/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file brw_vec4_tcs.cpp * * Tessellaton control shader specific code derived from the vec4_visitor class. */ #include "brw_nir.h" #include "brw_vec4_tcs.h" #include "brw_fs.h" #include "common/gen_debug.h" namespace brw { vec4_tcs_visitor::vec4_tcs_visitor(const struct brw_compiler *compiler, void *log_data, const struct brw_tcs_prog_key *key, struct brw_tcs_prog_data *prog_data, const nir_shader *nir, void *mem_ctx, int shader_time_index, const struct brw_vue_map *input_vue_map) : vec4_visitor(compiler, log_data, &key->tex, &prog_data->base, nir, mem_ctx, false, shader_time_index), input_vue_map(input_vue_map), key(key) { } void vec4_tcs_visitor::setup_payload() { int reg = 0; /* The payload always contains important data in r0, which contains * the URB handles that are passed on to the URB write at the end * of the thread. */ reg++; /* r1.0 - r4.7 may contain the input control point URB handles, * which we use to pull vertex data. */ reg += 4; /* Push constants may start at r5.0 */ reg = setup_uniforms(reg); this->first_non_payload_grf = reg; } void vec4_tcs_visitor::emit_prolog() { invocation_id = src_reg(this, glsl_type::uint_type); emit(TCS_OPCODE_GET_INSTANCE_ID, dst_reg(invocation_id)); /* HS threads are dispatched with the dispatch mask set to 0xFF. * If there are an odd number of output vertices, then the final * HS instance dispatched will only have its bottom half doing real * work, and so we need to disable the upper half: */ if (nir->info.tess.tcs_vertices_out % 2) { emit(CMP(dst_null_d(), invocation_id, brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L)); /* Matching ENDIF is in emit_thread_end() */ emit(IF(BRW_PREDICATE_NORMAL)); } } void vec4_tcs_visitor::emit_thread_end() { vec4_instruction *inst; current_annotation = "thread end"; if (nir->info.tess.tcs_vertices_out % 2) { emit(BRW_OPCODE_ENDIF); } if (devinfo->gen == 7) { struct brw_tcs_prog_data *tcs_prog_data = (struct brw_tcs_prog_data *) prog_data; current_annotation = "release input vertices"; /* Synchronize all threads, so we know that no one is still * using the input URB handles. */ if (tcs_prog_data->instances > 1) { dst_reg header = dst_reg(this, glsl_type::uvec4_type); emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header); emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header)); } /* Make thread 0 (invocations <1, 0>) release pairs of ICP handles. * We want to compare the bottom half of invocation_id with 0, but * use that truth value for the top half as well. Unfortunately, * we don't have stride in the vec4 world, nor UV immediates in * align16, so we need an opcode to get invocation_id<0,4,0>. */ set_condmod(BRW_CONDITIONAL_Z, emit(TCS_OPCODE_SRC0_010_IS_ZERO, dst_null_d(), invocation_id)); emit(IF(BRW_PREDICATE_NORMAL)); for (unsigned i = 0; i < key->input_vertices; i += 2) { /* If we have an odd number of input vertices, the last will be * unpaired. We don't want to use an interleaved URB write in * that case. */ const bool is_unpaired = i == key->input_vertices - 1; dst_reg header(this, glsl_type::uvec4_type); emit(TCS_OPCODE_RELEASE_INPUT, header, brw_imm_ud(i), brw_imm_ud(is_unpaired)); } emit(BRW_OPCODE_ENDIF); } if (unlikely(INTEL_DEBUG & DEBUG_SHADER_TIME)) emit_shader_time_end(); inst = emit(TCS_OPCODE_THREAD_END); inst->base_mrf = 14; inst->mlen = 2; } void vec4_tcs_visitor::emit_input_urb_read(const dst_reg &dst, const src_reg &vertex_index, unsigned base_offset, unsigned first_component, const src_reg &indirect_offset) { vec4_instruction *inst; dst_reg temp(this, glsl_type::ivec4_type); temp.type = dst.type; /* Set up the message header to reference the proper parts of the URB */ dst_reg header = dst_reg(this, glsl_type::uvec4_type); inst = emit(TCS_OPCODE_SET_INPUT_URB_OFFSETS, header, vertex_index, indirect_offset); inst->force_writemask_all = true; /* Read into a temporary, ignoring writemasking. */ inst = emit(VEC4_OPCODE_URB_READ, temp, src_reg(header)); inst->offset = base_offset; inst->mlen = 1; inst->base_mrf = -1; /* Copy the temporary to the destination to deal with writemasking. * * Also attempt to deal with gl_PointSize being in the .w component. */ if (inst->offset == 0 && indirect_offset.file == BAD_FILE) { emit(MOV(dst, swizzle(src_reg(temp), BRW_SWIZZLE_WWWW))); } else { src_reg src = src_reg(temp); src.swizzle = BRW_SWZ_COMP_INPUT(first_component); emit(MOV(dst, src)); } } void vec4_tcs_visitor::emit_output_urb_read(const dst_reg &dst, unsigned base_offset, unsigned first_component, const src_reg &indirect_offset) { vec4_instruction *inst; /* Set up the message header to reference the proper parts of the URB */ dst_reg header = dst_reg(this, glsl_type::uvec4_type); inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, header, brw_imm_ud(dst.writemask << first_component), indirect_offset); inst->force_writemask_all = true; vec4_instruction *read = emit(VEC4_OPCODE_URB_READ, dst, src_reg(header)); read->offset = base_offset; read->mlen = 1; read->base_mrf = -1; if (first_component) { /* Read into a temporary and copy with a swizzle and writemask. */ read->dst = retype(dst_reg(this, glsl_type::ivec4_type), dst.type); emit(MOV(dst, swizzle(src_reg(read->dst), BRW_SWZ_COMP_INPUT(first_component)))); } } void vec4_tcs_visitor::emit_urb_write(const src_reg &value, unsigned writemask, unsigned base_offset, const src_reg &indirect_offset) { if (writemask == 0) return; src_reg message(this, glsl_type::uvec4_type, 2); vec4_instruction *inst; inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, dst_reg(message), brw_imm_ud(writemask), indirect_offset); inst->force_writemask_all = true; inst = emit(MOV(byte_offset(dst_reg(retype(message, value.type)), REG_SIZE), value)); inst->force_writemask_all = true; inst = emit(TCS_OPCODE_URB_WRITE, dst_null_f(), message); inst->offset = base_offset; inst->mlen = 2; inst->base_mrf = -1; } void vec4_tcs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr) { switch (instr->intrinsic) { case nir_intrinsic_load_invocation_id: emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD), invocation_id)); break; case nir_intrinsic_load_primitive_id: emit(TCS_OPCODE_GET_PRIMITIVE_ID, get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD)); break; case nir_intrinsic_load_patch_vertices_in: emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D), brw_imm_d(key->input_vertices))); break; case nir_intrinsic_load_per_vertex_input: { src_reg indirect_offset = get_indirect_offset(instr); unsigned imm_offset = instr->const_index[0]; nir_const_value *vertex_const = nir_src_as_const_value(instr->src[0]); src_reg vertex_index = vertex_const ? src_reg(brw_imm_ud(vertex_const->u32[0])) : get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1); unsigned first_component = nir_intrinsic_component(instr); if (nir_dest_bit_size(instr->dest) == 64) { /* We need to emit up to two 32-bit URB reads, then shuffle * the result into a temporary, then move to the destination * honoring the writemask * * We don't need to divide first_component by 2 because * emit_input_urb_read takes a 32-bit type. */ dst_reg tmp = dst_reg(this, glsl_type::dvec4_type); dst_reg tmp_d = retype(tmp, BRW_REGISTER_TYPE_D); emit_input_urb_read(tmp_d, vertex_index, imm_offset, first_component, indirect_offset); if (instr->num_components > 2) { emit_input_urb_read(byte_offset(tmp_d, REG_SIZE), vertex_index, imm_offset + 1, 0, indirect_offset); } src_reg tmp_src = retype(src_reg(tmp_d), BRW_REGISTER_TYPE_DF); dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type); shuffle_64bit_data(shuffled, tmp_src, false); dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_DF); dst.writemask = brw_writemask_for_size(instr->num_components); emit(MOV(dst, src_reg(shuffled))); } else { dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D); dst.writemask = brw_writemask_for_size(instr->num_components); emit_input_urb_read(dst, vertex_index, imm_offset, first_component, indirect_offset); } break; } case nir_intrinsic_load_input: unreachable("nir_lower_io should use load_per_vertex_input intrinsics"); break; case nir_intrinsic_load_output: case nir_intrinsic_load_per_vertex_output: { src_reg indirect_offset = get_indirect_offset(instr); unsigned imm_offset = instr->const_index[0]; dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D); dst.writemask = brw_writemask_for_size(instr->num_components); emit_output_urb_read(dst, imm_offset, nir_intrinsic_component(instr), indirect_offset); break; } case nir_intrinsic_store_output: case nir_intrinsic_store_per_vertex_output: { src_reg value = get_nir_src(instr->src[0]); unsigned mask = instr->const_index[1]; unsigned swiz = BRW_SWIZZLE_XYZW; src_reg indirect_offset = get_indirect_offset(instr); unsigned imm_offset = instr->const_index[0]; unsigned first_component = nir_intrinsic_component(instr); if (first_component) { if (nir_src_bit_size(instr->src[0]) == 64) first_component /= 2; assert(swiz == BRW_SWIZZLE_XYZW); swiz = BRW_SWZ_COMP_OUTPUT(first_component); mask = mask << first_component; } if (nir_src_bit_size(instr->src[0]) == 64) { /* For 64-bit data we need to shuffle the data before we write and * emit two messages. Also, since each channel is twice as large we * need to fix the writemask in each 32-bit message to account for it. */ value = swizzle(retype(value, BRW_REGISTER_TYPE_DF), swiz); dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type); shuffle_64bit_data(shuffled, value, true); src_reg shuffled_float = src_reg(retype(shuffled, BRW_REGISTER_TYPE_F)); for (int n = 0; n < 2; n++) { unsigned fixed_mask = 0; if (mask & WRITEMASK_X) fixed_mask |= WRITEMASK_XY; if (mask & WRITEMASK_Y) fixed_mask |= WRITEMASK_ZW; emit_urb_write(shuffled_float, fixed_mask, imm_offset, indirect_offset); shuffled_float = byte_offset(shuffled_float, REG_SIZE); mask >>= 2; imm_offset++; } } else { emit_urb_write(swizzle(value, swiz), mask, imm_offset, indirect_offset); } break; } case nir_intrinsic_barrier: { dst_reg header = dst_reg(this, glsl_type::uvec4_type); emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header); emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header)); break; } default: vec4_visitor::nir_emit_intrinsic(instr); } } extern "C" const unsigned * brw_compile_tcs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_tcs_prog_key *key, struct brw_tcs_prog_data *prog_data, const nir_shader *src_shader, int shader_time_index, char **error_str) { const struct gen_device_info *devinfo = compiler->devinfo; struct brw_vue_prog_data *vue_prog_data = &prog_data->base; const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_CTRL]; const unsigned *assembly; nir_shader *nir = nir_shader_clone(mem_ctx, src_shader); nir->info.outputs_written = key->outputs_written; nir->info.patch_outputs_written = key->patch_outputs_written; struct brw_vue_map input_vue_map; brw_compute_vue_map(devinfo, &input_vue_map, nir->info.inputs_read, nir->info.separate_shader); brw_compute_tess_vue_map(&vue_prog_data->vue_map, nir->info.outputs_written, nir->info.patch_outputs_written); nir = brw_nir_apply_sampler_key(nir, compiler, &key->tex, is_scalar); brw_nir_lower_vue_inputs(nir, &input_vue_map); brw_nir_lower_tcs_outputs(nir, &vue_prog_data->vue_map, key->tes_primitive_mode); if (key->quads_workaround) brw_nir_apply_tcs_quads_workaround(nir); nir = brw_postprocess_nir(nir, compiler, is_scalar); if (is_scalar) prog_data->instances = DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, 8); else prog_data->instances = DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, 2); /* Compute URB entry size. The maximum allowed URB entry size is 32k. * That divides up as follows: * * 32 bytes for the patch header (tessellation factors) * 480 bytes for per-patch varyings (a varying component is 4 bytes and * gl_MaxTessPatchComponents = 120) * 16384 bytes for per-vertex varyings (a varying component is 4 bytes, * gl_MaxPatchVertices = 32 and * gl_MaxTessControlOutputComponents = 128) * * 15808 bytes left for varying packing overhead */ const int num_per_patch_slots = vue_prog_data->vue_map.num_per_patch_slots; const int num_per_vertex_slots = vue_prog_data->vue_map.num_per_vertex_slots; unsigned output_size_bytes = 0; /* Note that the patch header is counted in num_per_patch_slots. */ output_size_bytes += num_per_patch_slots * 16; output_size_bytes += nir->info.tess.tcs_vertices_out * num_per_vertex_slots * 16; assert(output_size_bytes >= 1); if (output_size_bytes > GEN7_MAX_HS_URB_ENTRY_SIZE_BYTES) return NULL; /* URB entry sizes are stored as a multiple of 64 bytes. */ vue_prog_data->urb_entry_size = ALIGN(output_size_bytes, 64) / 64; /* On Cannonlake software shall not program an allocation size that * specifies a size that is a multiple of 3 64B (512-bit) cachelines. */ if (devinfo->gen == 10 && vue_prog_data->urb_entry_size % 3 == 0) vue_prog_data->urb_entry_size++; /* HS does not use the usual payload pushing from URB to GRFs, * because we don't have enough registers for a full-size payload, and * the hardware is broken on Haswell anyway. */ vue_prog_data->urb_read_length = 0; if (unlikely(INTEL_DEBUG & DEBUG_TCS)) { fprintf(stderr, "TCS Input "); brw_print_vue_map(stderr, &input_vue_map); fprintf(stderr, "TCS Output "); brw_print_vue_map(stderr, &vue_prog_data->vue_map); } if (is_scalar) { fs_visitor v(compiler, log_data, mem_ctx, (void *) key, &prog_data->base.base, NULL, nir, 8, shader_time_index, &input_vue_map); if (!v.run_tcs_single_patch()) { if (error_str) *error_str = ralloc_strdup(mem_ctx, v.fail_msg); return NULL; } prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base.base, v.promoted_constants, false, MESA_SHADER_TESS_CTRL); if (unlikely(INTEL_DEBUG & DEBUG_TCS)) { g.enable_debug(ralloc_asprintf(mem_ctx, "%s tessellation control shader %s", nir->info.label ? nir->info.label : "unnamed", nir->info.name)); } g.generate_code(v.cfg, 8); assembly = g.get_assembly(); } else { vec4_tcs_visitor v(compiler, log_data, key, prog_data, nir, mem_ctx, shader_time_index, &input_vue_map); if (!v.run()) { if (error_str) *error_str = ralloc_strdup(mem_ctx, v.fail_msg); return NULL; } if (unlikely(INTEL_DEBUG & DEBUG_TCS)) v.dump_instructions(); assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir, &prog_data->base, v.cfg); } return assembly; } } /* namespace brw */