ dword_out(aub, addr >> 32); /* addr hi */ dword_out(aub, addr_space); /* gtt */ dword_out(aub, len); } static void register_write_out(struct aub_file *aub, uint32_t addr, uint32_t value) { uint32_t dwords = 1; if (aub->verbose_log_file) { fprintf(aub->verbose_log_file, " MMIO WRITE (0x%08x = 0x%08x)\n", addr, value); } dword_out(aub, CMD_MEM_TRACE_REGISTER_WRITE | (5 + dwords - 1)); dword_out(aub, addr); dword_out(aub, AUB_MEM_TRACE_REGISTER_SIZE_DWORD | AUB_MEM_TRACE_REGISTER_SPACE_MMIO); dword_out(aub, 0xFFFFFFFF); /* mask lo */ dword_out(aub, 0x00000000); /* mask hi */ dword_out(aub, value); } static void populate_ppgtt_table(struct aub_file *aub, struct aub_ppgtt_table *table, int start, int end, int level) { uint64_t entries[512] = {0}; int dirty_start = 512, dirty_end = 0; if (aub->verbose_log_file) { fprintf(aub->verbose_log_file, " PPGTT (0x%016" PRIx64 "), lvl %d, start: %x, end: %x\n", table->phys_addr, level, start, end); } for (int i = start; i <= end; i++) { if (!table->subtables[i]) { dirty_start = min(dirty_start, i); dirty_end = max(dirty_end, i); if (level == 1) { table->subtables[i] = (void *)(aub->phys_addrs_allocator++ << 12); if (aub->verbose_log_file) { fprintf(aub->verbose_log_file, " Adding entry: %x, phys_addr: 0x%016" PRIx64 "\n", i, (uint64_t)table->subtables[i]); } } else { table->subtables[i] = calloc(1, sizeof(struct aub_ppgtt_table)); table->subtables[i]->phys_addr = aub->phys_addrs_allocator++ << 12; if (aub->verbose_log_file) { fprintf(aub->verbose_log_file, " Adding entry: %x, phys_addr: 0x%016" PRIx64 "\n", i, table->subtables[i]->phys_addr); } } } entries[i] = 3 /* read/write | present */ | (level == 1 ? (uint64_t)table->subtables[i] : table->subtables[i]->phys_addr); } if (dirty_start <= dirty_end) { uint64_t write_addr = table->phys_addr + dirty_start * sizeof(uint64_t); uint64_t write_size = (dirty_end - dirty_start + 1) * sizeof(uint64_t); mem_trace_memory_write_header_out(aub, write_addr, write_size, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_PHYSICAL, "PPGTT update"); data_out(aub, entries + dirty_start, write_size); } } void aub_map_ppgtt(struct aub_file *aub, uint64_t start, uint64_t size) { uint64_t l4_start = start & 0xff8000000000; uint64_t l4_end = ((start + size - 1) | 0x007fffffffff) & 0xffffffffffff; #define L4_index(addr) (((addr) >> 39) & 0x1ff) #define L3_index(addr) (((addr) >> 30) & 0x1ff) #define L2_index(addr) (((addr) >> 21) & 0x1ff) #define L1_index(addr) (((addr) >> 12) & 0x1ff) #define L3_table(addr) (aub->pml4.subtables[L4_index(addr)]) #define L2_table(addr) (L3_table(addr)->subtables[L3_index(addr)]) #define L1_table(addr) (L2_table(addr)->subtables[L2_index(addr)]) if (aub->verbose_log_file) { fprintf(aub->verbose_log_file, " Mapping PPGTT address: 0x%" PRIx64 ", size: %" PRIu64"\n", start, size); } populate_ppgtt_table(aub, &aub->pml4, L4_index(l4_start), L4_index(l4_end), 4); for (uint64_t l4 = l4_start; l4 < l4_end; l4 += (1ULL << 39)) { uint64_t l3_start = max(l4, start & 0xffffc0000000); uint64_t l3_end = min(l4 + (1ULL << 39) - 1, ((start + size - 1) | 0x00003fffffff) & 0xffffffffffff); uint64_t l3_start_idx = L3_index(l3_start); uint64_t l3_end_idx = L3_index(l3_end); populate_ppgtt_table(aub, L3_table(l4), l3_start_idx, l3_end_idx, 3); for (uint64_t l3 = l3_start; l3 < l3_end; l3 += (1ULL << 30)) { uint64_t l2_start = max(l3, start & 0xffffffe00000); uint64_t l2_end = min(l3 + (1ULL << 30) - 1, ((start + size - 1) | 0x0000001fffff) & 0xffffffffffff); uint64_t l2_start_idx = L2_index(l2_start); uint64_t l2_end_idx = L2_index(l2_end); populate_ppgtt_table(aub, L2_table(l3), l2_start_idx, l2_end_idx, 2); for (uint64_t l2 = l2_start; l2 < l2_end; l2 += (1ULL << 21)) { uint64_t l1_start = max(l2, start & 0xfffffffff000); uint64_t l1_end = min(l2 + (1ULL << 21) - 1, ((start + size - 1) | 0x000000000fff) & 0xffffffffffff); uint64_t l1_start_idx = L1_index(l1_start); uint64_t l1_end_idx = L1_index(l1_end); populate_ppgtt_table(aub, L1_table(l2), l1_start_idx, l1_end_idx, 1); } } } } static uint64_t ppgtt_lookup(struct aub_file *aub, uint64_t ppgtt_addr) { return (uint64_t)L1_table(ppgtt_addr)->subtables[L1_index(ppgtt_addr)]; } static const struct engine { const char *name; enum drm_i915_gem_engine_class engine_class; uint32_t hw_class; uint32_t elsp_reg; uint32_t elsq_reg; uint32_t status_reg; uint32_t control_reg; } engines[] = { [I915_ENGINE_CLASS_RENDER] = { .name = "RENDER", .engine_class = I915_ENGINE_CLASS_RENDER, .hw_class = 1, .elsp_reg = EXECLIST_SUBMITPORT_RCSUNIT, .elsq_reg = EXECLIST_SQ_CONTENTS0_RCSUNIT, .status_reg = EXECLIST_STATUS_RCSUNIT, .control_reg = EXECLIST_CONTROL_RCSUNIT, }, [I915_ENGINE_CLASS_VIDEO] = { .name = "VIDEO", .engine_class = I915_ENGINE_CLASS_VIDEO, .hw_class = 3, .elsp_reg = EXECLIST_SUBMITPORT_VCSUNIT0, .elsq_reg = EXECLIST_SQ_CONTENTS0_VCSUNIT0, .status_reg = EXECLIST_STATUS_VCSUNIT0, .control_reg = EXECLIST_CONTROL_VCSUNIT0, }, [I915_ENGINE_CLASS_COPY] = { .name = "BLITTER", .engine_class = I915_ENGINE_CLASS_COPY, .hw_class = 2, .elsp_reg = EXECLIST_SUBMITPORT_BCSUNIT, .elsq_reg = EXECLIST_SQ_CONTENTS0_BCSUNIT, .status_reg = EXECLIST_STATUS_BCSUNIT, .control_reg = EXECLIST_CONTROL_BCSUNIT, }, }; static void aub_map_ggtt(struct aub_file *aub, uint64_t virt_addr, uint64_t size) { /* Makes the code below a bit simpler. In practice all of the write we * receive from error2aub are page aligned. */ assert(virt_addr % 4096 == 0); assert((aub->phys_addrs_allocator + size) < (1UL << 32)); /* GGTT PT */ uint32_t ggtt_ptes = DIV_ROUND_UP(size, 4096); uint64_t phys_addr = aub->phys_addrs_allocator << 12; aub->phys_addrs_allocator += ggtt_ptes; if (aub->verbose_log_file) { fprintf(aub->verbose_log_file, " Mapping GGTT address: 0x%" PRIx64 ", size: %" PRIu64" phys_addr=0x%" PRIx64 " entries=%u\n", virt_addr, size, phys_addr, ggtt_ptes); } mem_trace_memory_write_header_out(aub, (virt_addr >> 12) * GEN8_PTE_SIZE, ggtt_ptes * GEN8_PTE_SIZE, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY, "GGTT PT"); for (uint32_t i = 0; i < ggtt_ptes; i++) { dword_out(aub, 1 + phys_addr + i * 4096); dword_out(aub, 0); } } void aub_write_ggtt(struct aub_file *aub, uint64_t virt_addr, uint64_t size, const void *data) { /* Default setup assumes a 1 to 1 mapping between physical and virtual GGTT * addresses. This is somewhat incompatible with the aub_write_ggtt() * function. In practice it doesn't matter as the GGTT writes are used to * replace the default setup and we've taken care to setup the PML4 as the * top of the GGTT. */ assert(!aub->has_default_setup); aub_map_ggtt(aub, virt_addr, size); /* We write the GGTT buffer through the GGTT aub command rather than the * PHYSICAL aub command. This is because the Gen9 simulator seems to have 2 * different set of memory pools for GGTT and physical (probably someone * didn't really understand the concept?). */ static const char null_block[8 * 4096]; for (uint64_t offset = 0; offset < size; offset += 4096) { uint32_t block_size = min(4096, size - offset); mem_trace_memory_write_header_out(aub, virt_addr + offset, block_size, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT, "GGTT buffer"); data_out(aub, (char *) data + offset, block_size); /* Pad to a multiple of 4 bytes. */ data_out(aub, null_block, -block_size & 3); } } static const struct engine * engine_from_engine_class(enum drm_i915_gem_engine_class engine_class) { switch (engine_class) { case I915_ENGINE_CLASS_RENDER: case I915_ENGINE_CLASS_COPY: case I915_ENGINE_CLASS_VIDEO: return &engines[engine_class]; default: unreachable("unknown ring"); } } static void get_context_init(const struct gen_device_info *devinfo, const struct gen_context_parameters *params, enum drm_i915_gem_engine_class engine_class, uint32_t *data, uint32_t *size) { static const gen_context_init_t gen8_contexts[] = { [I915_ENGINE_CLASS_RENDER] = gen8_render_context_init, [I915_ENGINE_CLASS_COPY] = gen8_blitter_context_init, [I915_ENGINE_CLASS_VIDEO] = gen8_video_context_init, }; static const gen_context_init_t gen10_contexts[] = { [I915_ENGINE_CLASS_RENDER] = gen10_render_context_init, [I915_ENGINE_CLASS_COPY] = gen10_blitter_context_init, [I915_ENGINE_CLASS_VIDEO] = gen10_video_context_init, }; assert(devinfo->gen >= 8); if (devinfo->gen <= 10) gen8_contexts[engine_class](params, data, size); else gen10_contexts[engine_class](params, data, size); } static uint64_t alloc_ggtt_address(struct aub_file *aub, uint64_t size) { uint32_t ggtt_ptes = DIV_ROUND_UP(size, 4096); uint64_t addr = aub->ggtt_addrs_allocator << 12; aub->ggtt_addrs_allocator += ggtt_ptes; aub_map_ggtt(aub, addr, size); return addr; } static void write_hwsp(struct aub_file *aub, enum drm_i915_gem_engine_class engine_class) { uint32_t reg = 0; switch (engine_class) { case I915_ENGINE_CLASS_RENDER: reg = HWS_PGA_RCSUNIT; break; case I915_ENGINE_CLASS_COPY: reg = HWS_PGA_BCSUNIT; break; case I915_ENGINE_CLASS_VIDEO: reg = HWS_PGA_VCSUNIT0; break; default: unreachable("unknown ring"); } register_write_out(aub, reg, aub->engine_setup[engine_class].hwsp_addr); } static uint32_t write_engine_execlist_setup(struct aub_file *aub, uint32_t ctx_id, struct aub_hw_context *hw_ctx, enum drm_i915_gem_engine_class engine_class) { const struct engine *cs = engine_from_engine_class(engine_class); uint32_t context_size; get_context_init(&aub->devinfo, NULL, engine_class, NULL, &context_size); /* GGTT PT */ uint32_t total_size = RING_SIZE + PPHWSP_SIZE + context_size; char name[80]; uint64_t ggtt_addr = alloc_ggtt_address(aub, total_size); snprintf(name, sizeof(name), "%s (ctx id: %d) GGTT PT", cs->name, ctx_id); /* RING */ hw_ctx->ring_addr = ggtt_addr; snprintf(name, sizeof(name), "%s RING", cs->name); mem_trace_memory_write_header_out(aub, ggtt_addr, RING_SIZE, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT, name); for (uint32_t i = 0; i < RING_SIZE; i += sizeof(uint32_t)) dword_out(aub, 0); ggtt_addr += RING_SIZE; /* PPHWSP */ hw_ctx->pphwsp_addr = ggtt_addr; snprintf(name, sizeof(name), "%s PPHWSP", cs->name); mem_trace_memory_write_header_out(aub, ggtt_addr, PPHWSP_SIZE + context_size, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT, name); for (uint32_t i = 0; i < PPHWSP_SIZE; i += sizeof(uint32_t)) dword_out(aub, 0); /* CONTEXT */ struct gen_context_parameters params = { .ring_addr = hw_ctx->ring_addr, .ring_size = RING_SIZE, .pml4_addr = aub->pml4.phys_addr, }; uint32_t *context_data = calloc(1, context_size); get_context_init(&aub->devinfo, ¶ms, engine_class, context_data, &context_size); data_out(aub, context_data, context_size); free(context_data); hw_ctx->initialized = true; return total_size; } static void write_execlists_default_setup(struct aub_file *aub) { register_write_out(aub, GFX_MODE_RCSUNIT, 0x80008000 /* execlist enable */); register_write_out(aub, GFX_MODE_VCSUNIT0, 0x80008000 /* execlist enable */); register_write_out(aub, GFX_MODE_BCSUNIT, 0x80008000 /* execlist enable */); } static void write_legacy_default_setup(struct aub_file *aub) { uint32_t entry = 0x200003; /* Set up the GTT. The max we can handle is 64M */ dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK | ((aub->addr_bits > 32 ? 6 : 5) - 2)); dword_out(aub, AUB_TRACE_MEMTYPE_GTT_ENTRY | AUB_TRACE_TYPE_NOTYPE | AUB_TRACE_OP_DATA_WRITE); dword_out(aub, 0); /* subtype */ dword_out(aub, 0); /* offset */ dword_out(aub, aub_gtt_size(aub)); /* size */ if (aub->addr_bits > 32) dword_out(aub, 0); for (uint32_t i = 0; i < NUM_PT_ENTRIES; i++) { dword_out(aub, entry + 0x1000 * i); if (aub->addr_bits > 32) dword_out(aub, 0); } } /** * Sets up a default GGTT/PPGTT address space and execlists context (when * supported). */ void aub_write_default_setup(struct aub_file *aub) { if (aub_use_execlists(aub)) write_execlists_default_setup(aub); else write_legacy_default_setup(aub); aub->has_default_setup = true; } static struct aub_context * aub_context_new(struct aub_file *aub, uint32_t new_id) { assert(aub->num_contexts < MAX_CONTEXT_COUNT); struct aub_context *ctx = &aub->contexts[aub->num_contexts++]; memset(ctx, 0, sizeof(*ctx)); ctx->id = new_id; return ctx; } uint32_t aub_write_context_create(struct aub_file *aub, uint32_t *ctx_id) { uint32_t new_id = ctx_id ? *ctx_id : aub->next_context_handle; aub_context_new(aub, new_id); if (!ctx_id) aub->next_context_handle++; return new_id; } static struct aub_context * aub_context_find(struct aub_file *aub, uint32_t id) { for (int i = 0; i < aub->num_contexts; i++) { if (aub->contexts[i].id == id) return &aub->contexts[i]; } return NULL; } static struct aub_hw_context * aub_write_ensure_context(struct aub_file *aub, uint32_t ctx_id, enum drm_i915_gem_engine_class engine_class) { struct aub_context *ctx = aub_context_find(aub, ctx_id); assert(ctx != NULL); struct aub_hw_context *hw_ctx = &ctx->hw_contexts[engine_class]; if (!hw_ctx->initialized) write_engine_execlist_setup(aub, ctx->id, hw_ctx, engine_class); return hw_ctx; } static uint64_t get_context_descriptor(struct aub_file *aub, const struct engine *cs, struct aub_hw_context *hw_ctx) { return cs->hw_class | hw_ctx->pphwsp_addr | CONTEXT_FLAGS; } /** * Break up large objects into multiple writes. Otherwise a 128kb VBO * would overflow the 16 bits of size field in the packet header and * everything goes badly after that. */ void aub_write_trace_block(struct aub_file *aub, uint32_t type, void *virtual, uint32_t size, uint64_t gtt_offset) { uint32_t block_size; uint32_t subtype = 0; static const char null_block[8 * 4096]; for (uint32_t offset = 0; offset < size; offset += block_size) { block_size = min(8 * 4096, size - offset); if (aub_use_execlists(aub)) { block_size = min(4096, block_size); mem_trace_memory_write_header_out(aub, ppgtt_lookup(aub, gtt_offset + offset), block_size, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_PHYSICAL, "Trace Block"); } else { dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK | ((aub->addr_bits > 32 ? 6 : 5) - 2)); dword_out(aub, AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE); dword_out(aub, subtype); dword_out(aub, gtt_offset + offset); dword_out(aub, align_u32(block_size, 4)); if (aub->addr_bits > 32) dword_out(aub, (gtt_offset + offset) >> 32); } if (virtual) data_out(aub, ((char *) virtual) + offset, block_size); else data_out(aub, null_block, block_size); /* Pad to a multiple of 4 bytes. */ data_out(aub, null_block, -block_size & 3); } } static void aub_dump_ring_buffer_execlist(struct aub_file *aub, struct aub_hw_context *hw_ctx, const struct engine *cs, uint64_t batch_offset) { mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr, 16, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT, "RING MI_BATCH_BUFFER_START user"); dword_out(aub, AUB_MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965 | (3 - 2)); dword_out(aub, batch_offset & 0xFFFFFFFF); dword_out(aub, batch_offset >> 32); dword_out(aub, 0 /* MI_NOOP */); mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr + 8192 + 20, 4, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT, "RING BUFFER HEAD"); dword_out(aub, 0); /* RING_BUFFER_HEAD */ mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr + 8192 + 28, 4, AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT, "RING BUFFER TAIL"); dword_out(aub, 16); /* RING_BUFFER_TAIL */ } static void aub_dump_execlist(struct aub_file *aub, const struct engine *cs, uint64_t descriptor) { if (aub->devinfo.gen >= 11) { register_write_out(aub, cs->elsq_reg, descriptor & 0xFFFFFFFF); register_write_out(aub, cs->elsq_reg + sizeof(uint32_t), descriptor >> 32); register_write_out(aub, cs->control_reg, 1); } else { register_write_out(aub, cs->elsp_reg, 0); register_write_out(aub, cs->elsp_reg, 0); register_write_out(aub, cs->elsp_reg, descriptor >> 32); register_write_out(aub, cs->elsp_reg, descriptor & 0xFFFFFFFF); } dword_out(aub, CMD_MEM_TRACE_REGISTER_POLL | (5 + 1 - 1)); dword_out(aub, cs->status_reg); dword_out(aub, AUB_MEM_TRACE_REGISTER_SIZE_DWORD | AUB_MEM_TRACE_REGISTER_SPACE_MMIO); if (aub->devinfo.gen >= 11) { dword_out(aub, 0x00000001); /* mask lo */ dword_out(aub, 0x00000000); /* mask hi */ dword_out(aub, 0x00000001); } else { dword_out(aub, 0x00000010); /* mask lo */ dword_out(aub, 0x00000000); /* mask hi */ dword_out(aub, 0x00000000); } } static void aub_dump_ring_buffer_legacy(struct aub_file *aub, uint64_t batch_offset, uint64_t offset, enum drm_i915_gem_engine_class engine_class) { uint32_t ringbuffer[4096]; unsigned aub_mi_bbs_len; int ring_count = 0; static const int engine_class_to_ring[] = { [I915_ENGINE_CLASS_RENDER] = AUB_TRACE_TYPE_RING_PRB0, [I915_ENGINE_CLASS_VIDEO] = AUB_TRACE_TYPE_RING_PRB1, [I915_ENGINE_CLASS_COPY] = AUB_TRACE_TYPE_RING_PRB2, }; int ring = engine_class_to_ring[engine_class]; /* Make a ring buffer to execute our batchbuffer. */ memset(ringbuffer, 0, sizeof(ringbuffer)); aub_mi_bbs_len = aub->addr_bits > 32 ? 3 : 2; ringbuffer[ring_count] = AUB_MI_BATCH_BUFFER_START | (aub_mi_bbs_len - 2); aub_write_reloc(&aub->devinfo, &ringbuffer[ring_count + 1], batch_offset); ring_count += aub_mi_bbs_len; /* Write out the ring. This appears to trigger execution of * the ring in the simulator. */ dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK | ((aub->addr_bits > 32 ? 6 : 5) - 2)); dword_out(aub, AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE); dword_out(aub, 0); /* general/surface subtype */ dword_out(aub, offset); dword_out(aub, ring_count * 4); if (aub->addr_bits > 32) dword_out(aub, offset >> 32); data_out(aub, ringbuffer, ring_count * 4); } static void aub_write_ensure_hwsp(struct aub_file *aub, enum drm_i915_gem_engine_class engine_class) { uint64_t *hwsp_addr = &aub->engine_setup[engine_class].hwsp_addr; if (*hwsp_addr != 0) return; *hwsp_addr = alloc_ggtt_address(aub, 4096); write_hwsp(aub, engine_class); } void aub_write_exec(struct aub_file *aub, uint32_t ctx_id, uint64_t batch_addr, uint64_t offset, enum drm_i915_gem_engine_class engine_class) { const struct engine *cs = engine_from_engine_class(engine_class); if (aub_use_execlists(aub)) { struct aub_hw_context *hw_ctx = aub_write_ensure_context(aub, ctx_id, engine_class); uint64_t descriptor = get_context_descriptor(aub, cs, hw_ctx); aub_write_ensure_hwsp(aub, engine_class); aub_dump_ring_buffer_execlist(aub, hw_ctx, cs, batch_addr); aub_dump_execlist(aub, cs, descriptor); } else { /* Dump ring buffer */ aub_dump_ring_buffer_legacy(aub, batch_addr, offset, engine_class); } fflush(aub->file); } void aub_write_context_execlists(struct aub_file *aub, uint64_t context_addr, enum drm_i915_gem_engine_class engine_class) { const struct engine *cs = engine_from_engine_class(engine_class); uint64_t descriptor = ((uint64_t)1 << 62 | context_addr | CONTEXT_FLAGS); aub_dump_execlist(aub, cs, descriptor); }