/* * Copyright 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** * @file * @brief Intel Surface Layout * * Header Layout * ------------- * The header is ordered as: * - forward declarations * - macros that may be overridden at compile-time for specific gens * - enums and constants * - structs and unions * - functions */ #ifndef ISL_H #define ISL_H #include #include #include #include "c99_compat.h" #include "util/macros.h" #ifdef __cplusplus extern "C" { #endif struct gen_device_info; struct brw_image_param; #ifndef ISL_DEV_GEN /** * @brief Get the hardware generation of isl_device. * * You can define this as a compile-time constant in the CFLAGS. For example, * `gcc -DISL_DEV_GEN(dev)=9 ...`. */ #define ISL_DEV_GEN(__dev) ((__dev)->info->gen) #define ISL_DEV_GEN_SANITIZE(__dev) #else #define ISL_DEV_GEN_SANITIZE(__dev) \ (assert(ISL_DEV_GEN(__dev) == (__dev)->info->gen)) #endif #ifndef ISL_DEV_IS_G4X #define ISL_DEV_IS_G4X(__dev) ((__dev)->info->is_g4x) #endif #ifndef ISL_DEV_IS_HASWELL /** * @brief Get the hardware generation of isl_device. * * You can define this as a compile-time constant in the CFLAGS. For example, * `gcc -DISL_DEV_GEN(dev)=9 ...`. */ #define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->is_haswell) #endif #ifndef ISL_DEV_IS_BAYTRAIL #define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->is_baytrail) #endif #ifndef ISL_DEV_USE_SEPARATE_STENCIL /** * You can define this as a compile-time constant in the CFLAGS. For example, * `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`. */ #define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil) #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) #else #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \ (assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil)) #endif /** * Hardware enumeration SURFACE_FORMAT. * * For the official list, see Broadwell PRM: Volume 2b: Command Reference: * Enumerations: SURFACE_FORMAT. */ enum isl_format { ISL_FORMAT_R32G32B32A32_FLOAT = 0, ISL_FORMAT_R32G32B32A32_SINT = 1, ISL_FORMAT_R32G32B32A32_UINT = 2, ISL_FORMAT_R32G32B32A32_UNORM = 3, ISL_FORMAT_R32G32B32A32_SNORM = 4, ISL_FORMAT_R64G64_FLOAT = 5, ISL_FORMAT_R32G32B32X32_FLOAT = 6, ISL_FORMAT_R32G32B32A32_SSCALED = 7, ISL_FORMAT_R32G32B32A32_USCALED = 8, ISL_FORMAT_R32G32B32A32_SFIXED = 32, ISL_FORMAT_R64G64_PASSTHRU = 33, ISL_FORMAT_R32G32B32_FLOAT = 64, ISL_FORMAT_R32G32B32_SINT = 65, ISL_FORMAT_R32G32B32_UINT = 66, ISL_FORMAT_R32G32B32_UNORM = 67, ISL_FORMAT_R32G32B32_SNORM = 68, ISL_FORMAT_R32G32B32_SSCALED = 69, ISL_FORMAT_R32G32B32_USCALED = 70, ISL_FORMAT_R32G32B32_SFIXED = 80, ISL_FORMAT_R16G16B16A16_UNORM = 128, ISL_FORMAT_R16G16B16A16_SNORM = 129, ISL_FORMAT_R16G16B16A16_SINT = 130, ISL_FORMAT_R16G16B16A16_UINT = 131, ISL_FORMAT_R16G16B16A16_FLOAT = 132, ISL_FORMAT_R32G32_FLOAT = 133, ISL_FORMAT_R32G32_SINT = 134, ISL_FORMAT_R32G32_UINT = 135, ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS = 136, ISL_FORMAT_X32_TYPELESS_G8X24_UINT = 137, ISL_FORMAT_L32A32_FLOAT = 138, ISL_FORMAT_R32G32_UNORM = 139, ISL_FORMAT_R32G32_SNORM = 140, ISL_FORMAT_R64_FLOAT = 141, ISL_FORMAT_R16G16B16X16_UNORM = 142, ISL_FORMAT_R16G16B16X16_FLOAT = 143, ISL_FORMAT_A32X32_FLOAT = 144, ISL_FORMAT_L32X32_FLOAT = 145, ISL_FORMAT_I32X32_FLOAT = 146, ISL_FORMAT_R16G16B16A16_SSCALED = 147, ISL_FORMAT_R16G16B16A16_USCALED = 148, ISL_FORMAT_R32G32_SSCALED = 149, ISL_FORMAT_R32G32_USCALED = 150, ISL_FORMAT_R32G32_FLOAT_LD = 151, ISL_FORMAT_R32G32_SFIXED = 160, ISL_FORMAT_R64_PASSTHRU = 161, ISL_FORMAT_B8G8R8A8_UNORM = 192, ISL_FORMAT_B8G8R8A8_UNORM_SRGB = 193, ISL_FORMAT_R10G10B10A2_UNORM = 194, ISL_FORMAT_R10G10B10A2_UNORM_SRGB = 195, ISL_FORMAT_R10G10B10A2_UINT = 196, ISL_FORMAT_R10G10B10_SNORM_A2_UNORM = 197, ISL_FORMAT_R8G8B8A8_UNORM = 199, ISL_FORMAT_R8G8B8A8_UNORM_SRGB = 200, ISL_FORMAT_R8G8B8A8_SNORM = 201, ISL_FORMAT_R8G8B8A8_SINT = 202, ISL_FORMAT_R8G8B8A8_UINT = 203, ISL_FORMAT_R16G16_UNORM = 204, ISL_FORMAT_R16G16_SNORM = 205, ISL_FORMAT_R16G16_SINT = 206, ISL_FORMAT_R16G16_UINT = 207, ISL_FORMAT_R16G16_FLOAT = 208, ISL_FORMAT_B10G10R10A2_UNORM = 209, ISL_FORMAT_B10G10R10A2_UNORM_SRGB = 210, ISL_FORMAT_R11G11B10_FLOAT = 211, ISL_FORMAT_R32_SINT = 214, ISL_FORMAT_R32_UINT = 215, ISL_FORMAT_R32_FLOAT = 216, ISL_FORMAT_R24_UNORM_X8_TYPELESS = 217, ISL_FORMAT_X24_TYPELESS_G8_UINT = 218, ISL_FORMAT_L32_UNORM = 221, ISL_FORMAT_A32_UNORM = 222, ISL_FORMAT_L16A16_UNORM = 223, ISL_FORMAT_I24X8_UNORM = 224, ISL_FORMAT_L24X8_UNORM = 225, ISL_FORMAT_A24X8_UNORM = 226, ISL_FORMAT_I32_FLOAT = 227, ISL_FORMAT_L32_FLOAT = 228, ISL_FORMAT_A32_FLOAT = 229, ISL_FORMAT_X8B8_UNORM_G8R8_SNORM = 230, ISL_FORMAT_A8X8_UNORM_G8R8_SNORM = 231, ISL_FORMAT_B8X8_UNORM_G8R8_SNORM = 232, ISL_FORMAT_B8G8R8X8_UNORM = 233, ISL_FORMAT_B8G8R8X8_UNORM_SRGB = 234, ISL_FORMAT_R8G8B8X8_UNORM = 235, ISL_FORMAT_R8G8B8X8_UNORM_SRGB = 236, ISL_FORMAT_R9G9B9E5_SHAREDEXP = 237, ISL_FORMAT_B10G10R10X2_UNORM = 238, ISL_FORMAT_L16A16_FLOAT = 240, ISL_FORMAT_R32_UNORM = 241, ISL_FORMAT_R32_SNORM = 242, ISL_FORMAT_R10G10B10X2_USCALED = 243, ISL_FORMAT_R8G8B8A8_SSCALED = 244, ISL_FORMAT_R8G8B8A8_USCALED = 245, ISL_FORMAT_R16G16_SSCALED = 246, ISL_FORMAT_R16G16_USCALED = 247, ISL_FORMAT_R32_SSCALED = 248, ISL_FORMAT_R32_USCALED = 249, ISL_FORMAT_B5G6R5_UNORM = 256, ISL_FORMAT_B5G6R5_UNORM_SRGB = 257, ISL_FORMAT_B5G5R5A1_UNORM = 258, ISL_FORMAT_B5G5R5A1_UNORM_SRGB = 259, ISL_FORMAT_B4G4R4A4_UNORM = 260, ISL_FORMAT_B4G4R4A4_UNORM_SRGB = 261, ISL_FORMAT_R8G8_UNORM = 262, ISL_FORMAT_R8G8_SNORM = 263, ISL_FORMAT_R8G8_SINT = 264, ISL_FORMAT_R8G8_UINT = 265, ISL_FORMAT_R16_UNORM = 266, ISL_FORMAT_R16_SNORM = 267, ISL_FORMAT_R16_SINT = 268, ISL_FORMAT_R16_UINT = 269, ISL_FORMAT_R16_FLOAT = 270, ISL_FORMAT_A8P8_UNORM_PALETTE0 = 271, ISL_FORMAT_A8P8_UNORM_PALETTE1 = 272, ISL_FORMAT_I16_UNORM = 273, ISL_FORMAT_L16_UNORM = 274, ISL_FORMAT_A16_UNORM = 275, ISL_FORMAT_L8A8_UNORM = 276, ISL_FORMAT_I16_FLOAT = 277, ISL_FORMAT_L16_FLOAT = 278, ISL_FORMAT_A16_FLOAT = 279, ISL_FORMAT_L8A8_UNORM_SRGB = 280, ISL_FORMAT_R5G5_SNORM_B6_UNORM = 281, ISL_FORMAT_B5G5R5X1_UNORM = 282, ISL_FORMAT_B5G5R5X1_UNORM_SRGB = 283, ISL_FORMAT_R8G8_SSCALED = 284, ISL_FORMAT_R8G8_USCALED = 285, ISL_FORMAT_R16_SSCALED = 286, ISL_FORMAT_R16_USCALED = 287, ISL_FORMAT_P8A8_UNORM_PALETTE0 = 290, ISL_FORMAT_P8A8_UNORM_PALETTE1 = 291, ISL_FORMAT_A1B5G5R5_UNORM = 292, ISL_FORMAT_A4B4G4R4_UNORM = 293, ISL_FORMAT_L8A8_UINT = 294, ISL_FORMAT_L8A8_SINT = 295, ISL_FORMAT_R8_UNORM = 320, ISL_FORMAT_R8_SNORM = 321, ISL_FORMAT_R8_SINT = 322, ISL_FORMAT_R8_UINT = 323, ISL_FORMAT_A8_UNORM = 324, ISL_FORMAT_I8_UNORM = 325, ISL_FORMAT_L8_UNORM = 326, ISL_FORMAT_P4A4_UNORM_PALETTE0 = 327, ISL_FORMAT_A4P4_UNORM_PALETTE0 = 328, ISL_FORMAT_R8_SSCALED = 329, ISL_FORMAT_R8_USCALED = 330, ISL_FORMAT_P8_UNORM_PALETTE0 = 331, ISL_FORMAT_L8_UNORM_SRGB = 332, ISL_FORMAT_P8_UNORM_PALETTE1 = 333, ISL_FORMAT_P4A4_UNORM_PALETTE1 = 334, ISL_FORMAT_A4P4_UNORM_PALETTE1 = 335, ISL_FORMAT_Y8_UNORM = 336, ISL_FORMAT_L8_UINT = 338, ISL_FORMAT_L8_SINT = 339, ISL_FORMAT_I8_UINT = 340, ISL_FORMAT_I8_SINT = 341, ISL_FORMAT_DXT1_RGB_SRGB = 384, ISL_FORMAT_R1_UNORM = 385, ISL_FORMAT_YCRCB_NORMAL = 386, ISL_FORMAT_YCRCB_SWAPUVY = 387, ISL_FORMAT_P2_UNORM_PALETTE0 = 388, ISL_FORMAT_P2_UNORM_PALETTE1 = 389, ISL_FORMAT_BC1_UNORM = 390, ISL_FORMAT_BC2_UNORM = 391, ISL_FORMAT_BC3_UNORM = 392, ISL_FORMAT_BC4_UNORM = 393, ISL_FORMAT_BC5_UNORM = 394, ISL_FORMAT_BC1_UNORM_SRGB = 395, ISL_FORMAT_BC2_UNORM_SRGB = 396, ISL_FORMAT_BC3_UNORM_SRGB = 397, ISL_FORMAT_MONO8 = 398, ISL_FORMAT_YCRCB_SWAPUV = 399, ISL_FORMAT_YCRCB_SWAPY = 400, ISL_FORMAT_DXT1_RGB = 401, ISL_FORMAT_FXT1 = 402, ISL_FORMAT_R8G8B8_UNORM = 403, ISL_FORMAT_R8G8B8_SNORM = 404, ISL_FORMAT_R8G8B8_SSCALED = 405, ISL_FORMAT_R8G8B8_USCALED = 406, ISL_FORMAT_R64G64B64A64_FLOAT = 407, ISL_FORMAT_R64G64B64_FLOAT = 408, ISL_FORMAT_BC4_SNORM = 409, ISL_FORMAT_BC5_SNORM = 410, ISL_FORMAT_R16G16B16_FLOAT = 411, ISL_FORMAT_R16G16B16_UNORM = 412, ISL_FORMAT_R16G16B16_SNORM = 413, ISL_FORMAT_R16G16B16_SSCALED = 414, ISL_FORMAT_R16G16B16_USCALED = 415, ISL_FORMAT_BC6H_SF16 = 417, ISL_FORMAT_BC7_UNORM = 418, ISL_FORMAT_BC7_UNORM_SRGB = 419, ISL_FORMAT_BC6H_UF16 = 420, ISL_FORMAT_PLANAR_420_8 = 421, ISL_FORMAT_R8G8B8_UNORM_SRGB = 424, ISL_FORMAT_ETC1_RGB8 = 425, ISL_FORMAT_ETC2_RGB8 = 426, ISL_FORMAT_EAC_R11 = 427, ISL_FORMAT_EAC_RG11 = 428, ISL_FORMAT_EAC_SIGNED_R11 = 429, ISL_FORMAT_EAC_SIGNED_RG11 = 430, ISL_FORMAT_ETC2_SRGB8 = 431, ISL_FORMAT_R16G16B16_UINT = 432, ISL_FORMAT_R16G16B16_SINT = 433, ISL_FORMAT_R32_SFIXED = 434, ISL_FORMAT_R10G10B10A2_SNORM = 435, ISL_FORMAT_R10G10B10A2_USCALED = 436, ISL_FORMAT_R10G10B10A2_SSCALED = 437, ISL_FORMAT_R10G10B10A2_SINT = 438, ISL_FORMAT_B10G10R10A2_SNORM = 439, ISL_FORMAT_B10G10R10A2_USCALED = 440, ISL_FORMAT_B10G10R10A2_SSCALED = 441, ISL_FORMAT_B10G10R10A2_UINT = 442, ISL_FORMAT_B10G10R10A2_SINT = 443, ISL_FORMAT_R64G64B64A64_PASSTHRU = 444, ISL_FORMAT_R64G64B64_PASSTHRU = 445, ISL_FORMAT_ETC2_RGB8_PTA = 448, ISL_FORMAT_ETC2_SRGB8_PTA = 449, ISL_FORMAT_ETC2_EAC_RGBA8 = 450, ISL_FORMAT_ETC2_EAC_SRGB8_A8 = 451, ISL_FORMAT_R8G8B8_UINT = 456, ISL_FORMAT_R8G8B8_SINT = 457, ISL_FORMAT_RAW = 511, ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB = 512, ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB = 520, ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB = 521, ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB = 529, ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB = 530, ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB = 545, ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB = 546, ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB = 548, ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB = 561, ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB = 562, ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB = 564, ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB = 566, ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB = 574, ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB = 575, ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 = 576, ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 = 584, ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 = 585, ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 = 593, ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 = 594, ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 = 609, ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 = 610, ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 = 612, ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 = 625, ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 = 626, ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 = 628, ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630, ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638, ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639, ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832, ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840, ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841, ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849, ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850, ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865, ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866, ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868, ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881, ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882, ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884, ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886, ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894, ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895, /* The formats that follow are internal to ISL and as such don't have an * explicit number. We'll just let the C compiler assign it for us. Any * actual hardware formats *must* come before these in the list. */ /* Formats for auxiliary surfaces */ ISL_FORMAT_HIZ, ISL_FORMAT_MCS_2X, ISL_FORMAT_MCS_4X, ISL_FORMAT_MCS_8X, ISL_FORMAT_MCS_16X, ISL_FORMAT_GEN7_CCS_32BPP_X, ISL_FORMAT_GEN7_CCS_64BPP_X, ISL_FORMAT_GEN7_CCS_128BPP_X, ISL_FORMAT_GEN7_CCS_32BPP_Y, ISL_FORMAT_GEN7_CCS_64BPP_Y, ISL_FORMAT_GEN7_CCS_128BPP_Y, ISL_FORMAT_GEN9_CCS_32BPP, ISL_FORMAT_GEN9_CCS_64BPP, ISL_FORMAT_GEN9_CCS_128BPP, /* Hardware doesn't understand this out-of-band value */ ISL_FORMAT_UNSUPPORTED = UINT16_MAX, }; /** * Numerical base type for channels of isl_format. */ enum isl_base_type { ISL_VOID, ISL_RAW, ISL_UNORM, ISL_SNORM, ISL_UFLOAT, ISL_SFLOAT, ISL_UFIXED, ISL_SFIXED, ISL_UINT, ISL_SINT, ISL_USCALED, ISL_SSCALED, }; /** * Colorspace of isl_format. */ enum isl_colorspace { ISL_COLORSPACE_NONE = 0, ISL_COLORSPACE_LINEAR, ISL_COLORSPACE_SRGB, ISL_COLORSPACE_YUV, }; /** * Texture compression mode of isl_format. */ enum isl_txc { ISL_TXC_NONE = 0, ISL_TXC_DXT1, ISL_TXC_DXT3, ISL_TXC_DXT5, ISL_TXC_FXT1, ISL_TXC_RGTC1, ISL_TXC_RGTC2, ISL_TXC_BPTC, ISL_TXC_ETC1, ISL_TXC_ETC2, ISL_TXC_ASTC, /* Used for auxiliary surface formats */ ISL_TXC_HIZ, ISL_TXC_MCS, ISL_TXC_CCS, }; /** * @brief Hardware tile mode * * WARNING: These values differ from the hardware enum values, which are * unstable across hardware generations. * * Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to * clearly distinguish it from Yf and Ys. */ enum isl_tiling { ISL_TILING_LINEAR = 0, ISL_TILING_W, ISL_TILING_X, ISL_TILING_Y0, /**< Legacy Y tiling */ ISL_TILING_Yf, /**< Standard 4K tiling. The 'f' means "four". */ ISL_TILING_Ys, /**< Standard 64K tiling. The 's' means "sixty-four". */ ISL_TILING_HIZ, /**< Tiling format for HiZ surfaces */ ISL_TILING_CCS, /**< Tiling format for CCS surfaces */ }; /** * @defgroup Tiling Flags * @{ */ typedef uint32_t isl_tiling_flags_t; #define ISL_TILING_LINEAR_BIT (1u << ISL_TILING_LINEAR) #define ISL_TILING_W_BIT (1u << ISL_TILING_W) #define ISL_TILING_X_BIT (1u << ISL_TILING_X) #define ISL_TILING_Y0_BIT (1u << ISL_TILING_Y0) #define ISL_TILING_Yf_BIT (1u << ISL_TILING_Yf) #define ISL_TILING_Ys_BIT (1u << ISL_TILING_Ys) #define ISL_TILING_HIZ_BIT (1u << ISL_TILING_HIZ) #define ISL_TILING_CCS_BIT (1u << ISL_TILING_CCS) #define ISL_TILING_ANY_MASK (~0u) #define ISL_TILING_NON_LINEAR_MASK (~ISL_TILING_LINEAR_BIT) /** Any Y tiling, including legacy Y tiling. */ #define ISL_TILING_ANY_Y_MASK (ISL_TILING_Y0_BIT | \ ISL_TILING_Yf_BIT | \ ISL_TILING_Ys_BIT) /** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */ #define ISL_TILING_STD_Y_MASK (ISL_TILING_Yf_BIT | \ ISL_TILING_Ys_BIT) /** @} */ /** * @brief Logical dimension of surface. * * Note: There is no dimension for cube map surfaces. ISL interprets cube maps * as 2D array surfaces. */ enum isl_surf_dim { ISL_SURF_DIM_1D, ISL_SURF_DIM_2D, ISL_SURF_DIM_3D, }; /** * @brief Physical layout of the surface's dimensions. */ enum isl_dim_layout { /** * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section * 6.17.3: 2D Surfaces. * * On many gens, 1D surfaces share the same layout as 2D surfaces. From * the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces: * * One-dimensional surfaces are identical to 2D surfaces with height of * one. * * @invariant isl_surf::phys_level0_sa::depth == 1 */ ISL_DIM_LAYOUT_GEN4_2D, /** * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section * 6.17.5: 3D Surfaces. * * @invariant isl_surf::phys_level0_sa::array_len == 1 */ ISL_DIM_LAYOUT_GEN4_3D, /** * Special layout used for HiZ and stencil on Sandy Bridge to work around * the hardware's lack of mipmap support. On gen6, HiZ and stencil buffers * work the same as on gen7+ except that they don't technically support * mipmapping. That does not, however, stop us from doing it. As far as * Sandy Bridge hardware is concerned, HiZ and stencil always operates on a * single miplevel 2D (possibly array) image. The dimensions of that image * are NOT minified. * * In order to implement HiZ and stencil on Sandy Bridge, we create one * full-sized 2D (possibly array) image for every LOD with every image * aligned to a page boundary. When the surface is used with the stencil * or HiZ hardware, we manually offset to the image for the given LOD. * * As a memory saving measure, we pretend that the width of each miplevel * is minified and we place LOD1 and above below LOD0 but horizontally * adjacent to each other. When considered as full-sized images, LOD1 and * above technically overlap. However, since we only write to part of that * image, the hardware will never notice the overlap. * * This layout looks something like this: * * +---------+ * | | * | | * +---------+ * | | * | | * +---------+ * * +----+ +-+ . * | | +-+ * +----+ * * +----+ +-+ . * | | +-+ * +----+ */ ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ, /** * For details, see the Skylake BSpec >> Memory Views >> Common Surface * Formats >> Surface Layout and Tiling >> ยป 1D Surfaces. */ ISL_DIM_LAYOUT_GEN9_1D, }; enum isl_aux_usage { /** No Auxiliary surface is used */ ISL_AUX_USAGE_NONE, /** The primary surface is a depth surface and the auxiliary surface is HiZ */ ISL_AUX_USAGE_HIZ, /** The auxiliary surface is an MCS * * @invariant isl_surf::samples > 1 */ ISL_AUX_USAGE_MCS, /** The auxiliary surface is a fast-clear-only compression surface * * @invariant isl_surf::samples == 1 */ ISL_AUX_USAGE_CCS_D, /** The auxiliary surface provides full lossless color compression * * @invariant isl_surf::samples == 1 */ ISL_AUX_USAGE_CCS_E, }; /** * Enum for keeping track of the state an auxiliary compressed surface. * * For any given auxiliary surface compression format (HiZ, CCS, or MCS), any * given slice (lod + array layer) can be in one of the six states described * by this enum. Draw and resolve operations may cause the slice to change * from one state to another. The six valid states are: * * 1) Clear: In this state, each block in the auxiliary surface contains a * magic value that indicates that the block is in the clear state. If * a block is in the clear state, it's values in the primary surface are * ignored and the color of the samples in the block is taken either the * RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for * depth. Since neither the primary surface nor the auxiliary surface * contains the clear value, the surface can be cleared to a different * color by simply changing the clear color without modifying either * surface. * * 2) Partial Clear: In this state, each block in the auxiliary surface * contains either the magic clear or pass-through value. See Clear and * Pass-through for more details. * * 3) Compressed w/ Clear: In this state, neither the auxiliary surface * nor the primary surface has a complete representation of the data. * Instead, both surfaces must be used together or else rendering * corruption may occur. Depending on the auxiliary compression format * and the data, any given block in the primary surface may contain all, * some, or none of the data required to reconstruct the actual sample * values. Blocks may also be in the clear state (see Clear) and have * their value taken from outside the surface. * * 4) Compressed w/o Clear: This state is identical to the state above * except that no blocks are in the clear state. In this state, all of * the data required to reconstruct the final sample values is contained * in the auxiliary and primary surface and the clear value is not * considered. * * 5) Resolved: In this state, the primary surface contains 100% of the * data. The auxiliary surface is also valid so the surface can be * validly used with or without aux enabled. The auxiliary surface may, * however, contain non-trivial data and any update to the primary * surface with aux disabled will cause the two to get out of sync. * * 6) Pass-through: In this state, the primary surface contains 100% of the * data and every block in the auxiliary surface contains a magic value * which indicates that the auxiliary surface should be ignored and the * only the primary surface should be considered. Updating the primary * surface without aux works fine and can be done repeatedly in this * mode. Writing to a surface in pass-through mode with aux enabled may * cause the auxiliary buffer to contain non-trivial data and no longer * be in the pass-through state. * * 7) Aux Invalid: In this state, the primary surface contains 100% of the * data and the auxiliary surface is completely bogus. Any attempt to * use the auxiliary surface is liable to result in rendering * corruption. The only thing that one can do to re-enable aux once * this state is reached is to use an ambiguate pass to transition into * the pass-through state. * * Drawing with or without aux enabled may implicitly cause the surface to * transition between these states. There are also four types of auxiliary * compression operations which cause an explicit transition: * * 1) Fast Clear: This operation writes the magic "clear" value to the * auxiliary surface. This operation will safely transition any slice * of a surface from any state to the clear state so long as the entire * slice is fast cleared at once. A fast clear that only covers part of * a slice of a surface is called a partial fast clear. * * 2) Full Resolve: This operation combines the auxiliary surface data * with the primary surface data and writes the result to the primary. * For HiZ, the docs call this a depth resolve. For CCS, the hardware * full resolve operation does both a full resolve and an ambiguate so * it actually takes you all the way to the pass-through state. * * 3) Partial Resolve: This operation considers blocks which are in the * "clear" state and writes the clear value directly into the primary or * auxiliary surface. Once this operation completes, the surface is * still compressed but no longer references the clear color. This * operation is only available for CCS. * * 4) Ambiguate: This operation throws away the current auxiliary data and * replaces it with the magic pass-through value. If an ambiguate * operation is performed when the primary surface does not contain 100% * of the data, data will be lost. This operation is only implemented * in hardware for depth where it is called a HiZ resolve. * * Not all operations are valid or useful in all states. The diagram below * contains a complete description of the states and all valid and useful * transitions except clear. * * Draw w/ Aux * +----------+ * | | * | +-------------+ Draw w/ Aux +-------------+ * +------>| Compressed |<-------------------| Clear | * | w/ Clear |----->----+ | | * +-------------+ | +-------------+ * | /|\ | | | * | | | | | * | | +------<-----+ | Draw w/ * | | | | Clear Only * | | Full | | +----------+ * Partial | | Resolve | \|/ | | * Resolve | | | +-------------+ | * | | | | Partial |<------+ * | | | | Clear |<----------+ * | | | +-------------+ | * | | | | | * | | +------>---------+ Full | * | | | Resolve | * Draw w/ aux | | Partial Fast Clear | | * +----------+ | +--------------------------+ | | * | | \|/ | \|/ | * | +-------------+ Full Resolve +-------------+ | * +------>| Compressed |------------------->| Resolved | | * | w/o Clear |<-------------------| | | * +-------------+ Draw w/ Aux +-------------+ | * /|\ | | | * | Draw | | Draw | * | w/ Aux | | w/o Aux | * | Ambiguate | | | * | +--------------------------+ | | * Draw w/o Aux | | | Draw w/o Aux | * +----------+ | | | +----------+ | * | | | \|/ \|/ | | | * | +-------------+ Ambiguate +-------------+ | | * +------>| Pass- |<-------------------| Aux |<------+ | * +------>| through | | Invalid | | * | +-------------+ +-------------+ | * | | | | * +----------+ +-----------------------------------------------------+ * Draw w/ Partial Fast Clear * Clear Only * * * While the above general theory applies to all forms of auxiliary * compression on Intel hardware, not all states and operations are available * on all compression types. However, each of the auxiliary states and * operations can be fairly easily mapped onto the above diagram: * * HiZ: Hierarchical depth compression is capable of being in any of the * states above. Hardware provides three HiZ operations: "Depth * Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast * Clear", "Full Resolve", and "Ambiguate" respectively. The * hardware provides no HiZ partial resolve operation so the only way * to get into the "Compressed w/o Clear" state is to render with HiZ * when the surface is in the resolved or pass-through states. * * MCS: Multisample compression is technically capable of being in any of * the states above except that most of them aren't useful. Both the * render engine and the sampler support MCS compression and, apart * from clear color, MCS is format-unaware so we leave the surface * compressed 100% of the time. The hardware provides no MCS * operations. * * CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of * the simplest forms of compression since they don't do anything * beyond clear color tracking. They really only support three of * the six states: Clear, Partial Clear, and Pass-through. The * only CCS_D operation is "Resolve" which maps to a full resolve * followed by an ambiguate. * * CCS_E: Single-sample render target compression (also called CCS_E in ISL) * is capable of being in almost all of the above states. THe only * exception is that it does not have separate resolved and pass- * through states. Instead, the CCS_E full resolve operation does * both a resolve and an ambiguate so it goes directly into the * pass-through state. CCS_E also provides fast clear and partial * resolve operations which work as described above. * * While it is technically possible to perform a CCS_E ambiguate, it * is not provided by Sky Lake hardware so we choose to avoid the aux * invalid state. If the aux invalid state were determined to be * useful, a CCS ambiguate could be done by carefully rendering to * the CCS and filling it with zeros. */ enum isl_aux_state { ISL_AUX_STATE_CLEAR = 0, ISL_AUX_STATE_PARTIAL_CLEAR, ISL_AUX_STATE_COMPRESSED_CLEAR, ISL_AUX_STATE_COMPRESSED_NO_CLEAR, ISL_AUX_STATE_RESOLVED, ISL_AUX_STATE_PASS_THROUGH, ISL_AUX_STATE_AUX_INVALID, }; /* TODO(chadv): Explain */ enum isl_array_pitch_span { ISL_ARRAY_PITCH_SPAN_FULL, ISL_ARRAY_PITCH_SPAN_COMPACT, }; /** * @defgroup Surface Usage * @{ */ typedef uint64_t isl_surf_usage_flags_t; #define ISL_SURF_USAGE_RENDER_TARGET_BIT (1u << 0) #define ISL_SURF_USAGE_DEPTH_BIT (1u << 1) #define ISL_SURF_USAGE_STENCIL_BIT (1u << 2) #define ISL_SURF_USAGE_TEXTURE_BIT (1u << 3) #define ISL_SURF_USAGE_CUBE_BIT (1u << 4) #define ISL_SURF_USAGE_DISABLE_AUX_BIT (1u << 5) #define ISL_SURF_USAGE_DISPLAY_BIT (1u << 6) #define ISL_SURF_USAGE_DISPLAY_ROTATE_90_BIT (1u << 7) #define ISL_SURF_USAGE_DISPLAY_ROTATE_180_BIT (1u << 8) #define ISL_SURF_USAGE_DISPLAY_ROTATE_270_BIT (1u << 9) #define ISL_SURF_USAGE_DISPLAY_FLIP_X_BIT (1u << 10) #define ISL_SURF_USAGE_DISPLAY_FLIP_Y_BIT (1u << 11) #define ISL_SURF_USAGE_STORAGE_BIT (1u << 12) #define ISL_SURF_USAGE_HIZ_BIT (1u << 13) #define ISL_SURF_USAGE_MCS_BIT (1u << 14) #define ISL_SURF_USAGE_CCS_BIT (1u << 15) /** @} */ /** * @defgroup Channel Mask * * These #define values are chosen to match the values of * RENDER_SURFACE_STATE::Color Buffer Component Write Disables * * @{ */ typedef uint8_t isl_channel_mask_t; #define ISL_CHANNEL_BLUE_BIT (1 << 0) #define ISL_CHANNEL_GREEN_BIT (1 << 1) #define ISL_CHANNEL_RED_BIT (1 << 2) #define ISL_CHANNEL_ALPHA_BIT (1 << 3) /** @} */ /** * @brief A channel select (also known as texture swizzle) value */ enum isl_channel_select { ISL_CHANNEL_SELECT_ZERO = 0, ISL_CHANNEL_SELECT_ONE = 1, ISL_CHANNEL_SELECT_RED = 4, ISL_CHANNEL_SELECT_GREEN = 5, ISL_CHANNEL_SELECT_BLUE = 6, ISL_CHANNEL_SELECT_ALPHA = 7, }; /** * Identical to VkSampleCountFlagBits. */ enum isl_sample_count { ISL_SAMPLE_COUNT_1_BIT = 1u, ISL_SAMPLE_COUNT_2_BIT = 2u, ISL_SAMPLE_COUNT_4_BIT = 4u, ISL_SAMPLE_COUNT_8_BIT = 8u, ISL_SAMPLE_COUNT_16_BIT = 16u, }; typedef uint32_t isl_sample_count_mask_t; /** * @brief Multisample Format */ enum isl_msaa_layout { /** * @brief Suface is single-sampled. */ ISL_MSAA_LAYOUT_NONE, /** * @brief [SNB+] Interleaved Multisample Format * * In this format, multiple samples are interleaved into each cacheline. * In other words, the sample index is swizzled into the low 6 bits of the * surface's virtual address space. * * For example, suppose the surface is legacy Y tiled, is 4x multisampled, * and its pixel format is 32bpp. Then the first cacheline is arranged * thus: * * (0,0,0) (0,1,0) (0,0,1) (1,0,1) * (1,0,0) (1,1,0) (0,1,1) (1,1,1) * * (0,0,2) (1,0,2) (0,0,3) (1,0,3) * (0,1,2) (1,1,2) (0,1,3) (1,1,3) * * The hardware docs refer to this format with multiple terms. In * Sandybridge, this is the only multisample format; so no term is used. * The Ivybridge docs refer to surfaces in this format as IMS (Interleaved * Multisample Surface). Later hardware docs additionally refer to this * format as MSFMT_DEPTH_STENCIL (because the format is deprecated for * color surfaces). * * See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled * Surface Behavior". * * See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved * Multisampled Surfaces". */ ISL_MSAA_LAYOUT_INTERLEAVED, /** * @brief [IVB+] Array Multisample Format * * In this format, the surface's physical layout resembles that of a * 2D array surface. * * Suppose the multisample surface's logical extent is (w, h) and its * sample count is N. Then surface's physical extent is the same as * a singlesample 2D surface whose logical extent is (w, h) and array * length is N. Array slice `i` contains the pixel values for sample * index `i`. * * The Ivybridge docs refer to surfaces in this format as UMS * (Uncompressed Multsample Layout) and CMS (Compressed Multisample * Surface). The Broadwell docs additionally refer to this format as * MSFMT_MSS (MSS=Multisample Surface Storage). * * See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed * Multisample Surfaces". * * See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed * Multisample Surfaces". */ ISL_MSAA_LAYOUT_ARRAY, }; struct isl_device { const struct gen_device_info *info; bool use_separate_stencil; bool has_bit6_swizzling; /** * Describes the layout of a RENDER_SURFACE_STATE structure for the * current gen. */ struct { uint8_t size; uint8_t align; uint8_t addr_offset; uint8_t aux_addr_offset; /* Rounded up to the nearest dword to simplify GPU memcpy operations. */ uint8_t clear_value_size; uint8_t clear_value_offset; } ss; /** * Describes the layout of the depth/stencil/hiz commands as emitted by * isl_emit_depth_stencil_hiz. */ struct { uint8_t size; uint8_t depth_offset; uint8_t stencil_offset; uint8_t hiz_offset; } ds; }; struct isl_extent2d { union { uint32_t w, width; }; union { uint32_t h, height; }; }; struct isl_extent3d { union { uint32_t w, width; }; union { uint32_t h, height; }; union { uint32_t d, depth; }; }; struct isl_extent4d { union { uint32_t w, width; }; union { uint32_t h, height; }; union { uint32_t d, depth; }; union { uint32_t a, array_len; }; }; struct isl_channel_layout { enum isl_base_type type; uint8_t bits; /**< Size in bits */ }; /** * Each format has 3D block extent (width, height, depth). The block extent of * compressed formats is that of the format's compression block. For example, * the block extent of ISL_FORMAT_ETC2_RGB8 is (w=4, h=4, d=1). The block * extent of uncompressed pixel formats, such as ISL_FORMAT_R8G8B8A8_UNORM, is * is (w=1, h=1, d=1). */ struct isl_format_layout { enum isl_format format; const char *name; uint16_t bpb; /**< Bits per block */ uint8_t bw; /**< Block width, in pixels */ uint8_t bh; /**< Block height, in pixels */ uint8_t bd; /**< Block depth, in pixels */ struct { struct isl_channel_layout r; /**< Red channel */ struct isl_channel_layout g; /**< Green channel */ struct isl_channel_layout b; /**< Blue channel */ struct isl_channel_layout a; /**< Alpha channel */ struct isl_channel_layout l; /**< Luminance channel */ struct isl_channel_layout i; /**< Intensity channel */ struct isl_channel_layout p; /**< Palette channel */ } channels; enum isl_colorspace colorspace; enum isl_txc txc; }; struct isl_tile_info { enum isl_tiling tiling; /* The size (in bits per block) of a single surface element * * For surfaces with power-of-two formats, this is the same as * isl_format_layout::bpb. For non-power-of-two formats it may be smaller. * The logical_extent_el field is in terms of elements of this size. * * For example, consider ISL_FORMAT_R32G32B32_FLOAT for which * isl_format_layout::bpb is 96 (a non-power-of-two). In this case, none * of the tiling formats can actually hold an integer number of 96-bit * surface elements so isl_tiling_get_info returns an isl_tile_info for a * 32-bit element size. It is the responsibility of the caller to * recognize that 32 != 96 ad adjust accordingly. For instance, to compute * the width of a surface in tiles, you would do: * * width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb), * tile_info.logical_extent_el.width); */ uint32_t format_bpb; /** The logical size of the tile in units of format_bpb size elements * * This field determines how a given surface is cut up into tiles. It is * used to compute the size of a surface in tiles and can be used to * determine the location of the tile containing any given surface element. * The exact value of this field depends heavily on the bits-per-block of * the format being used. */ struct isl_extent2d logical_extent_el; /** The physical size of the tile in bytes and rows of bytes * * This field determines how the tiles of a surface are physically layed * out in memory. The logical and physical tile extent are frequently the * same but this is not always the case. For instance, a W-tile (which is * always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but * its physical size is 128B x 32rows, the same as a Y-tile. * * @see isl_surf::row_pitch */ struct isl_extent2d phys_extent_B; }; /** * Metadata about a DRM format modifier. */ struct isl_drm_modifier_info { uint64_t modifier; /** Text name of the modifier */ const char *name; /** ISL tiling implied by this modifier */ enum isl_tiling tiling; /** ISL aux usage implied by this modifier */ enum isl_aux_usage aux_usage; /** Whether or not this modifier supports clear color */ bool supports_clear_color; }; /** * @brief Input to surface initialization * * @invariant width >= 1 * @invariant height >= 1 * @invariant depth >= 1 * @invariant levels >= 1 * @invariant samples >= 1 * @invariant array_len >= 1 * * @invariant if 1D then height == 1 and depth == 1 and samples == 1 * @invariant if 2D then depth == 1 * @invariant if 3D then array_len == 1 and samples == 1 */ struct isl_surf_init_info { enum isl_surf_dim dim; enum isl_format format; uint32_t width; uint32_t height; uint32_t depth; uint32_t levels; uint32_t array_len; uint32_t samples; /** Lower bound for isl_surf::alignment, in bytes. */ uint32_t min_alignment; /** * Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init() * will fail if this is misaligned or out of bounds. */ uint32_t row_pitch; isl_surf_usage_flags_t usage; /** Flags that alter how ISL selects isl_surf::tiling. */ isl_tiling_flags_t tiling_flags; }; struct isl_surf { enum isl_surf_dim dim; enum isl_dim_layout dim_layout; enum isl_msaa_layout msaa_layout; enum isl_tiling tiling; enum isl_format format; /** * Alignment of the upper-left sample of each subimage, in units of surface * elements. */ struct isl_extent3d image_alignment_el; /** * Logical extent of the surface's base level, in units of pixels. This is * identical to the extent defined in isl_surf_init_info. */ struct isl_extent4d logical_level0_px; /** * Physical extent of the surface's base level, in units of physical * surface samples and aligned to the format's compression block. * * Consider isl_dim_layout as an operator that transforms a logical surface * layout to a physical surface layout. Then * * logical_layout := (isl_surf::dim, isl_surf::logical_level0_px) * isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout */ struct isl_extent4d phys_level0_sa; uint32_t levels; uint32_t samples; /** Total size of the surface, in bytes. */ uint64_t size; /** Required alignment for the surface's base address. */ uint32_t alignment; /** * The interpretation of this field depends on the value of * isl_tile_info::physical_extent_B. In particular, the width of the * surface in tiles is row_pitch / isl_tile_info::physical_extent_B.width * and the distance in bytes between vertically adjacent tiles in the image * is given by row_pitch * isl_tile_info::physical_extent_B.height. * * For linear images where isl_tile_info::physical_extent_B.height == 1, * this cleanly reduces to being the distance, in bytes, between vertically * adjacent surface elements. * * @see isl_tile_info::phys_extent_B; */ uint32_t row_pitch; /** * Pitch between physical array slices, in rows of surface elements. */ uint32_t array_pitch_el_rows; enum isl_array_pitch_span array_pitch_span; /** Copy of isl_surf_init_info::usage. */ isl_surf_usage_flags_t usage; }; struct isl_swizzle { enum isl_channel_select r:4; enum isl_channel_select g:4; enum isl_channel_select b:4; enum isl_channel_select a:4; }; #define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \ .r = ISL_CHANNEL_SELECT_##R, \ .g = ISL_CHANNEL_SELECT_##G, \ .b = ISL_CHANNEL_SELECT_##B, \ .a = ISL_CHANNEL_SELECT_##A, \ }) #define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA) struct isl_view { /** * Indicates the usage of the particular view * * Normally, this is one bit. However, for a cube map texture, it * should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT. */ isl_surf_usage_flags_t usage; /** * The format to use in the view * * This may differ from the format of the actual isl_surf but must have * the same block size. */ enum isl_format format; uint32_t base_level; uint32_t levels; /** * Base array layer * * For cube maps, both base_array_layer and array_len should be * specified in terms of 2-D layers and must be a multiple of 6. * * 3-D textures are effectively treated as 2-D arrays when used as a * storage image or render target. If `usage` contains * ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then * base_array_layer and array_len are applied. If the surface is only used * for texturing, they are ignored. */ uint32_t base_array_layer; /** * Array Length * * Indicates the number of array elements starting at Base Array Layer. */ uint32_t array_len; struct isl_swizzle swizzle; }; union isl_color_value { float f32[4]; uint32_t u32[4]; int32_t i32[4]; }; struct isl_surf_fill_state_info { const struct isl_surf *surf; const struct isl_view *view; /** * The address of the surface in GPU memory. */ uint64_t address; /** * The Memory Object Control state for the filled surface state. * * The exact format of this value depends on hardware generation. */ uint32_t mocs; /** * The auxilary surface or NULL if no auxilary surface is to be used. */ const struct isl_surf *aux_surf; enum isl_aux_usage aux_usage; uint64_t aux_address; /** * The clear color for this surface * * Valid values depend on hardware generation. */ union isl_color_value clear_color; /** * Surface write disables for gen4-5 */ isl_channel_mask_t write_disables; /* Intra-tile offset */ uint16_t x_offset_sa, y_offset_sa; }; struct isl_buffer_fill_state_info { /** * The address of the surface in GPU memory. */ uint64_t address; /** * The size of the buffer */ uint64_t size; /** * The Memory Object Control state for the filled surface state. * * The exact format of this value depends on hardware generation. */ uint32_t mocs; /** * The format to use in the surface state * * This may differ from the format of the actual isl_surf but have the * same block size. */ enum isl_format format; uint32_t stride; }; struct isl_depth_stencil_hiz_emit_info { /** * The depth surface */ const struct isl_surf *depth_surf; /** * The stencil surface * * If separate stencil is not available, this must point to the same * isl_surf as depth_surf. */ const struct isl_surf *stencil_surf; /** * The view into the depth and stencil surfaces. * * This view applies to both surfaces simultaneously. */ const struct isl_view *view; /** * The address of the depth surface in GPU memory */ uint64_t depth_address; /** * The address of the stencil surface in GPU memory * * If separate stencil is not available, this must have the same value as * depth_address. */ uint64_t stencil_address; /** * The Memory Object Control state for depth and stencil buffers * * Both depth and stencil will get the same MOCS value. The exact format * of this value depends on hardware generation. */ uint32_t mocs; /** * The HiZ surface or NULL if HiZ is disabled. */ const struct isl_surf *hiz_surf; enum isl_aux_usage hiz_usage; uint64_t hiz_address; /** * The depth clear value */ float depth_clear_value; }; extern const struct isl_format_layout isl_format_layouts[]; void isl_device_init(struct isl_device *dev, const struct gen_device_info *info, bool has_bit6_swizzling); isl_sample_count_mask_t ATTRIBUTE_CONST isl_device_get_sample_counts(struct isl_device *dev); static inline const struct isl_format_layout * ATTRIBUTE_CONST isl_format_get_layout(enum isl_format fmt) { return &isl_format_layouts[fmt]; } static inline const char * ATTRIBUTE_CONST isl_format_get_name(enum isl_format fmt) { return isl_format_layouts[fmt].name; } bool isl_format_supports_rendering(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_alpha_blending(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_sampling(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_filtering(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_vertex_fetch(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_typed_writes(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_typed_reads(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_ccs_d(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_ccs_e(const struct gen_device_info *devinfo, enum isl_format format); bool isl_format_supports_multisampling(const struct gen_device_info *devinfo, enum isl_format format); bool isl_formats_are_ccs_e_compatible(const struct gen_device_info *devinfo, enum isl_format format1, enum isl_format format2); bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST; bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST; bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST; bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST; bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST; bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST; static inline bool isl_format_has_normalized_channel(enum isl_format fmt) { return isl_format_has_unorm_channel(fmt) || isl_format_has_snorm_channel(fmt); } static inline bool isl_format_has_float_channel(enum isl_format fmt) { return isl_format_has_ufloat_channel(fmt) || isl_format_has_sfloat_channel(fmt); } static inline bool isl_format_has_int_channel(enum isl_format fmt) { return isl_format_has_uint_channel(fmt) || isl_format_has_sint_channel(fmt); } unsigned isl_format_get_num_channels(enum isl_format fmt); uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil); static inline bool isl_format_is_compressed(enum isl_format fmt) { const struct isl_format_layout *fmtl = isl_format_get_layout(fmt); return fmtl->txc != ISL_TXC_NONE; } static inline bool isl_format_has_bc_compression(enum isl_format fmt) { switch (isl_format_get_layout(fmt)->txc) { case ISL_TXC_DXT1: case ISL_TXC_DXT3: case ISL_TXC_DXT5: return true; case ISL_TXC_NONE: case ISL_TXC_FXT1: case ISL_TXC_RGTC1: case ISL_TXC_RGTC2: case ISL_TXC_BPTC: case ISL_TXC_ETC1: case ISL_TXC_ETC2: case ISL_TXC_ASTC: return false; case ISL_TXC_HIZ: case ISL_TXC_MCS: case ISL_TXC_CCS: unreachable("Should not be called on an aux surface"); } unreachable("bad texture compression mode"); return false; } static inline bool isl_format_is_yuv(enum isl_format fmt) { const struct isl_format_layout *fmtl = isl_format_get_layout(fmt); return fmtl->colorspace == ISL_COLORSPACE_YUV; } static inline bool isl_format_block_is_1x1x1(enum isl_format fmt) { const struct isl_format_layout *fmtl = isl_format_get_layout(fmt); return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1; } static inline bool isl_format_is_srgb(enum isl_format fmt) { return isl_format_layouts[fmt].colorspace == ISL_COLORSPACE_SRGB; } enum isl_format isl_format_srgb_to_linear(enum isl_format fmt); static inline bool isl_format_is_rgb(enum isl_format fmt) { return isl_format_layouts[fmt].channels.r.bits > 0 && isl_format_layouts[fmt].channels.g.bits > 0 && isl_format_layouts[fmt].channels.b.bits > 0 && isl_format_layouts[fmt].channels.a.bits == 0; } enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST; enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST; bool isl_is_storage_image_format(enum isl_format fmt); enum isl_format isl_lower_storage_image_format(const struct gen_device_info *devinfo, enum isl_format fmt); /* Returns true if this hardware supports typed load/store on a format with * the same size as the given format. */ bool isl_has_matching_typed_storage_image_format(const struct gen_device_info *devinfo, enum isl_format fmt); static inline bool isl_tiling_is_any_y(enum isl_tiling tiling) { return (1u << tiling) & ISL_TILING_ANY_Y_MASK; } static inline bool isl_tiling_is_std_y(enum isl_tiling tiling) { return (1u << tiling) & ISL_TILING_STD_Y_MASK; } uint32_t isl_tiling_to_i915_tiling(enum isl_tiling tiling); enum isl_tiling isl_tiling_from_i915_tiling(uint32_t tiling); const struct isl_drm_modifier_info * ATTRIBUTE_CONST isl_drm_modifier_get_info(uint64_t modifier); static inline bool isl_drm_modifier_has_aux(uint64_t modifier) { return isl_drm_modifier_get_info(modifier)->aux_usage != ISL_AUX_USAGE_NONE; } struct isl_extent2d ATTRIBUTE_CONST isl_get_interleaved_msaa_px_size_sa(uint32_t samples); static inline bool isl_surf_usage_is_display(isl_surf_usage_flags_t usage) { return usage & ISL_SURF_USAGE_DISPLAY_BIT; } static inline bool isl_surf_usage_is_depth(isl_surf_usage_flags_t usage) { return usage & ISL_SURF_USAGE_DEPTH_BIT; } static inline bool isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage) { return usage & ISL_SURF_USAGE_STENCIL_BIT; } static inline bool isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage) { return (usage & ISL_SURF_USAGE_DEPTH_BIT) && (usage & ISL_SURF_USAGE_STENCIL_BIT); } static inline bool isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage) { return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT); } static inline bool isl_surf_info_is_z16(const struct isl_surf_init_info *info) { return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) && (info->format == ISL_FORMAT_R16_UNORM); } static inline bool isl_surf_info_is_z32_float(const struct isl_surf_init_info *info) { return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) && (info->format == ISL_FORMAT_R32_FLOAT); } static inline struct isl_extent2d isl_extent2d(uint32_t width, uint32_t height) { struct isl_extent2d e = { { 0 } }; e.width = width; e.height = height; return e; } static inline struct isl_extent3d isl_extent3d(uint32_t width, uint32_t height, uint32_t depth) { struct isl_extent3d e = { { 0 } }; e.width = width; e.height = height; e.depth = depth; return e; } static inline struct isl_extent4d isl_extent4d(uint32_t width, uint32_t height, uint32_t depth, uint32_t array_len) { struct isl_extent4d e = { { 0 } }; e.width = width; e.height = height; e.depth = depth; e.array_len = array_len; return e; } bool isl_color_value_is_zero_one(union isl_color_value value, enum isl_format format); #define isl_surf_init(dev, surf, ...) \ isl_surf_init_s((dev), (surf), \ &(struct isl_surf_init_info) { __VA_ARGS__ }); bool isl_surf_init_s(const struct isl_device *dev, struct isl_surf *surf, const struct isl_surf_init_info *restrict info); void isl_surf_get_tile_info(const struct isl_surf *surf, struct isl_tile_info *tile_info); bool isl_surf_get_hiz_surf(const struct isl_device *dev, const struct isl_surf *surf, struct isl_surf *hiz_surf); bool isl_surf_get_mcs_surf(const struct isl_device *dev, const struct isl_surf *surf, struct isl_surf *mcs_surf); bool isl_surf_get_ccs_surf(const struct isl_device *dev, const struct isl_surf *surf, struct isl_surf *ccs_surf, uint32_t row_pitch /**< Ignored if 0 */); #define isl_surf_fill_state(dev, state, ...) \ isl_surf_fill_state_s((dev), (state), \ &(struct isl_surf_fill_state_info) { __VA_ARGS__ }); void isl_surf_fill_state_s(const struct isl_device *dev, void *state, const struct isl_surf_fill_state_info *restrict info); #define isl_buffer_fill_state(dev, state, ...) \ isl_buffer_fill_state_s((dev), (state), \ &(struct isl_buffer_fill_state_info) { __VA_ARGS__ }); void isl_buffer_fill_state_s(const struct isl_device *dev, void *state, const struct isl_buffer_fill_state_info *restrict info); void isl_null_fill_state(const struct isl_device *dev, void *state, struct isl_extent3d size); #define isl_emit_depth_stencil_hiz(dev, batch, ...) \ isl_emit_depth_stencil_hiz_s((dev), (batch), \ &(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ }) void isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch, const struct isl_depth_stencil_hiz_emit_info *restrict info); void isl_surf_fill_image_param(const struct isl_device *dev, struct brw_image_param *param, const struct isl_surf *surf, const struct isl_view *view); void isl_buffer_fill_image_param(const struct isl_device *dev, struct brw_image_param *param, enum isl_format format, uint64_t size); /** * Alignment of the upper-left sample of each subimage, in units of surface * elements. */ static inline struct isl_extent3d isl_surf_get_image_alignment_el(const struct isl_surf *surf) { return surf->image_alignment_el; } /** * Alignment of the upper-left sample of each subimage, in units of surface * samples. */ static inline struct isl_extent3d isl_surf_get_image_alignment_sa(const struct isl_surf *surf) { const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); return isl_extent3d(fmtl->bw * surf->image_alignment_el.w, fmtl->bh * surf->image_alignment_el.h, fmtl->bd * surf->image_alignment_el.d); } /** * Pitch between vertically adjacent surface elements, in bytes. */ static inline uint32_t isl_surf_get_row_pitch(const struct isl_surf *surf) { return surf->row_pitch; } /** * Pitch between vertically adjacent surface elements, in units of surface elements. */ static inline uint32_t isl_surf_get_row_pitch_el(const struct isl_surf *surf) { const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); assert(surf->row_pitch % (fmtl->bpb / 8) == 0); return surf->row_pitch / (fmtl->bpb / 8); } /** * Pitch between physical array slices, in rows of surface elements. */ static inline uint32_t isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf) { return surf->array_pitch_el_rows; } /** * Pitch between physical array slices, in units of surface elements. */ static inline uint32_t isl_surf_get_array_pitch_el(const struct isl_surf *surf) { return isl_surf_get_array_pitch_el_rows(surf) * isl_surf_get_row_pitch_el(surf); } /** * Pitch between physical array slices, in rows of surface samples. */ static inline uint32_t isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf) { const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf); } /** * Pitch between physical array slices, in bytes. */ static inline uint32_t isl_surf_get_array_pitch(const struct isl_surf *surf) { return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch; } /** * Calculate the offset, in units of surface samples, to a subimage in the * surface. * * @invariant level < surface levels * @invariant logical_array_layer < logical array length of surface * @invariant logical_z_offset_px < logical depth of surface at level */ void isl_surf_get_image_offset_sa(const struct isl_surf *surf, uint32_t level, uint32_t logical_array_layer, uint32_t logical_z_offset_px, uint32_t *x_offset_sa, uint32_t *y_offset_sa); /** * Calculate the offset, in units of surface elements, to a subimage in the * surface. * * @invariant level < surface levels * @invariant logical_array_layer < logical array length of surface * @invariant logical_z_offset_px < logical depth of surface at level */ void isl_surf_get_image_offset_el(const struct isl_surf *surf, uint32_t level, uint32_t logical_array_layer, uint32_t logical_z_offset_px, uint32_t *x_offset_el, uint32_t *y_offset_el); /** * Calculate the offset, in bytes and intratile surface samples, to a * subimage in the surface. * * This is equivalent to calling isl_surf_get_image_offset_el, passing the * result to isl_tiling_get_intratile_offset_el, and converting the tile * offsets to samples. * * @invariant level < surface levels * @invariant logical_array_layer < logical array length of surface * @invariant logical_z_offset_px < logical depth of surface at level */ void isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf, uint32_t level, uint32_t logical_array_layer, uint32_t logical_z_offset_px, uint32_t *offset_B, uint32_t *x_offset_sa, uint32_t *y_offset_sa); /** * Create an isl_surf that represents a particular subimage in the surface. * * The newly created surface will have a single miplevel and array slice. The * surface lives at the returned byte and intratile offsets, in samples. * * It is safe to call this function with surf == image_surf. * * @invariant level < surface levels * @invariant logical_array_layer < logical array length of surface * @invariant logical_z_offset_px < logical depth of surface at level */ void isl_surf_get_image_surf(const struct isl_device *dev, const struct isl_surf *surf, uint32_t level, uint32_t logical_array_layer, uint32_t logical_z_offset_px, struct isl_surf *image_surf, uint32_t *offset_B, uint32_t *x_offset_sa, uint32_t *y_offset_sa); /** * @brief Calculate the intratile offsets to a surface. * * In @a base_address_offset return the offset from the base of the surface to * the base address of the first tile of the subimage. In @a x_offset_B and * @a y_offset_rows, return the offset, in units of bytes and rows, from the * tile's base to the subimage's first surface element. The x and y offsets * are intratile offsets; that is, they do not exceed the boundary of the * surface's tiling format. */ void isl_tiling_get_intratile_offset_el(enum isl_tiling tiling, uint32_t bpb, uint32_t row_pitch, uint32_t total_x_offset_el, uint32_t total_y_offset_el, uint32_t *base_address_offset, uint32_t *x_offset_el, uint32_t *y_offset_el); static inline void isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling, enum isl_format format, uint32_t row_pitch, uint32_t total_x_offset_sa, uint32_t total_y_offset_sa, uint32_t *base_address_offset, uint32_t *x_offset_sa, uint32_t *y_offset_sa) { const struct isl_format_layout *fmtl = isl_format_get_layout(format); /* For computing the intratile offsets, we actually want a strange unit * which is samples for multisampled surfaces but elements for compressed * surfaces. */ assert(total_x_offset_sa % fmtl->bw == 0); assert(total_y_offset_sa % fmtl->bh == 0); const uint32_t total_x_offset = total_x_offset_sa / fmtl->bw; const uint32_t total_y_offset = total_y_offset_sa / fmtl->bh; isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch, total_x_offset, total_y_offset, base_address_offset, x_offset_sa, y_offset_sa); *x_offset_sa *= fmtl->bw; *y_offset_sa *= fmtl->bh; } /** * @brief Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat * * @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT * @pre surf->format must be a valid format for depth surfaces */ uint32_t isl_surf_get_depth_format(const struct isl_device *dev, const struct isl_surf *surf); #ifdef __cplusplus } #endif #endif /* ISL_H */