/* * Copyright © 2018 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "common/gen_gem.h" #include "gen_perf.h" #include "gen_perf_regs.h" #include "perf/gen_perf_mdapi.h" #include "perf/gen_perf_metrics.h" #include "dev/gen_debug.h" #include "dev/gen_device_info.h" #include "util/bitscan.h" #include "util/mesa-sha1.h" #include "util/u_math.h" #define FILE_DEBUG_FLAG DEBUG_PERFMON #define MI_RPC_BO_SIZE 4096 #define MI_FREQ_START_OFFSET_BYTES (3072) #define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2) #define MI_FREQ_END_OFFSET_BYTES (3076) #define INTEL_MASK(high, low) (((1u<<((high)-(low)+1))-1)<<(low)) #define GEN7_RPSTAT1 0xA01C #define GEN7_RPSTAT1_CURR_GT_FREQ_SHIFT 7 #define GEN7_RPSTAT1_CURR_GT_FREQ_MASK INTEL_MASK(13, 7) #define GEN7_RPSTAT1_PREV_GT_FREQ_SHIFT 0 #define GEN7_RPSTAT1_PREV_GT_FREQ_MASK INTEL_MASK(6, 0) #define GEN9_RPSTAT0 0xA01C #define GEN9_RPSTAT0_CURR_GT_FREQ_SHIFT 23 #define GEN9_RPSTAT0_CURR_GT_FREQ_MASK INTEL_MASK(31, 23) #define GEN9_RPSTAT0_PREV_GT_FREQ_SHIFT 0 #define GEN9_RPSTAT0_PREV_GT_FREQ_MASK INTEL_MASK(8, 0) #define GEN6_SO_PRIM_STORAGE_NEEDED 0x2280 #define GEN7_SO_PRIM_STORAGE_NEEDED(n) (0x5240 + (n) * 8) #define GEN6_SO_NUM_PRIMS_WRITTEN 0x2288 #define GEN7_SO_NUM_PRIMS_WRITTEN(n) (0x5200 + (n) * 8) #define MAP_READ (1 << 0) #define MAP_WRITE (1 << 1) /** * Periodic OA samples are read() into these buffer structures via the * i915 perf kernel interface and appended to the * perf_ctx->sample_buffers linked list. When we process the * results of an OA metrics query we need to consider all the periodic * samples between the Begin and End MI_REPORT_PERF_COUNT command * markers. * * 'Periodic' is a simplification as there are other automatic reports * written by the hardware also buffered here. * * Considering three queries, A, B and C: * * Time ----> * ________________A_________________ * | | * | ________B_________ _____C___________ * | | | | | | * * And an illustration of sample buffers read over this time frame: * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ] * * These nodes may hold samples for query A: * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ] * * These nodes may hold samples for query B: * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ] * * These nodes may hold samples for query C: * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ] * * The illustration assumes we have an even distribution of periodic * samples so all nodes have the same size plotted against time: * * Note, to simplify code, the list is never empty. * * With overlapping queries we can see that periodic OA reports may * relate to multiple queries and care needs to be take to keep * track of sample buffers until there are no queries that might * depend on their contents. * * We use a node ref counting system where a reference ensures that a * node and all following nodes can't be freed/recycled until the * reference drops to zero. * * E.g. with a ref of one here: * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] * * These nodes could be freed or recycled ("reaped"): * [ 0 ][ 0 ] * * These must be preserved until the leading ref drops to zero: * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] * * When a query starts we take a reference on the current tail of * the list, knowing that no already-buffered samples can possibly * relate to the newly-started query. A pointer to this node is * also saved in the query object's ->oa.samples_head. * * E.g. starting query A while there are two nodes in .sample_buffers: * ________________A________ * | * * [ 0 ][ 1 ] * ^_______ Add a reference and store pointer to node in * A->oa.samples_head * * Moving forward to when the B query starts with no new buffer nodes: * (for reference, i915 perf reads() are only done when queries finish) * ________________A_______ * | ________B___ * | | * * [ 0 ][ 2 ] * ^_______ Add a reference and store pointer to * node in B->oa.samples_head * * Once a query is finished, after an OA query has become 'Ready', * once the End OA report has landed and after we we have processed * all the intermediate periodic samples then we drop the * ->oa.samples_head reference we took at the start. * * So when the B query has finished we have: * ________________A________ * | ______B___________ * | | | * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ] * ^_______ Drop B->oa.samples_head reference * * We still can't free these due to the A->oa.samples_head ref: * [ 1 ][ 0 ][ 0 ][ 0 ] * * When the A query finishes: (note there's a new ref for C's samples_head) * ________________A_________________ * | | * | _____C_________ * | | | * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ] * ^_______ Drop A->oa.samples_head reference * * And we can now reap these nodes up to the C->oa.samples_head: * [ X ][ X ][ X ][ X ] * keeping -> [ 1 ][ 0 ][ 0 ] * * We reap old sample buffers each time we finish processing an OA * query by iterating the sample_buffers list from the head until we * find a referenced node and stop. * * Reaped buffers move to a perfquery.free_sample_buffers list and * when we come to read() we first look to recycle a buffer from the * free_sample_buffers list before allocating a new buffer. */ struct oa_sample_buf { struct exec_node link; int refcount; int len; uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10]; uint32_t last_timestamp; }; /** * gen representation of a performance query object. * * NB: We want to keep this structure relatively lean considering that * applications may expect to allocate enough objects to be able to * query around all draw calls in a frame. */ struct gen_perf_query_object { const struct gen_perf_query_info *queryinfo; /* See query->kind to know which state below is in use... */ union { struct { /** * BO containing OA counter snapshots at query Begin/End time. */ void *bo; /** * Address of mapped of @bo */ void *map; /** * The MI_REPORT_PERF_COUNT command lets us specify a unique * ID that will be reflected in the resulting OA report * that's written by the GPU. This is the ID we're expecting * in the begin report and the the end report should be * @begin_report_id + 1. */ int begin_report_id; /** * Reference the head of the brw->perfquery.sample_buffers * list at the time that the query started (so we only need * to look at nodes after this point when looking for samples * related to this query) * * (See struct brw_oa_sample_buf description for more details) */ struct exec_node *samples_head; /** * false while in the unaccumulated_elements list, and set to * true when the final, end MI_RPC snapshot has been * accumulated. */ bool results_accumulated; /** * Frequency of the GT at begin and end of the query. */ uint64_t gt_frequency[2]; /** * Accumulated OA results between begin and end of the query. */ struct gen_perf_query_result result; } oa; struct { /** * BO containing starting and ending snapshots for the * statistics counters. */ void *bo; } pipeline_stats; }; }; struct gen_perf_context { struct gen_perf_config *perf; void * ctx; /* driver context (eg, brw_context) */ void * bufmgr; const struct gen_device_info *devinfo; uint32_t hw_ctx; int drm_fd; /* The i915 perf stream we open to setup + enable the OA counters */ int oa_stream_fd; /* An i915 perf stream fd gives exclusive access to the OA unit that will * report counter snapshots for a specific counter set/profile in a * specific layout/format so we can only start OA queries that are * compatible with the currently open fd... */ int current_oa_metrics_set_id; int current_oa_format; /* List of buffers containing OA reports */ struct exec_list sample_buffers; /* Cached list of empty sample buffers */ struct exec_list free_sample_buffers; int n_active_oa_queries; int n_active_pipeline_stats_queries; /* The number of queries depending on running OA counters which * extends beyond brw_end_perf_query() since we need to wait until * the last MI_RPC command has parsed by the GPU. * * Accurate accounting is important here as emitting an * MI_REPORT_PERF_COUNT command while the OA unit is disabled will * effectively hang the gpu. */ int n_oa_users; /* To help catch an spurious problem with the hardware or perf * forwarding samples, we emit each MI_REPORT_PERF_COUNT command * with a unique ID that we can explicitly check for... */ int next_query_start_report_id; /** * An array of queries whose results haven't yet been assembled * based on the data in buffer objects. * * These may be active, or have already ended. However, the * results have not been requested. */ struct gen_perf_query_object **unaccumulated; int unaccumulated_elements; int unaccumulated_array_size; /* The total number of query objects so we can relinquish * our exclusive access to perf if the application deletes * all of its objects. (NB: We only disable perf while * there are no active queries) */ int n_query_instances; }; const struct gen_perf_query_info* gen_perf_query_info(const struct gen_perf_query_object *query) { return query->queryinfo; } struct gen_perf_context * gen_perf_new_context(void *parent) { struct gen_perf_context *ctx = rzalloc(parent, struct gen_perf_context); if (! ctx) fprintf(stderr, "%s: failed to alloc context\n", __func__); return ctx; } struct gen_perf_config * gen_perf_config(struct gen_perf_context *ctx) { return ctx->perf; } struct gen_perf_query_object * gen_perf_new_query(struct gen_perf_context *perf_ctx, unsigned query_index) { const struct gen_perf_query_info *query = &perf_ctx->perf->queries[query_index]; struct gen_perf_query_object *obj = calloc(1, sizeof(struct gen_perf_query_object)); if (!obj) return NULL; obj->queryinfo = query; perf_ctx->n_query_instances++; return obj; } int gen_perf_active_queries(struct gen_perf_context *perf_ctx, const struct gen_perf_query_info *query) { assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0); switch (query->kind) { case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_RAW: return perf_ctx->n_active_oa_queries; break; case GEN_PERF_QUERY_TYPE_PIPELINE: return perf_ctx->n_active_pipeline_stats_queries; break; default: unreachable("Unknown query type"); break; } } static inline uint64_t to_user_pointer(void *ptr) { return (uintptr_t) ptr; } static bool get_sysfs_dev_dir(struct gen_perf_config *perf, int fd) { struct stat sb; int min, maj; DIR *drmdir; struct dirent *drm_entry; int len; perf->sysfs_dev_dir[0] = '\0'; if (fstat(fd, &sb)) { DBG("Failed to stat DRM fd\n"); return false; } maj = major(sb.st_rdev); min = minor(sb.st_rdev); if (!S_ISCHR(sb.st_mode)) { DBG("DRM fd is not a character device as expected\n"); return false; } len = snprintf(perf->sysfs_dev_dir, sizeof(perf->sysfs_dev_dir), "/sys/dev/char/%d:%d/device/drm", maj, min); if (len < 0 || len >= sizeof(perf->sysfs_dev_dir)) { DBG("Failed to concatenate sysfs path to drm device\n"); return false; } drmdir = opendir(perf->sysfs_dev_dir); if (!drmdir) { DBG("Failed to open %s: %m\n", perf->sysfs_dev_dir); return false; } while ((drm_entry = readdir(drmdir))) { if ((drm_entry->d_type == DT_DIR || drm_entry->d_type == DT_LNK) && strncmp(drm_entry->d_name, "card", 4) == 0) { len = snprintf(perf->sysfs_dev_dir, sizeof(perf->sysfs_dev_dir), "/sys/dev/char/%d:%d/device/drm/%s", maj, min, drm_entry->d_name); closedir(drmdir); if (len < 0 || len >= sizeof(perf->sysfs_dev_dir)) return false; else return true; } } closedir(drmdir); DBG("Failed to find cardX directory under /sys/dev/char/%d:%d/device/drm\n", maj, min); return false; } static bool read_file_uint64(const char *file, uint64_t *val) { char buf[32]; int fd, n; fd = open(file, 0); if (fd < 0) return false; while ((n = read(fd, buf, sizeof (buf) - 1)) < 0 && errno == EINTR); close(fd); if (n < 0) return false; buf[n] = '\0'; *val = strtoull(buf, NULL, 0); return true; } static bool read_sysfs_drm_device_file_uint64(struct gen_perf_config *perf, const char *file, uint64_t *value) { char buf[512]; int len; len = snprintf(buf, sizeof(buf), "%s/%s", perf->sysfs_dev_dir, file); if (len < 0 || len >= sizeof(buf)) { DBG("Failed to concatenate sys filename to read u64 from\n"); return false; } return read_file_uint64(buf, value); } static inline struct gen_perf_query_info * append_query_info(struct gen_perf_config *perf, int max_counters) { struct gen_perf_query_info *query; perf->queries = reralloc(perf, perf->queries, struct gen_perf_query_info, ++perf->n_queries); query = &perf->queries[perf->n_queries - 1]; memset(query, 0, sizeof(*query)); if (max_counters > 0) { query->max_counters = max_counters; query->counters = rzalloc_array(perf, struct gen_perf_query_counter, max_counters); } return query; } static void register_oa_config(struct gen_perf_config *perf, const struct gen_perf_query_info *query, uint64_t config_id) { struct gen_perf_query_info *registered_query = append_query_info(perf, 0); *registered_query = *query; registered_query->oa_metrics_set_id = config_id; DBG("metric set registered: id = %" PRIu64", guid = %s\n", registered_query->oa_metrics_set_id, query->guid); } static void enumerate_sysfs_metrics(struct gen_perf_config *perf) { DIR *metricsdir = NULL; struct dirent *metric_entry; char buf[256]; int len; len = snprintf(buf, sizeof(buf), "%s/metrics", perf->sysfs_dev_dir); if (len < 0 || len >= sizeof(buf)) { DBG("Failed to concatenate path to sysfs metrics/ directory\n"); return; } metricsdir = opendir(buf); if (!metricsdir) { DBG("Failed to open %s: %m\n", buf); return; } while ((metric_entry = readdir(metricsdir))) { struct hash_entry *entry; if ((metric_entry->d_type != DT_DIR && metric_entry->d_type != DT_LNK) || metric_entry->d_name[0] == '.') continue; DBG("metric set: %s\n", metric_entry->d_name); entry = _mesa_hash_table_search(perf->oa_metrics_table, metric_entry->d_name); if (entry) { uint64_t id; if (!gen_perf_load_metric_id(perf, metric_entry->d_name, &id)) { DBG("Failed to read metric set id from %s: %m", buf); continue; } register_oa_config(perf, (const struct gen_perf_query_info *)entry->data, id); } else DBG("metric set not known by mesa (skipping)\n"); } closedir(metricsdir); } static bool kernel_has_dynamic_config_support(struct gen_perf_config *perf, int fd) { uint64_t invalid_config_id = UINT64_MAX; return gen_ioctl(fd, DRM_IOCTL_I915_PERF_REMOVE_CONFIG, &invalid_config_id) < 0 && errno == ENOENT; } static int i915_query_items(struct gen_perf_config *perf, int fd, struct drm_i915_query_item *items, uint32_t n_items) { struct drm_i915_query q = { .num_items = n_items, .items_ptr = to_user_pointer(items), }; return gen_ioctl(fd, DRM_IOCTL_I915_QUERY, &q); } static bool i915_query_perf_config_supported(struct gen_perf_config *perf, int fd) { struct drm_i915_query_item item = { .query_id = DRM_I915_QUERY_PERF_CONFIG, .flags = DRM_I915_QUERY_PERF_CONFIG_LIST, }; return i915_query_items(perf, fd, &item, 1) == 0 && item.length > 0; } static bool i915_query_perf_config_data(struct gen_perf_config *perf, int fd, const char *guid, struct drm_i915_perf_oa_config *config) { struct { struct drm_i915_query_perf_config query; struct drm_i915_perf_oa_config config; } item_data; struct drm_i915_query_item item = { .query_id = DRM_I915_QUERY_PERF_CONFIG, .flags = DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, .data_ptr = to_user_pointer(&item_data), .length = sizeof(item_data), }; memset(&item_data, 0, sizeof(item_data)); memcpy(item_data.query.uuid, guid, sizeof(item_data.query.uuid)); memcpy(&item_data.config, config, sizeof(item_data.config)); if (!(i915_query_items(perf, fd, &item, 1) == 0 && item.length > 0)) return false; memcpy(config, &item_data.config, sizeof(item_data.config)); return true; } bool gen_perf_load_metric_id(struct gen_perf_config *perf_cfg, const char *guid, uint64_t *metric_id) { char config_path[280]; snprintf(config_path, sizeof(config_path), "%s/metrics/%s/id", perf_cfg->sysfs_dev_dir, guid); /* Don't recreate already loaded configs. */ return read_file_uint64(config_path, metric_id); } static uint64_t i915_add_config(struct gen_perf_config *perf, int fd, const struct gen_perf_registers *config, const char *guid) { struct drm_i915_perf_oa_config i915_config = { 0, }; memcpy(i915_config.uuid, guid, sizeof(i915_config.uuid)); i915_config.n_mux_regs = config->n_mux_regs; i915_config.mux_regs_ptr = to_user_pointer(config->mux_regs); i915_config.n_boolean_regs = config->n_b_counter_regs; i915_config.boolean_regs_ptr = to_user_pointer(config->b_counter_regs); i915_config.n_flex_regs = config->n_flex_regs; i915_config.flex_regs_ptr = to_user_pointer(config->flex_regs); int ret = gen_ioctl(fd, DRM_IOCTL_I915_PERF_ADD_CONFIG, &i915_config); return ret > 0 ? ret : 0; } static void init_oa_configs(struct gen_perf_config *perf, int fd) { hash_table_foreach(perf->oa_metrics_table, entry) { const struct gen_perf_query_info *query = entry->data; uint64_t config_id; if (gen_perf_load_metric_id(perf, query->guid, &config_id)) { DBG("metric set: %s (already loaded)\n", query->guid); register_oa_config(perf, query, config_id); continue; } int ret = i915_add_config(perf, fd, &query->config, query->guid); if (ret < 0) { DBG("Failed to load \"%s\" (%s) metrics set in kernel: %s\n", query->name, query->guid, strerror(errno)); continue; } register_oa_config(perf, query, ret); DBG("metric set: %s (added)\n", query->guid); } } static void compute_topology_builtins(struct gen_perf_config *perf, const struct gen_device_info *devinfo) { perf->sys_vars.slice_mask = devinfo->slice_masks; perf->sys_vars.n_eu_slices = devinfo->num_slices; for (int i = 0; i < sizeof(devinfo->subslice_masks[i]); i++) { perf->sys_vars.n_eu_sub_slices += __builtin_popcount(devinfo->subslice_masks[i]); } for (int i = 0; i < sizeof(devinfo->eu_masks); i++) perf->sys_vars.n_eus += __builtin_popcount(devinfo->eu_masks[i]); perf->sys_vars.eu_threads_count = devinfo->num_thread_per_eu; /* The subslice mask builtin contains bits for all slices. Prior to Gen11 * it had groups of 3bits for each slice, on Gen11 it's 8bits for each * slice. * * Ideally equations would be updated to have a slice/subslice query * function/operator. */ perf->sys_vars.subslice_mask = 0; int bits_per_subslice = devinfo->gen == 11 ? 8 : 3; for (int s = 0; s < util_last_bit(devinfo->slice_masks); s++) { for (int ss = 0; ss < (devinfo->subslice_slice_stride * 8); ss++) { if (gen_device_info_subslice_available(devinfo, s, ss)) perf->sys_vars.subslice_mask |= 1ULL << (s * bits_per_subslice + ss); } } } static bool init_oa_sys_vars(struct gen_perf_config *perf, const struct gen_device_info *devinfo) { uint64_t min_freq_mhz = 0, max_freq_mhz = 0; if (!read_sysfs_drm_device_file_uint64(perf, "gt_min_freq_mhz", &min_freq_mhz)) return false; if (!read_sysfs_drm_device_file_uint64(perf, "gt_max_freq_mhz", &max_freq_mhz)) return false; memset(&perf->sys_vars, 0, sizeof(perf->sys_vars)); perf->sys_vars.gt_min_freq = min_freq_mhz * 1000000; perf->sys_vars.gt_max_freq = max_freq_mhz * 1000000; perf->sys_vars.timestamp_frequency = devinfo->timestamp_frequency; perf->sys_vars.revision = devinfo->revision; compute_topology_builtins(perf, devinfo); return true; } typedef void (*perf_register_oa_queries_t)(struct gen_perf_config *); static perf_register_oa_queries_t get_register_queries_function(const struct gen_device_info *devinfo) { if (devinfo->is_haswell) return gen_oa_register_queries_hsw; if (devinfo->is_cherryview) return gen_oa_register_queries_chv; if (devinfo->is_broadwell) return gen_oa_register_queries_bdw; if (devinfo->is_broxton) return gen_oa_register_queries_bxt; if (devinfo->is_skylake) { if (devinfo->gt == 2) return gen_oa_register_queries_sklgt2; if (devinfo->gt == 3) return gen_oa_register_queries_sklgt3; if (devinfo->gt == 4) return gen_oa_register_queries_sklgt4; } if (devinfo->is_kabylake) { if (devinfo->gt == 2) return gen_oa_register_queries_kblgt2; if (devinfo->gt == 3) return gen_oa_register_queries_kblgt3; } if (devinfo->is_geminilake) return gen_oa_register_queries_glk; if (devinfo->is_coffeelake) { if (devinfo->gt == 2) return gen_oa_register_queries_cflgt2; if (devinfo->gt == 3) return gen_oa_register_queries_cflgt3; } if (devinfo->is_cannonlake) return gen_oa_register_queries_cnl; if (devinfo->gen == 11) return gen_oa_register_queries_icl; return NULL; } static inline void add_stat_reg(struct gen_perf_query_info *query, uint32_t reg, uint32_t numerator, uint32_t denominator, const char *name, const char *description) { struct gen_perf_query_counter *counter; assert(query->n_counters < query->max_counters); counter = &query->counters[query->n_counters]; counter->name = name; counter->desc = description; counter->type = GEN_PERF_COUNTER_TYPE_RAW; counter->data_type = GEN_PERF_COUNTER_DATA_TYPE_UINT64; counter->offset = sizeof(uint64_t) * query->n_counters; counter->pipeline_stat.reg = reg; counter->pipeline_stat.numerator = numerator; counter->pipeline_stat.denominator = denominator; query->n_counters++; } static inline void add_basic_stat_reg(struct gen_perf_query_info *query, uint32_t reg, const char *name) { add_stat_reg(query, reg, 1, 1, name, name); } static void load_pipeline_statistic_metrics(struct gen_perf_config *perf_cfg, const struct gen_device_info *devinfo) { struct gen_perf_query_info *query = append_query_info(perf_cfg, MAX_STAT_COUNTERS); query->kind = GEN_PERF_QUERY_TYPE_PIPELINE; query->name = "Pipeline Statistics Registers"; add_basic_stat_reg(query, IA_VERTICES_COUNT, "N vertices submitted"); add_basic_stat_reg(query, IA_PRIMITIVES_COUNT, "N primitives submitted"); add_basic_stat_reg(query, VS_INVOCATION_COUNT, "N vertex shader invocations"); if (devinfo->gen == 6) { add_stat_reg(query, GEN6_SO_PRIM_STORAGE_NEEDED, 1, 1, "SO_PRIM_STORAGE_NEEDED", "N geometry shader stream-out primitives (total)"); add_stat_reg(query, GEN6_SO_NUM_PRIMS_WRITTEN, 1, 1, "SO_NUM_PRIMS_WRITTEN", "N geometry shader stream-out primitives (written)"); } else { add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(0), 1, 1, "SO_PRIM_STORAGE_NEEDED (Stream 0)", "N stream-out (stream 0) primitives (total)"); add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(1), 1, 1, "SO_PRIM_STORAGE_NEEDED (Stream 1)", "N stream-out (stream 1) primitives (total)"); add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(2), 1, 1, "SO_PRIM_STORAGE_NEEDED (Stream 2)", "N stream-out (stream 2) primitives (total)"); add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(3), 1, 1, "SO_PRIM_STORAGE_NEEDED (Stream 3)", "N stream-out (stream 3) primitives (total)"); add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(0), 1, 1, "SO_NUM_PRIMS_WRITTEN (Stream 0)", "N stream-out (stream 0) primitives (written)"); add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(1), 1, 1, "SO_NUM_PRIMS_WRITTEN (Stream 1)", "N stream-out (stream 1) primitives (written)"); add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(2), 1, 1, "SO_NUM_PRIMS_WRITTEN (Stream 2)", "N stream-out (stream 2) primitives (written)"); add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(3), 1, 1, "SO_NUM_PRIMS_WRITTEN (Stream 3)", "N stream-out (stream 3) primitives (written)"); } add_basic_stat_reg(query, HS_INVOCATION_COUNT, "N TCS shader invocations"); add_basic_stat_reg(query, DS_INVOCATION_COUNT, "N TES shader invocations"); add_basic_stat_reg(query, GS_INVOCATION_COUNT, "N geometry shader invocations"); add_basic_stat_reg(query, GS_PRIMITIVES_COUNT, "N geometry shader primitives emitted"); add_basic_stat_reg(query, CL_INVOCATION_COUNT, "N primitives entering clipping"); add_basic_stat_reg(query, CL_PRIMITIVES_COUNT, "N primitives leaving clipping"); if (devinfo->is_haswell || devinfo->gen == 8) { add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4, "N fragment shader invocations", "N fragment shader invocations"); } else { add_basic_stat_reg(query, PS_INVOCATION_COUNT, "N fragment shader invocations"); } add_basic_stat_reg(query, PS_DEPTH_COUNT, "N z-pass fragments"); if (devinfo->gen >= 7) { add_basic_stat_reg(query, CS_INVOCATION_COUNT, "N compute shader invocations"); } query->data_size = sizeof(uint64_t) * query->n_counters; } static bool load_oa_metrics(struct gen_perf_config *perf, int fd, const struct gen_device_info *devinfo) { perf_register_oa_queries_t oa_register = get_register_queries_function(devinfo); bool i915_perf_oa_available = false; struct stat sb; perf->i915_query_supported = i915_query_perf_config_supported(perf, fd); /* The existence of this sysctl parameter implies the kernel supports * the i915 perf interface. */ if (stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0) { /* If _paranoid == 1 then on Gen8+ we won't be able to access OA * metrics unless running as root. */ if (devinfo->is_haswell) i915_perf_oa_available = true; else { uint64_t paranoid = 1; read_file_uint64("/proc/sys/dev/i915/perf_stream_paranoid", ¶noid); if (paranoid == 0 || geteuid() == 0) i915_perf_oa_available = true; } } if (!i915_perf_oa_available || !oa_register || !get_sysfs_dev_dir(perf, fd) || !init_oa_sys_vars(perf, devinfo)) return false; perf->oa_metrics_table = _mesa_hash_table_create(perf, _mesa_key_hash_string, _mesa_key_string_equal); /* Index all the metric sets mesa knows about before looking to see what * the kernel is advertising. */ oa_register(perf); if (likely((INTEL_DEBUG & DEBUG_NO_OACONFIG) == 0) && kernel_has_dynamic_config_support(perf, fd)) init_oa_configs(perf, fd); else enumerate_sysfs_metrics(perf); return true; } struct gen_perf_registers * gen_perf_load_configuration(struct gen_perf_config *perf_cfg, int fd, const char *guid) { if (!perf_cfg->i915_query_supported) return NULL; struct drm_i915_perf_oa_config i915_config = { 0, }; if (!i915_query_perf_config_data(perf_cfg, fd, guid, &i915_config)) return NULL; struct gen_perf_registers *config = rzalloc(NULL, struct gen_perf_registers); config->n_flex_regs = i915_config.n_flex_regs; config->flex_regs = rzalloc_array(config, struct gen_perf_query_register_prog, config->n_flex_regs); config->n_mux_regs = i915_config.n_mux_regs; config->mux_regs = rzalloc_array(config, struct gen_perf_query_register_prog, config->n_mux_regs); config->n_b_counter_regs = i915_config.n_boolean_regs; config->b_counter_regs = rzalloc_array(config, struct gen_perf_query_register_prog, config->n_b_counter_regs); /* * struct gen_perf_query_register_prog maps exactly to the tuple of * (register offset, register value) returned by the i915. */ i915_config.flex_regs_ptr = to_user_pointer(config->flex_regs); i915_config.mux_regs_ptr = to_user_pointer(config->mux_regs); i915_config.boolean_regs_ptr = to_user_pointer(config->b_counter_regs); if (!i915_query_perf_config_data(perf_cfg, fd, guid, &i915_config)) { ralloc_free(config); return NULL; } return config; } uint64_t gen_perf_store_configuration(struct gen_perf_config *perf_cfg, int fd, const struct gen_perf_registers *config, const char *guid) { if (guid) return i915_add_config(perf_cfg, fd, config, guid); struct mesa_sha1 sha1_ctx; _mesa_sha1_init(&sha1_ctx); if (config->flex_regs) { _mesa_sha1_update(&sha1_ctx, config->flex_regs, sizeof(config->flex_regs[0]) * config->n_flex_regs); } if (config->mux_regs) { _mesa_sha1_update(&sha1_ctx, config->mux_regs, sizeof(config->mux_regs[0]) * config->n_mux_regs); } if (config->b_counter_regs) { _mesa_sha1_update(&sha1_ctx, config->b_counter_regs, sizeof(config->b_counter_regs[0]) * config->n_b_counter_regs); } uint8_t hash[20]; _mesa_sha1_final(&sha1_ctx, hash); char formatted_hash[41]; _mesa_sha1_format(formatted_hash, hash); char generated_guid[37]; snprintf(generated_guid, sizeof(generated_guid), "%.8s-%.4s-%.4s-%.4s-%.12s", &formatted_hash[0], &formatted_hash[8], &formatted_hash[8 + 4], &formatted_hash[8 + 4 + 4], &formatted_hash[8 + 4 + 4 + 4]); /* Check if already present. */ uint64_t id; if (gen_perf_load_metric_id(perf_cfg, generated_guid, &id)) return id; return i915_add_config(perf_cfg, fd, config, generated_guid); } /* Accumulate 32bits OA counters */ static inline void accumulate_uint32(const uint32_t *report0, const uint32_t *report1, uint64_t *accumulator) { *accumulator += (uint32_t)(*report1 - *report0); } /* Accumulate 40bits OA counters */ static inline void accumulate_uint40(int a_index, const uint32_t *report0, const uint32_t *report1, uint64_t *accumulator) { const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40); const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40); uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32; uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32; uint64_t value0 = report0[a_index + 4] | high0; uint64_t value1 = report1[a_index + 4] | high1; uint64_t delta; if (value0 > value1) delta = (1ULL << 40) + value1 - value0; else delta = value1 - value0; *accumulator += delta; } static void gen8_read_report_clock_ratios(const uint32_t *report, uint64_t *slice_freq_hz, uint64_t *unslice_freq_hz) { /* The lower 16bits of the RPT_ID field of the OA reports contains a * snapshot of the bits coming from the RP_FREQ_NORMAL register and is * divided this way : * * RPT_ID[31:25]: RP_FREQ_NORMAL[20:14] (low squashed_slice_clock_frequency) * RPT_ID[10:9]: RP_FREQ_NORMAL[22:21] (high squashed_slice_clock_frequency) * RPT_ID[8:0]: RP_FREQ_NORMAL[31:23] (squashed_unslice_clock_frequency) * * RP_FREQ_NORMAL[31:23]: Software Unslice Ratio Request * Multiple of 33.33MHz 2xclk (16 MHz 1xclk) * * RP_FREQ_NORMAL[22:14]: Software Slice Ratio Request * Multiple of 33.33MHz 2xclk (16 MHz 1xclk) */ uint32_t unslice_freq = report[0] & 0x1ff; uint32_t slice_freq_low = (report[0] >> 25) & 0x7f; uint32_t slice_freq_high = (report[0] >> 9) & 0x3; uint32_t slice_freq = slice_freq_low | (slice_freq_high << 7); *slice_freq_hz = slice_freq * 16666667ULL; *unslice_freq_hz = unslice_freq * 16666667ULL; } void gen_perf_query_result_read_frequencies(struct gen_perf_query_result *result, const struct gen_device_info *devinfo, const uint32_t *start, const uint32_t *end) { /* Slice/Unslice frequency is only available in the OA reports when the * "Disable OA reports due to clock ratio change" field in * OA_DEBUG_REGISTER is set to 1. This is how the kernel programs this * global register (see drivers/gpu/drm/i915/i915_perf.c) * * Documentation says this should be available on Gen9+ but experimentation * shows that Gen8 reports similar values, so we enable it there too. */ if (devinfo->gen < 8) return; gen8_read_report_clock_ratios(start, &result->slice_frequency[0], &result->unslice_frequency[0]); gen8_read_report_clock_ratios(end, &result->slice_frequency[1], &result->unslice_frequency[1]); } void gen_perf_query_result_accumulate(struct gen_perf_query_result *result, const struct gen_perf_query_info *query, const uint32_t *start, const uint32_t *end) { int i, idx = 0; result->hw_id = start[2]; result->reports_accumulated++; switch (query->oa_format) { case I915_OA_FORMAT_A32u40_A4u32_B8_C8: accumulate_uint32(start + 1, end + 1, result->accumulator + idx++); /* timestamp */ accumulate_uint32(start + 3, end + 3, result->accumulator + idx++); /* clock */ /* 32x 40bit A counters... */ for (i = 0; i < 32; i++) accumulate_uint40(i, start, end, result->accumulator + idx++); /* 4x 32bit A counters... */ for (i = 0; i < 4; i++) accumulate_uint32(start + 36 + i, end + 36 + i, result->accumulator + idx++); /* 8x 32bit B counters + 8x 32bit C counters... */ for (i = 0; i < 16; i++) accumulate_uint32(start + 48 + i, end + 48 + i, result->accumulator + idx++); break; case I915_OA_FORMAT_A45_B8_C8: accumulate_uint32(start + 1, end + 1, result->accumulator); /* timestamp */ for (i = 0; i < 61; i++) accumulate_uint32(start + 3 + i, end + 3 + i, result->accumulator + 1 + i); break; default: unreachable("Can't accumulate OA counters in unknown format"); } } void gen_perf_query_result_clear(struct gen_perf_query_result *result) { memset(result, 0, sizeof(*result)); result->hw_id = 0xffffffff; /* invalid */ } static void register_mdapi_statistic_query(struct gen_perf_config *perf_cfg, const struct gen_device_info *devinfo) { if (!(devinfo->gen >= 7 && devinfo->gen <= 11)) return; struct gen_perf_query_info *query = append_query_info(perf_cfg, MAX_STAT_COUNTERS); query->kind = GEN_PERF_QUERY_TYPE_PIPELINE; query->name = "Intel_Raw_Pipeline_Statistics_Query"; /* The order has to match mdapi_pipeline_metrics. */ add_basic_stat_reg(query, IA_VERTICES_COUNT, "N vertices submitted"); add_basic_stat_reg(query, IA_PRIMITIVES_COUNT, "N primitives submitted"); add_basic_stat_reg(query, VS_INVOCATION_COUNT, "N vertex shader invocations"); add_basic_stat_reg(query, GS_INVOCATION_COUNT, "N geometry shader invocations"); add_basic_stat_reg(query, GS_PRIMITIVES_COUNT, "N geometry shader primitives emitted"); add_basic_stat_reg(query, CL_INVOCATION_COUNT, "N primitives entering clipping"); add_basic_stat_reg(query, CL_PRIMITIVES_COUNT, "N primitives leaving clipping"); if (devinfo->is_haswell || devinfo->gen == 8) { add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4, "N fragment shader invocations", "N fragment shader invocations"); } else { add_basic_stat_reg(query, PS_INVOCATION_COUNT, "N fragment shader invocations"); } add_basic_stat_reg(query, HS_INVOCATION_COUNT, "N TCS shader invocations"); add_basic_stat_reg(query, DS_INVOCATION_COUNT, "N TES shader invocations"); if (devinfo->gen >= 7) { add_basic_stat_reg(query, CS_INVOCATION_COUNT, "N compute shader invocations"); } if (devinfo->gen >= 10) { /* Reuse existing CS invocation register until we can expose this new * one. */ add_basic_stat_reg(query, CS_INVOCATION_COUNT, "Reserved1"); } query->data_size = sizeof(uint64_t) * query->n_counters; } static void fill_mdapi_perf_query_counter(struct gen_perf_query_info *query, const char *name, uint32_t data_offset, uint32_t data_size, enum gen_perf_counter_data_type data_type) { struct gen_perf_query_counter *counter = &query->counters[query->n_counters]; assert(query->n_counters <= query->max_counters); counter->name = name; counter->desc = "Raw counter value"; counter->type = GEN_PERF_COUNTER_TYPE_RAW; counter->data_type = data_type; counter->offset = data_offset; query->n_counters++; assert(counter->offset + gen_perf_query_counter_get_size(counter) <= query->data_size); } #define MDAPI_QUERY_ADD_COUNTER(query, struct_name, field_name, type_name) \ fill_mdapi_perf_query_counter(query, #field_name, \ (uint8_t *) &struct_name.field_name - \ (uint8_t *) &struct_name, \ sizeof(struct_name.field_name), \ GEN_PERF_COUNTER_DATA_TYPE_##type_name) #define MDAPI_QUERY_ADD_ARRAY_COUNTER(ctx, query, struct_name, field_name, idx, type_name) \ fill_mdapi_perf_query_counter(query, \ ralloc_asprintf(ctx, "%s%i", #field_name, idx), \ (uint8_t *) &struct_name.field_name[idx] - \ (uint8_t *) &struct_name, \ sizeof(struct_name.field_name[0]), \ GEN_PERF_COUNTER_DATA_TYPE_##type_name) static void register_mdapi_oa_query(const struct gen_device_info *devinfo, struct gen_perf_config *perf) { struct gen_perf_query_info *query = NULL; /* MDAPI requires different structures for pretty much every generation * (right now we have definitions for gen 7 to 11). */ if (!(devinfo->gen >= 7 && devinfo->gen <= 11)) return; switch (devinfo->gen) { case 7: { query = append_query_info(perf, 1 + 45 + 16 + 7); query->oa_format = I915_OA_FORMAT_A45_B8_C8; struct gen7_mdapi_metrics metric_data; query->data_size = sizeof(metric_data); MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64); for (int i = 0; i < ARRAY_SIZE(metric_data.ACounters); i++) { MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query, metric_data, ACounters, i, UINT64); } for (int i = 0; i < ARRAY_SIZE(metric_data.NOACounters); i++) { MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query, metric_data, NOACounters, i, UINT64); } MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32); break; } case 8: { query = append_query_info(perf, 2 + 36 + 16 + 16); query->oa_format = I915_OA_FORMAT_A32u40_A4u32_B8_C8; struct gen8_mdapi_metrics metric_data; query->data_size = sizeof(metric_data); MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, GPUTicks, UINT64); for (int i = 0; i < ARRAY_SIZE(metric_data.OaCntr); i++) { MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query, metric_data, OaCntr, i, UINT64); } for (int i = 0; i < ARRAY_SIZE(metric_data.NoaCntr); i++) { MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query, metric_data, NoaCntr, i, UINT64); } MDAPI_QUERY_ADD_COUNTER(query, metric_data, BeginTimestamp, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved1, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved2, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved3, UINT32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, OverrunOccured, BOOL32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerUser, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerDriver, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, SliceFrequency, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, UnsliceFrequency, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32); break; } case 9: case 10: case 11: { query = append_query_info(perf, 2 + 36 + 16 + 16 + 16 + 2); query->oa_format = I915_OA_FORMAT_A32u40_A4u32_B8_C8; struct gen9_mdapi_metrics metric_data; query->data_size = sizeof(metric_data); MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, GPUTicks, UINT64); for (int i = 0; i < ARRAY_SIZE(metric_data.OaCntr); i++) { MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query, metric_data, OaCntr, i, UINT64); } for (int i = 0; i < ARRAY_SIZE(metric_data.NoaCntr); i++) { MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query, metric_data, NoaCntr, i, UINT64); } MDAPI_QUERY_ADD_COUNTER(query, metric_data, BeginTimestamp, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved1, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved2, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved3, UINT32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, OverrunOccured, BOOL32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerUser, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerDriver, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, SliceFrequency, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, UnsliceFrequency, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64); MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32); for (int i = 0; i < ARRAY_SIZE(metric_data.UserCntr); i++) { MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query, metric_data, UserCntr, i, UINT64); } MDAPI_QUERY_ADD_COUNTER(query, metric_data, UserCntrCfgId, UINT32); MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved4, UINT32); break; } default: unreachable("Unsupported gen"); break; } query->kind = GEN_PERF_QUERY_TYPE_RAW; query->name = "Intel_Raw_Hardware_Counters_Set_0_Query"; query->guid = GEN_PERF_QUERY_GUID_MDAPI; { /* Accumulation buffer offsets copied from an actual query... */ const struct gen_perf_query_info *copy_query = &perf->queries[0]; query->gpu_time_offset = copy_query->gpu_time_offset; query->gpu_clock_offset = copy_query->gpu_clock_offset; query->a_offset = copy_query->a_offset; query->b_offset = copy_query->b_offset; query->c_offset = copy_query->c_offset; } } static uint64_t get_metric_id(struct gen_perf_config *perf, const struct gen_perf_query_info *query) { /* These queries are know not to ever change, their config ID has been * loaded upon the first query creation. No need to look them up again. */ if (query->kind == GEN_PERF_QUERY_TYPE_OA) return query->oa_metrics_set_id; assert(query->kind == GEN_PERF_QUERY_TYPE_RAW); /* Raw queries can be reprogrammed up by an external application/library. * When a raw query is used for the first time it's id is set to a value != * 0. When it stops being used the id returns to 0. No need to reload the * ID when it's already loaded. */ if (query->oa_metrics_set_id != 0) { DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n", query->name, query->guid, query->oa_metrics_set_id); return query->oa_metrics_set_id; } struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *)query; if (!gen_perf_load_metric_id(perf, query->guid, &raw_query->oa_metrics_set_id)) { DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid); raw_query->oa_metrics_set_id = 1ULL; } else { DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n", query->name, query->guid, query->oa_metrics_set_id); } return query->oa_metrics_set_id; } static struct oa_sample_buf * get_free_sample_buf(struct gen_perf_context *perf_ctx) { struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers); struct oa_sample_buf *buf; if (node) buf = exec_node_data(struct oa_sample_buf, node, link); else { buf = ralloc_size(perf_ctx->perf, sizeof(*buf)); exec_node_init(&buf->link); buf->refcount = 0; buf->len = 0; } return buf; } static void reap_old_sample_buffers(struct gen_perf_context *perf_ctx) { struct exec_node *tail_node = exec_list_get_tail(&perf_ctx->sample_buffers); struct oa_sample_buf *tail_buf = exec_node_data(struct oa_sample_buf, tail_node, link); /* Remove all old, unreferenced sample buffers walking forward from * the head of the list, except always leave at least one node in * the list so we always have a node to reference when we Begin * a new query. */ foreach_list_typed_safe(struct oa_sample_buf, buf, link, &perf_ctx->sample_buffers) { if (buf->refcount == 0 && buf != tail_buf) { exec_node_remove(&buf->link); exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link); } else return; } } static void free_sample_bufs(struct gen_perf_context *perf_ctx) { foreach_list_typed_safe(struct oa_sample_buf, buf, link, &perf_ctx->free_sample_buffers) ralloc_free(buf); exec_list_make_empty(&perf_ctx->free_sample_buffers); } /******************************************************************************/ /** * Emit MI_STORE_REGISTER_MEM commands to capture all of the * pipeline statistics for the performance query object. */ static void snapshot_statistics_registers(void *context, struct gen_perf_config *perf, struct gen_perf_query_object *obj, uint32_t offset_in_bytes) { const struct gen_perf_query_info *query = obj->queryinfo; const int n_counters = query->n_counters; for (int i = 0; i < n_counters; i++) { const struct gen_perf_query_counter *counter = &query->counters[i]; assert(counter->data_type == GEN_PERF_COUNTER_DATA_TYPE_UINT64); perf->vtbl.store_register_mem64(context, obj->pipeline_stats.bo, counter->pipeline_stat.reg, offset_in_bytes + i * sizeof(uint64_t)); } } static void gen_perf_close(struct gen_perf_context *perfquery, const struct gen_perf_query_info *query) { if (perfquery->oa_stream_fd != -1) { close(perfquery->oa_stream_fd); perfquery->oa_stream_fd = -1; } if (query->kind == GEN_PERF_QUERY_TYPE_RAW) { struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *) query; raw_query->oa_metrics_set_id = 0; } } static bool gen_perf_open(struct gen_perf_context *perf_ctx, int metrics_set_id, int report_format, int period_exponent, int drm_fd, uint32_t ctx_id) { uint64_t properties[] = { /* Single context sampling */ DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id, /* Include OA reports in samples */ DRM_I915_PERF_PROP_SAMPLE_OA, true, /* OA unit configuration */ DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id, DRM_I915_PERF_PROP_OA_FORMAT, report_format, DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent, }; struct drm_i915_perf_open_param param = { .flags = I915_PERF_FLAG_FD_CLOEXEC | I915_PERF_FLAG_FD_NONBLOCK | I915_PERF_FLAG_DISABLED, .num_properties = ARRAY_SIZE(properties) / 2, .properties_ptr = (uintptr_t) properties, }; int fd = gen_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, ¶m); if (fd == -1) { DBG("Error opening gen perf OA stream: %m\n"); return false; } perf_ctx->oa_stream_fd = fd; perf_ctx->current_oa_metrics_set_id = metrics_set_id; perf_ctx->current_oa_format = report_format; return true; } static bool inc_n_users(struct gen_perf_context *perf_ctx) { if (perf_ctx->n_oa_users == 0 && gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0) { return false; } ++perf_ctx->n_oa_users; return true; } static void dec_n_users(struct gen_perf_context *perf_ctx) { /* Disabling the i915 perf stream will effectively disable the OA * counters. Note it's important to be sure there are no outstanding * MI_RPC commands at this point since they could stall the CS * indefinitely once OACONTROL is disabled. */ --perf_ctx->n_oa_users; if (perf_ctx->n_oa_users == 0 && gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0) { DBG("WARNING: Error disabling gen perf stream: %m\n"); } } void gen_perf_init_metrics(struct gen_perf_config *perf_cfg, const struct gen_device_info *devinfo, int drm_fd) { load_pipeline_statistic_metrics(perf_cfg, devinfo); register_mdapi_statistic_query(perf_cfg, devinfo); if (load_oa_metrics(perf_cfg, drm_fd, devinfo)) register_mdapi_oa_query(devinfo, perf_cfg); } void gen_perf_init_context(struct gen_perf_context *perf_ctx, struct gen_perf_config *perf_cfg, void * ctx, /* driver context (eg, brw_context) */ void * bufmgr, /* eg brw_bufmgr */ const struct gen_device_info *devinfo, uint32_t hw_ctx, int drm_fd) { perf_ctx->perf = perf_cfg; perf_ctx->ctx = ctx; perf_ctx->bufmgr = bufmgr; perf_ctx->drm_fd = drm_fd; perf_ctx->hw_ctx = hw_ctx; perf_ctx->devinfo = devinfo; perf_ctx->unaccumulated = ralloc_array(ctx, struct gen_perf_query_object *, 2); perf_ctx->unaccumulated_elements = 0; perf_ctx->unaccumulated_array_size = 2; exec_list_make_empty(&perf_ctx->sample_buffers); exec_list_make_empty(&perf_ctx->free_sample_buffers); /* It's convenient to guarantee that this linked list of sample * buffers is never empty so we add an empty head so when we * Begin an OA query we can always take a reference on a buffer * in this list. */ struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx); exec_list_push_head(&perf_ctx->sample_buffers, &buf->link); perf_ctx->oa_stream_fd = -1; perf_ctx->next_query_start_report_id = 1000; } /** * Add a query to the global list of "unaccumulated queries." * * Queries are tracked here until all the associated OA reports have * been accumulated via accumulate_oa_reports() after the end * MI_REPORT_PERF_COUNT has landed in query->oa.bo. */ static void add_to_unaccumulated_query_list(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *obj) { if (perf_ctx->unaccumulated_elements >= perf_ctx->unaccumulated_array_size) { perf_ctx->unaccumulated_array_size *= 1.5; perf_ctx->unaccumulated = reralloc(perf_ctx->ctx, perf_ctx->unaccumulated, struct gen_perf_query_object *, perf_ctx->unaccumulated_array_size); } perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj; } bool gen_perf_begin_query(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query) { struct gen_perf_config *perf_cfg = perf_ctx->perf; const struct gen_perf_query_info *queryinfo = query->queryinfo; /* XXX: We have to consider that the command parser unit that parses batch * buffer commands and is used to capture begin/end counter snapshots isn't * implicitly synchronized with what's currently running across other GPU * units (such as the EUs running shaders) that the performance counters are * associated with. * * The intention of performance queries is to measure the work associated * with commands between the begin/end delimiters and so for that to be the * case we need to explicitly synchronize the parsing of commands to capture * Begin/End counter snapshots with what's running across other parts of the * GPU. * * When the command parser reaches a Begin marker it effectively needs to * drain everything currently running on the GPU until the hardware is idle * before capturing the first snapshot of counters - otherwise the results * would also be measuring the effects of earlier commands. * * When the command parser reaches an End marker it needs to stall until * everything currently running on the GPU has finished before capturing the * end snapshot - otherwise the results won't be a complete representation * of the work. * * Theoretically there could be opportunities to minimize how much of the * GPU pipeline is drained, or that we stall for, when we know what specific * units the performance counters being queried relate to but we don't * currently attempt to be clever here. * * Note: with our current simple approach here then for back-to-back queries * we will redundantly emit duplicate commands to synchronize the command * streamer with the rest of the GPU pipeline, but we assume that in HW the * second synchronization is effectively a NOOP. * * N.B. The final results are based on deltas of counters between (inside) * Begin/End markers so even though the total wall clock time of the * workload is stretched by larger pipeline bubbles the bubbles themselves * are generally invisible to the query results. Whether that's a good or a * bad thing depends on the use case. For a lower real-time impact while * capturing metrics then periodic sampling may be a better choice than * INTEL_performance_query. * * * This is our Begin synchronization point to drain current work on the * GPU before we capture our first counter snapshot... */ perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx); switch (queryinfo->kind) { case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_RAW: { /* Opening an i915 perf stream implies exclusive access to the OA unit * which will generate counter reports for a specific counter set with a * specific layout/format so we can't begin any OA based queries that * require a different counter set or format unless we get an opportunity * to close the stream and open a new one... */ uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo); if (perf_ctx->oa_stream_fd != -1 && perf_ctx->current_oa_metrics_set_id != metric_id) { if (perf_ctx->n_oa_users != 0) { DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n", perf_ctx->current_oa_metrics_set_id, metric_id); return false; } else gen_perf_close(perf_ctx, queryinfo); } /* If the OA counters aren't already on, enable them. */ if (perf_ctx->oa_stream_fd == -1) { const struct gen_device_info *devinfo = perf_ctx->devinfo; /* The period_exponent gives a sampling period as follows: * sample_period = timestamp_period * 2^(period_exponent + 1) * * The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or * ~83ns (GEN8/9). * * The counter overflow period is derived from the EuActive counter * which reads a counter that increments by the number of clock * cycles multiplied by the number of EUs. It can be calculated as: * * 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2) * * (E.g. 40 EUs @ 1GHz = ~53ms) * * We select a sampling period inferior to that overflow period to * ensure we cannot see more than 1 counter overflow, otherwise we * could loose information. */ int a_counter_in_bits = 32; if (devinfo->gen >= 8) a_counter_in_bits = 40; uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus * /* drop 1GHz freq to have units in nanoseconds */ 2); DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n", overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus); int period_exponent = 0; uint64_t prev_sample_period, next_sample_period; for (int e = 0; e < 30; e++) { prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency; next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency; /* Take the previous sampling period, lower than the overflow * period. */ if (prev_sample_period < overflow_period && next_sample_period > overflow_period) period_exponent = e + 1; } if (period_exponent == 0) { DBG("WARNING: enable to find a sampling exponent\n"); return false; } DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent, prev_sample_period / 1000000ul); if (!gen_perf_open(perf_ctx, metric_id, queryinfo->oa_format, period_exponent, perf_ctx->drm_fd, perf_ctx->hw_ctx)) return false; } else { assert(perf_ctx->current_oa_metrics_set_id == metric_id && perf_ctx->current_oa_format == queryinfo->oa_format); } if (!inc_n_users(perf_ctx)) { DBG("WARNING: Error enabling i915 perf stream: %m\n"); return false; } if (query->oa.bo) { perf_cfg->vtbl.bo_unreference(query->oa.bo); query->oa.bo = NULL; } query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr, "perf. query OA MI_RPC bo", MI_RPC_BO_SIZE); #ifdef DEBUG /* Pre-filling the BO helps debug whether writes landed. */ void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE); memset(map, 0x80, MI_RPC_BO_SIZE); perf_cfg->vtbl.bo_unmap(query->oa.bo); #endif query->oa.begin_report_id = perf_ctx->next_query_start_report_id; perf_ctx->next_query_start_report_id += 2; /* We flush the batchbuffer here to minimize the chances that MI_RPC * delimiting commands end up in different batchbuffers. If that's the * case, the measurement will include the time it takes for the kernel * scheduler to load a new request into the hardware. This is manifested in * tools like frameretrace by spikes in the "GPU Core Clocks" counter. */ perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__); /* Take a starting OA counter snapshot. */ perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 0, query->oa.begin_report_id); perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, query->oa.bo, MI_FREQ_START_OFFSET_BYTES); ++perf_ctx->n_active_oa_queries; /* No already-buffered samples can possibly be associated with this query * so create a marker within the list of sample buffers enabling us to * easily ignore earlier samples when processing this query after * completion. */ assert(!exec_list_is_empty(&perf_ctx->sample_buffers)); query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers); struct oa_sample_buf *buf = exec_node_data(struct oa_sample_buf, query->oa.samples_head, link); /* This reference will ensure that future/following sample * buffers (that may relate to this query) can't be freed until * this drops to zero. */ buf->refcount++; gen_perf_query_result_clear(&query->oa.result); query->oa.results_accumulated = false; add_to_unaccumulated_query_list(perf_ctx, query); break; } case GEN_PERF_QUERY_TYPE_PIPELINE: if (query->pipeline_stats.bo) { perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo); query->pipeline_stats.bo = NULL; } query->pipeline_stats.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr, "perf. query pipeline stats bo", STATS_BO_SIZE); /* Take starting snapshots. */ snapshot_statistics_registers(perf_ctx->ctx , perf_cfg, query, 0); ++perf_ctx->n_active_pipeline_stats_queries; break; default: unreachable("Unknown query type"); break; } return true; } void gen_perf_end_query(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query) { struct gen_perf_config *perf_cfg = perf_ctx->perf; /* Ensure that the work associated with the queried commands will have * finished before taking our query end counter readings. * * For more details see comment in brw_begin_perf_query for * corresponding flush. */ perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx); switch (query->queryinfo->kind) { case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_RAW: /* NB: It's possible that the query will have already been marked * as 'accumulated' if an error was seen while reading samples * from perf. In this case we mustn't try and emit a closing * MI_RPC command in case the OA unit has already been disabled */ if (!query->oa.results_accumulated) { /* Take an ending OA counter snapshot. */ perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, query->oa.bo, MI_FREQ_END_OFFSET_BYTES); perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, MI_RPC_BO_END_OFFSET_BYTES, query->oa.begin_report_id + 1); } --perf_ctx->n_active_oa_queries; /* NB: even though the query has now ended, it can't be accumulated * until the end MI_REPORT_PERF_COUNT snapshot has been written * to query->oa.bo */ break; case GEN_PERF_QUERY_TYPE_PIPELINE: snapshot_statistics_registers(perf_ctx->ctx, perf_cfg, query, STATS_BO_END_OFFSET_BYTES); --perf_ctx->n_active_pipeline_stats_queries; break; default: unreachable("Unknown query type"); break; } } enum OaReadStatus { OA_READ_STATUS_ERROR, OA_READ_STATUS_UNFINISHED, OA_READ_STATUS_FINISHED, }; static enum OaReadStatus read_oa_samples_until(struct gen_perf_context *perf_ctx, uint32_t start_timestamp, uint32_t end_timestamp) { struct exec_node *tail_node = exec_list_get_tail(&perf_ctx->sample_buffers); struct oa_sample_buf *tail_buf = exec_node_data(struct oa_sample_buf, tail_node, link); uint32_t last_timestamp = tail_buf->last_timestamp; while (1) { struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx); uint32_t offset; int len; while ((len = read(perf_ctx->oa_stream_fd, buf->buf, sizeof(buf->buf))) < 0 && errno == EINTR) ; if (len <= 0) { exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link); if (len < 0) { if (errno == EAGAIN) return ((last_timestamp - start_timestamp) >= (end_timestamp - start_timestamp)) ? OA_READ_STATUS_FINISHED : OA_READ_STATUS_UNFINISHED; else { DBG("Error reading i915 perf samples: %m\n"); } } else DBG("Spurious EOF reading i915 perf samples\n"); return OA_READ_STATUS_ERROR; } buf->len = len; exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link); /* Go through the reports and update the last timestamp. */ offset = 0; while (offset < buf->len) { const struct drm_i915_perf_record_header *header = (const struct drm_i915_perf_record_header *) &buf->buf[offset]; uint32_t *report = (uint32_t *) (header + 1); if (header->type == DRM_I915_PERF_RECORD_SAMPLE) last_timestamp = report[1]; offset += header->size; } buf->last_timestamp = last_timestamp; } unreachable("not reached"); return OA_READ_STATUS_ERROR; } /** * Try to read all the reports until either the delimiting timestamp * or an error arises. */ static bool read_oa_samples_for_query(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query, void *current_batch) { uint32_t *start; uint32_t *last; uint32_t *end; struct gen_perf_config *perf_cfg = perf_ctx->perf; /* We need the MI_REPORT_PERF_COUNT to land before we can start * accumulate. */ assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) && !perf_cfg->vtbl.bo_busy(query->oa.bo)); /* Map the BO once here and let accumulate_oa_reports() unmap * it. */ if (query->oa.map == NULL) query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ); start = last = query->oa.map; end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; if (start[0] != query->oa.begin_report_id) { DBG("Spurious start report id=%"PRIu32"\n", start[0]); return true; } if (end[0] != (query->oa.begin_report_id + 1)) { DBG("Spurious end report id=%"PRIu32"\n", end[0]); return true; } /* Read the reports until the end timestamp. */ switch (read_oa_samples_until(perf_ctx, start[1], end[1])) { case OA_READ_STATUS_ERROR: /* Fallthrough and let accumulate_oa_reports() deal with the * error. */ case OA_READ_STATUS_FINISHED: return true; case OA_READ_STATUS_UNFINISHED: return false; } unreachable("invalid read status"); return false; } void gen_perf_wait_query(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query, void *current_batch) { struct gen_perf_config *perf_cfg = perf_ctx->perf; struct brw_bo *bo = NULL; switch (query->queryinfo->kind) { case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_RAW: bo = query->oa.bo; break; case GEN_PERF_QUERY_TYPE_PIPELINE: bo = query->pipeline_stats.bo; break; default: unreachable("Unknown query type"); break; } if (bo == NULL) return; /* If the current batch references our results bo then we need to * flush first... */ if (perf_cfg->vtbl.batch_references(current_batch, bo)) perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__); perf_cfg->vtbl.bo_wait_rendering(bo); /* Due to a race condition between the OA unit signaling report * availability and the report actually being written into memory, * we need to wait for all the reports to come in before we can * read them. */ if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA || query->queryinfo->kind == GEN_PERF_QUERY_TYPE_RAW) { while (!read_oa_samples_for_query(perf_ctx, query, current_batch)) ; } } bool gen_perf_is_query_ready(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query, void *current_batch) { struct gen_perf_config *perf_cfg = perf_ctx->perf; switch (query->queryinfo->kind) { case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_RAW: return (query->oa.results_accumulated || (query->oa.bo && !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) && !perf_cfg->vtbl.bo_busy(query->oa.bo) && read_oa_samples_for_query(perf_ctx, query, current_batch))); case GEN_PERF_QUERY_TYPE_PIPELINE: return (query->pipeline_stats.bo && !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) && !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo)); default: unreachable("Unknown query type"); break; } return false; } /** * Remove a query from the global list of unaccumulated queries once * after successfully accumulating the OA reports associated with the * query in accumulate_oa_reports() or when discarding unwanted query * results. */ static void drop_from_unaccumulated_query_list(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query) { for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) { if (perf_ctx->unaccumulated[i] == query) { int last_elt = --perf_ctx->unaccumulated_elements; if (i == last_elt) perf_ctx->unaccumulated[i] = NULL; else { perf_ctx->unaccumulated[i] = perf_ctx->unaccumulated[last_elt]; } break; } } /* Drop our samples_head reference so that associated periodic * sample data buffers can potentially be reaped if they aren't * referenced by any other queries... */ struct oa_sample_buf *buf = exec_node_data(struct oa_sample_buf, query->oa.samples_head, link); assert(buf->refcount > 0); buf->refcount--; query->oa.samples_head = NULL; reap_old_sample_buffers(perf_ctx); } /* In general if we see anything spurious while accumulating results, * we don't try and continue accumulating the current query, hoping * for the best, we scrap anything outstanding, and then hope for the * best with new queries. */ static void discard_all_queries(struct gen_perf_context *perf_ctx) { while (perf_ctx->unaccumulated_elements) { struct gen_perf_query_object *query = perf_ctx->unaccumulated[0]; query->oa.results_accumulated = true; drop_from_unaccumulated_query_list(perf_ctx, query); dec_n_users(perf_ctx); } } /** * Accumulate raw OA counter values based on deltas between pairs of * OA reports. * * Accumulation starts from the first report captured via * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the * last MI_RPC report requested by brw_end_perf_query(). Between these * two reports there may also some number of periodically sampled OA * reports collected via the i915 perf interface - depending on the * duration of the query. * * These periodic snapshots help to ensure we handle counter overflow * correctly by being frequent enough to ensure we don't miss multiple * overflows of a counter between snapshots. For Gen8+ the i915 perf * snapshots provide the extra context-switch reports that let us * subtract out the progress of counters associated with other * contexts running on the system. */ static void accumulate_oa_reports(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query) { const struct gen_device_info *devinfo = perf_ctx->devinfo; uint32_t *start; uint32_t *last; uint32_t *end; struct exec_node *first_samples_node; bool in_ctx = true; int out_duration = 0; assert(query->oa.map != NULL); start = last = query->oa.map; end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; if (start[0] != query->oa.begin_report_id) { DBG("Spurious start report id=%"PRIu32"\n", start[0]); goto error; } if (end[0] != (query->oa.begin_report_id + 1)) { DBG("Spurious end report id=%"PRIu32"\n", end[0]); goto error; } /* See if we have any periodic reports to accumulate too... */ /* N.B. The oa.samples_head was set when the query began and * pointed to the tail of the perf_ctx->sample_buffers list at * the time the query started. Since the buffer existed before the * first MI_REPORT_PERF_COUNT command was emitted we therefore know * that no data in this particular node's buffer can possibly be * associated with the query - so skip ahead one... */ first_samples_node = query->oa.samples_head->next; foreach_list_typed_from(struct oa_sample_buf, buf, link, &perf_ctx.sample_buffers, first_samples_node) { int offset = 0; while (offset < buf->len) { const struct drm_i915_perf_record_header *header = (const struct drm_i915_perf_record_header *)(buf->buf + offset); assert(header->size != 0); assert(header->size <= buf->len); offset += header->size; switch (header->type) { case DRM_I915_PERF_RECORD_SAMPLE: { uint32_t *report = (uint32_t *)(header + 1); bool add = true; /* Ignore reports that come before the start marker. * (Note: takes care to allow overflow of 32bit timestamps) */ if (gen_device_info_timebase_scale(devinfo, report[1] - start[1]) > 5000000000) { continue; } /* Ignore reports that come after the end marker. * (Note: takes care to allow overflow of 32bit timestamps) */ if (gen_device_info_timebase_scale(devinfo, report[1] - end[1]) <= 5000000000) { goto end; } /* For Gen8+ since the counters continue while other * contexts are running we need to discount any unrelated * deltas. The hardware automatically generates a report * on context switch which gives us a new reference point * to continuing adding deltas from. * * For Haswell we can rely on the HW to stop the progress * of OA counters while any other context is acctive. */ if (devinfo->gen >= 8) { if (in_ctx && report[2] != query->oa.result.hw_id) { DBG("i915 perf: Switch AWAY (observed by ID change)\n"); in_ctx = false; out_duration = 0; } else if (in_ctx == false && report[2] == query->oa.result.hw_id) { DBG("i915 perf: Switch TO\n"); in_ctx = true; /* From experimentation in IGT, we found that the OA unit * might label some report as "idle" (using an invalid * context ID), right after a report for a given context. * Deltas generated by those reports actually belong to the * previous context, even though they're not labelled as * such. * * We didn't *really* Switch AWAY in the case that we e.g. * saw a single periodic report while idle... */ if (out_duration >= 1) add = false; } else if (in_ctx) { assert(report[2] == query->oa.result.hw_id); DBG("i915 perf: Continuation IN\n"); } else { assert(report[2] != query->oa.result.hw_id); DBG("i915 perf: Continuation OUT\n"); add = false; out_duration++; } } if (add) { gen_perf_query_result_accumulate(&query->oa.result, query->queryinfo, last, report); } last = report; break; } case DRM_I915_PERF_RECORD_OA_BUFFER_LOST: DBG("i915 perf: OA error: all reports lost\n"); goto error; case DRM_I915_PERF_RECORD_OA_REPORT_LOST: DBG("i915 perf: OA report lost\n"); break; } } } end: gen_perf_query_result_accumulate(&query->oa.result, query->queryinfo, last, end); query->oa.results_accumulated = true; drop_from_unaccumulated_query_list(perf_ctx, query); dec_n_users(perf_ctx); return; error: discard_all_queries(perf_ctx); } void gen_perf_delete_query(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query) { struct gen_perf_config *perf_cfg = perf_ctx->perf; /* We can assume that the frontend waits for a query to complete * before ever calling into here, so we don't have to worry about * deleting an in-flight query object. */ switch (query->queryinfo->kind) { case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_RAW: if (query->oa.bo) { if (!query->oa.results_accumulated) { drop_from_unaccumulated_query_list(perf_ctx, query); dec_n_users(perf_ctx); } perf_cfg->vtbl.bo_unreference(query->oa.bo); query->oa.bo = NULL; } query->oa.results_accumulated = false; break; case GEN_PERF_QUERY_TYPE_PIPELINE: if (query->pipeline_stats.bo) { perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo); query->pipeline_stats.bo = NULL; } break; default: unreachable("Unknown query type"); break; } /* As an indication that the INTEL_performance_query extension is no * longer in use, it's a good time to free our cache of sample * buffers and close any current i915-perf stream. */ if (--perf_ctx->n_query_instances == 0) { free_sample_bufs(perf_ctx); gen_perf_close(perf_ctx, query->queryinfo); } free(query); } #define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT) static void read_gt_frequency(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *obj) { const struct gen_device_info *devinfo = perf_ctx->devinfo; uint32_t start = *((uint32_t *)(obj->oa.map + MI_FREQ_START_OFFSET_BYTES)), end = *((uint32_t *)(obj->oa.map + MI_FREQ_END_OFFSET_BYTES)); switch (devinfo->gen) { case 7: case 8: obj->oa.gt_frequency[0] = GET_FIELD(start, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL; obj->oa.gt_frequency[1] = GET_FIELD(end, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL; break; case 9: case 10: case 11: obj->oa.gt_frequency[0] = GET_FIELD(start, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL; obj->oa.gt_frequency[1] = GET_FIELD(end, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL; break; default: unreachable("unexpected gen"); } /* Put the numbers into Hz. */ obj->oa.gt_frequency[0] *= 1000000ULL; obj->oa.gt_frequency[1] *= 1000000ULL; } static int get_oa_counter_data(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query, size_t data_size, uint8_t *data) { struct gen_perf_config *perf_cfg = perf_ctx->perf; const struct gen_perf_query_info *queryinfo = query->queryinfo; int n_counters = queryinfo->n_counters; int written = 0; for (int i = 0; i < n_counters; i++) { const struct gen_perf_query_counter *counter = &queryinfo->counters[i]; uint64_t *out_uint64; float *out_float; size_t counter_size = gen_perf_query_counter_get_size(counter); if (counter_size) { switch (counter->data_type) { case GEN_PERF_COUNTER_DATA_TYPE_UINT64: out_uint64 = (uint64_t *)(data + counter->offset); *out_uint64 = counter->oa_counter_read_uint64(perf_cfg, queryinfo, query->oa.result.accumulator); break; case GEN_PERF_COUNTER_DATA_TYPE_FLOAT: out_float = (float *)(data + counter->offset); *out_float = counter->oa_counter_read_float(perf_cfg, queryinfo, query->oa.result.accumulator); break; default: /* So far we aren't using uint32, double or bool32... */ unreachable("unexpected counter data type"); } written = counter->offset + counter_size; } } return written; } static int get_pipeline_stats_data(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query, size_t data_size, uint8_t *data) { struct gen_perf_config *perf_cfg = perf_ctx->perf; const struct gen_perf_query_info *queryinfo = query->queryinfo; int n_counters = queryinfo->n_counters; uint8_t *p = data; uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ); uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t)); for (int i = 0; i < n_counters; i++) { const struct gen_perf_query_counter *counter = &queryinfo->counters[i]; uint64_t value = end[i] - start[i]; if (counter->pipeline_stat.numerator != counter->pipeline_stat.denominator) { value *= counter->pipeline_stat.numerator; value /= counter->pipeline_stat.denominator; } *((uint64_t *)p) = value; p += 8; } perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo); return p - data; } void gen_perf_get_query_data(struct gen_perf_context *perf_ctx, struct gen_perf_query_object *query, int data_size, unsigned *data, unsigned *bytes_written) { struct gen_perf_config *perf_cfg = perf_ctx->perf; int written = 0; switch (query->queryinfo->kind) { case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_RAW: if (!query->oa.results_accumulated) { read_gt_frequency(perf_ctx, query); uint32_t *begin_report = query->oa.map; uint32_t *end_report = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; gen_perf_query_result_read_frequencies(&query->oa.result, perf_ctx->devinfo, begin_report, end_report); accumulate_oa_reports(perf_ctx, query); assert(query->oa.results_accumulated); perf_cfg->vtbl.bo_unmap(query->oa.bo); query->oa.map = NULL; } if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA) { written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data); } else { const struct gen_device_info *devinfo = perf_ctx->devinfo; written = gen_perf_query_result_write_mdapi((uint8_t *)data, data_size, devinfo, &query->oa.result, query->oa.gt_frequency[0], query->oa.gt_frequency[1]); } break; case GEN_PERF_QUERY_TYPE_PIPELINE: written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data); break; default: unreachable("Unknown query type"); break; } if (bytes_written) *bytes_written = written; } void gen_perf_dump_query_count(struct gen_perf_context *perf_ctx) { DBG("Queries: (Open queries = %d, OA users = %d)\n", perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users); } void gen_perf_dump_query(struct gen_perf_context *ctx, struct gen_perf_query_object *obj, void *current_batch) { switch (obj->queryinfo->kind) { case GEN_PERF_QUERY_TYPE_OA: case GEN_PERF_QUERY_TYPE_RAW: DBG("BO: %-4s OA data: %-10s %-15s\n", obj->oa.bo ? "yes," : "no,", gen_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,", obj->oa.results_accumulated ? "accumulated" : "not accumulated"); break; case GEN_PERF_QUERY_TYPE_PIPELINE: DBG("BO: %-4s\n", obj->pipeline_stats.bo ? "yes" : "no"); break; default: unreachable("Unknown query type"); break; } }