/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_nir.h" #include "brw_shader.h" #include "dev/gen_debug.h" #include "compiler/glsl_types.h" #include "compiler/nir/nir_builder.h" #include "util/u_math.h" static bool remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr, GLenum primitive_mode) { const int location = nir_intrinsic_base(intr); const unsigned component = nir_intrinsic_component(intr); bool out_of_bounds; if (location == VARYING_SLOT_TESS_LEVEL_INNER) { switch (primitive_mode) { case GL_QUADS: /* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */ nir_intrinsic_set_base(intr, 0); nir_intrinsic_set_component(intr, 3 - component); out_of_bounds = false; break; case GL_TRIANGLES: /* gl_TessLevelInner[0] lives at DWord 4. */ nir_intrinsic_set_base(intr, 1); out_of_bounds = component > 0; break; case GL_ISOLINES: out_of_bounds = true; break; default: unreachable("Bogus tessellation domain"); } } else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) { if (primitive_mode == GL_ISOLINES) { /* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */ nir_intrinsic_set_base(intr, 1); nir_intrinsic_set_component(intr, 2 + nir_intrinsic_component(intr)); out_of_bounds = component > 1; } else { /* Triangles use DWords 7-5 (reversed); Quads use 7-4 (reversed) */ nir_intrinsic_set_base(intr, 1); nir_intrinsic_set_component(intr, 3 - nir_intrinsic_component(intr)); out_of_bounds = component == 3 && primitive_mode == GL_TRIANGLES; } } else { return false; } if (out_of_bounds) { if (nir_intrinsic_infos[intr->intrinsic].has_dest) { b->cursor = nir_before_instr(&intr->instr); nir_ssa_def *undef = nir_ssa_undef(b, 1, 32); nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_src_for_ssa(undef)); } nir_instr_remove(&intr->instr); } return true; } static bool is_input(nir_intrinsic_instr *intrin) { return intrin->intrinsic == nir_intrinsic_load_input || intrin->intrinsic == nir_intrinsic_load_per_vertex_input || intrin->intrinsic == nir_intrinsic_load_interpolated_input; } static bool is_output(nir_intrinsic_instr *intrin) { return intrin->intrinsic == nir_intrinsic_load_output || intrin->intrinsic == nir_intrinsic_load_per_vertex_output || intrin->intrinsic == nir_intrinsic_store_output || intrin->intrinsic == nir_intrinsic_store_per_vertex_output; } static bool remap_patch_urb_offsets(nir_block *block, nir_builder *b, const struct brw_vue_map *vue_map, GLenum tes_primitive_mode) { const bool is_passthrough_tcs = b->shader->info.name && strcmp(b->shader->info.name, "passthrough") == 0; nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); gl_shader_stage stage = b->shader->info.stage; if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) || (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) { if (!is_passthrough_tcs && remap_tess_levels(b, intrin, tes_primitive_mode)) continue; int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]]; assert(vue_slot != -1); intrin->const_index[0] = vue_slot; nir_src *vertex = nir_get_io_vertex_index_src(intrin); if (vertex) { if (nir_src_is_const(*vertex)) { intrin->const_index[0] += nir_src_as_uint(*vertex) * vue_map->num_per_vertex_slots; } else { b->cursor = nir_before_instr(&intrin->instr); /* Multiply by the number of per-vertex slots. */ nir_ssa_def *vertex_offset = nir_imul(b, nir_ssa_for_src(b, *vertex, 1), nir_imm_int(b, vue_map->num_per_vertex_slots)); /* Add it to the existing offset */ nir_src *offset = nir_get_io_offset_src(intrin); nir_ssa_def *total_offset = nir_iadd(b, vertex_offset, nir_ssa_for_src(b, *offset, 1)); nir_instr_rewrite_src(&intrin->instr, offset, nir_src_for_ssa(total_offset)); } } } } return true; } void brw_nir_lower_vs_inputs(nir_shader *nir, const uint8_t *vs_attrib_wa_flags) { /* Start with the location of the variable's base. */ foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } /* Now use nir_lower_io to walk dereference chains. Attribute arrays are * loaded as one vec4 or dvec4 per element (or matrix column), depending on * whether it is a double-precision type or not. */ nir_lower_io(nir, nir_var_shader_in, type_size_vec4, nir_lower_io_lower_64bit_to_32); /* This pass needs actual constants */ nir_opt_constant_folding(nir); nir_io_add_const_offset_to_base(nir, nir_var_shader_in); brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags); /* The last step is to remap VERT_ATTRIB_* to actual registers */ /* Whether or not we have any system generated values. gl_DrawID is not * included here as it lives in its own vec4. */ const bool has_sgvs = nir->info.system_values_read & (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) | BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) | BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) | BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)); const unsigned num_inputs = util_bitcount64(nir->info.inputs_read); nir_foreach_function(function, nir) { if (!function->impl) continue; nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block(block, function->impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_first_vertex: case nir_intrinsic_load_base_instance: case nir_intrinsic_load_vertex_id_zero_base: case nir_intrinsic_load_instance_id: case nir_intrinsic_load_is_indexed_draw: case nir_intrinsic_load_draw_id: { b.cursor = nir_after_instr(&intrin->instr); /* gl_VertexID and friends are stored by the VF as the last * vertex element. We convert them to load_input intrinsics at * the right location. */ nir_intrinsic_instr *load = nir_intrinsic_instr_create(nir, nir_intrinsic_load_input); load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); nir_intrinsic_set_base(load, num_inputs); switch (intrin->intrinsic) { case nir_intrinsic_load_first_vertex: nir_intrinsic_set_component(load, 0); break; case nir_intrinsic_load_base_instance: nir_intrinsic_set_component(load, 1); break; case nir_intrinsic_load_vertex_id_zero_base: nir_intrinsic_set_component(load, 2); break; case nir_intrinsic_load_instance_id: nir_intrinsic_set_component(load, 3); break; case nir_intrinsic_load_draw_id: case nir_intrinsic_load_is_indexed_draw: /* gl_DrawID and IsIndexedDraw are stored right after * gl_VertexID and friends if any of them exist. */ nir_intrinsic_set_base(load, num_inputs + has_sgvs); if (intrin->intrinsic == nir_intrinsic_load_draw_id) nir_intrinsic_set_component(load, 0); else nir_intrinsic_set_component(load, 1); break; default: unreachable("Invalid system value intrinsic"); } load->num_components = 1; nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL); nir_builder_instr_insert(&b, &load->instr); nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(&load->dest.ssa)); nir_instr_remove(&intrin->instr); break; } case nir_intrinsic_load_input: { /* Attributes come in a contiguous block, ordered by their * gl_vert_attrib value. That means we can compute the slot * number for an attribute by masking out the enabled attributes * before it and counting the bits. */ int attr = nir_intrinsic_base(intrin); int slot = util_bitcount64(nir->info.inputs_read & BITFIELD64_MASK(attr)); nir_intrinsic_set_base(intrin, slot); break; } default: break; /* Nothing to do */ } } } } } void brw_nir_lower_vue_inputs(nir_shader *nir, const struct brw_vue_map *vue_map) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } /* Inputs are stored in vec4 slots, so use type_size_vec4(). */ nir_lower_io(nir, nir_var_shader_in, type_size_vec4, nir_lower_io_lower_64bit_to_32); /* This pass needs actual constants */ nir_opt_constant_folding(nir); nir_io_add_const_offset_to_base(nir, nir_var_shader_in); nir_foreach_function(function, nir) { if (!function->impl) continue; nir_foreach_block(block, function->impl) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic == nir_intrinsic_load_input || intrin->intrinsic == nir_intrinsic_load_per_vertex_input) { /* Offset 0 is the VUE header, which contains * VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and * VARYING_SLOT_PSIZ [.w]. */ int varying = nir_intrinsic_base(intrin); int vue_slot; switch (varying) { case VARYING_SLOT_PSIZ: nir_intrinsic_set_base(intrin, 0); nir_intrinsic_set_component(intrin, 3); break; default: vue_slot = vue_map->varying_to_slot[varying]; assert(vue_slot != -1); nir_intrinsic_set_base(intrin, vue_slot); break; } } } } } } void brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_in, type_size_vec4, nir_lower_io_lower_64bit_to_32); /* This pass needs actual constants */ nir_opt_constant_folding(nir); nir_io_add_const_offset_to_base(nir, nir_var_shader_in); nir_foreach_function(function, nir) { if (function->impl) { nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block(block, function->impl) { remap_patch_urb_offsets(block, &b, vue_map, nir->info.tess.primitive_mode); } } } } void brw_nir_lower_fs_inputs(nir_shader *nir, const struct gen_device_info *devinfo, const struct brw_wm_prog_key *key) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; /* Apply default interpolation mode. * * Everything defaults to smooth except for the legacy GL color * built-in variables, which might be flat depending on API state. */ if (var->data.interpolation == INTERP_MODE_NONE) { const bool flat = key->flat_shade && (var->data.location == VARYING_SLOT_COL0 || var->data.location == VARYING_SLOT_COL1); var->data.interpolation = flat ? INTERP_MODE_FLAT : INTERP_MODE_SMOOTH; } /* On Ironlake and below, there is only one interpolation mode. * Centroid interpolation doesn't mean anything on this hardware -- * there is no multisampling. */ if (devinfo->gen < 6) { var->data.centroid = false; var->data.sample = false; } } nir_lower_io_options lower_io_options = nir_lower_io_lower_64bit_to_32; if (key->persample_interp) lower_io_options |= nir_lower_io_force_sample_interpolation; nir_lower_io(nir, nir_var_shader_in, type_size_vec4, lower_io_options); if (devinfo->gen >= 11) nir_lower_interpolation(nir, ~0); /* This pass needs actual constants */ nir_opt_constant_folding(nir); nir_io_add_const_offset_to_base(nir, nir_var_shader_in); } void brw_nir_lower_vue_outputs(nir_shader *nir) { nir_foreach_variable(var, &nir->outputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_out, type_size_vec4, nir_lower_io_lower_64bit_to_32); } void brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map, GLenum tes_primitive_mode) { nir_foreach_variable(var, &nir->outputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_out, type_size_vec4, nir_lower_io_lower_64bit_to_32); /* This pass needs actual constants */ nir_opt_constant_folding(nir); nir_io_add_const_offset_to_base(nir, nir_var_shader_out); nir_foreach_function(function, nir) { if (function->impl) { nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block(block, function->impl) { remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode); } } } } void brw_nir_lower_fs_outputs(nir_shader *nir) { nir_foreach_variable(var, &nir->outputs) { var->data.driver_location = SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) | SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION); } nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0); } #define OPT(pass, ...) ({ \ bool this_progress = false; \ NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \ if (this_progress) \ progress = true; \ this_progress; \ }) static nir_variable_mode brw_nir_no_indirect_mask(const struct brw_compiler *compiler, gl_shader_stage stage) { nir_variable_mode indirect_mask = 0; if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput) indirect_mask |= nir_var_shader_in; if (compiler->glsl_compiler_options[stage].EmitNoIndirectOutput) indirect_mask |= nir_var_shader_out; if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp) indirect_mask |= nir_var_function_temp; return indirect_mask; } void brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler, bool is_scalar, bool allow_copies) { nir_variable_mode indirect_mask = brw_nir_no_indirect_mask(compiler, nir->info.stage); bool progress; unsigned lower_flrp = (nir->options->lower_flrp16 ? 16 : 0) | (nir->options->lower_flrp32 ? 32 : 0) | (nir->options->lower_flrp64 ? 64 : 0); do { progress = false; OPT(nir_split_array_vars, nir_var_function_temp); OPT(nir_shrink_vec_array_vars, nir_var_function_temp); OPT(nir_opt_deref); OPT(nir_lower_vars_to_ssa); if (allow_copies) { /* Only run this pass in the first call to brw_nir_optimize. Later * calls assume that we've lowered away any copy_deref instructions * and we don't want to introduce any more. */ OPT(nir_opt_find_array_copies); } OPT(nir_opt_copy_prop_vars); OPT(nir_opt_dead_write_vars); OPT(nir_opt_combine_stores, nir_var_all); if (is_scalar) { OPT(nir_lower_alu_to_scalar, NULL, NULL); } OPT(nir_copy_prop); if (is_scalar) { OPT(nir_lower_phis_to_scalar); } OPT(nir_copy_prop); OPT(nir_opt_dce); OPT(nir_opt_cse); OPT(nir_opt_combine_stores, nir_var_all); /* Passing 0 to the peephole select pass causes it to convert * if-statements that contain only move instructions in the branches * regardless of the count. * * Passing 1 to the peephole select pass causes it to convert * if-statements that contain at most a single ALU instruction (total) * in both branches. Before Gen6, some math instructions were * prohibitively expensive and the results of compare operations need an * extra resolve step. For these reasons, this pass is more harmful * than good on those platforms. * * For indirect loads of uniforms (push constants), we assume that array * indices will nearly always be in bounds and the cost of the load is * low. Therefore there shouldn't be a performance benefit to avoid it. * However, in vec4 tessellation shaders, these loads operate by * actually pulling from memory. */ const bool is_vec4_tessellation = !is_scalar && (nir->info.stage == MESA_SHADER_TESS_CTRL || nir->info.stage == MESA_SHADER_TESS_EVAL); OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false); OPT(nir_opt_peephole_select, 8, !is_vec4_tessellation, compiler->devinfo->gen >= 6); OPT(nir_opt_intrinsics); OPT(nir_opt_idiv_const, 32); OPT(nir_opt_algebraic); OPT(nir_opt_constant_folding); if (lower_flrp != 0) { if (OPT(nir_lower_flrp, lower_flrp, false /* always_precise */, compiler->devinfo->gen >= 6)) { OPT(nir_opt_constant_folding); } /* Nothing should rematerialize any flrps, so we only need to do this * lowering once. */ lower_flrp = 0; } OPT(nir_opt_dead_cf); if (OPT(nir_opt_trivial_continues)) { /* If nir_opt_trivial_continues makes progress, then we need to clean * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll * to make progress. */ OPT(nir_copy_prop); OPT(nir_opt_dce); } OPT(nir_opt_if, false); OPT(nir_opt_conditional_discard); if (nir->options->max_unroll_iterations != 0) { OPT(nir_opt_loop_unroll, indirect_mask); } OPT(nir_opt_remove_phis); OPT(nir_opt_undef); OPT(nir_lower_pack); } while (progress); /* Workaround Gfxbench unused local sampler variable which will trigger an * assert in the opt_large_constants pass. */ OPT(nir_remove_dead_variables, nir_var_function_temp); } static unsigned lower_bit_size_callback(const nir_alu_instr *alu, UNUSED void *data) { assert(alu->dest.dest.is_ssa); if (alu->dest.dest.ssa.bit_size >= 32) return 0; const struct brw_compiler *compiler = (const struct brw_compiler *) data; switch (alu->op) { case nir_op_idiv: case nir_op_imod: case nir_op_irem: case nir_op_udiv: case nir_op_umod: case nir_op_fceil: case nir_op_ffloor: case nir_op_ffract: case nir_op_fround_even: case nir_op_ftrunc: return 32; case nir_op_frcp: case nir_op_frsq: case nir_op_fsqrt: case nir_op_fpow: case nir_op_fexp2: case nir_op_flog2: case nir_op_fsin: case nir_op_fcos: return compiler->devinfo->gen < 9 ? 32 : 0; default: return 0; } } /* Does some simple lowering and runs the standard suite of optimizations * * This is intended to be called more-or-less directly after you get the * shader out of GLSL or some other source. While it is geared towards i965, * it is not at all generator-specific except for the is_scalar flag. Even * there, it is safe to call with is_scalar = false for a shader that is * intended for the FS backend as long as nir_optimize is called again with * is_scalar = true to scalarize everything prior to code gen. */ void brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir, const nir_shader *softfp64) { const struct gen_device_info *devinfo = compiler->devinfo; UNUSED bool progress; /* Written by OPT */ const bool is_scalar = compiler->scalar_stage[nir->info.stage]; if (is_scalar) { OPT(nir_lower_alu_to_scalar, NULL, NULL); } if (nir->info.stage == MESA_SHADER_GEOMETRY) OPT(nir_lower_gs_intrinsics); /* See also brw_nir_trig_workarounds.py */ if (compiler->precise_trig && !(devinfo->gen >= 10 || devinfo->is_kabylake)) OPT(brw_nir_apply_trig_workarounds); static const nir_lower_tex_options tex_options = { .lower_txp = ~0, .lower_txf_offset = true, .lower_rect_offset = true, .lower_tex_without_implicit_lod = true, .lower_txd_cube_map = true, .lower_txb_shadow_clamp = true, .lower_txd_shadow_clamp = true, .lower_txd_offset_clamp = true, .lower_tg4_offsets = true, }; OPT(nir_lower_tex, &tex_options); OPT(nir_normalize_cubemap_coords); OPT(nir_lower_global_vars_to_local); OPT(nir_split_var_copies); OPT(nir_split_struct_vars, nir_var_function_temp); brw_nir_optimize(nir, compiler, is_scalar, true); OPT(nir_lower_doubles, softfp64, nir->options->lower_doubles_options); OPT(nir_lower_int64, nir->options->lower_int64_options); OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler); if (is_scalar) { OPT(nir_lower_load_const_to_scalar); } /* Lower a bunch of stuff */ OPT(nir_lower_var_copies); /* This needs to be run after the first optimization pass but before we * lower indirect derefs away */ if (compiler->supports_shader_constants) { OPT(nir_opt_large_constants, NULL, 32); } OPT(nir_lower_system_values); const nir_lower_subgroups_options subgroups_options = { .ballot_bit_size = 32, .lower_to_scalar = true, .lower_vote_trivial = !is_scalar, .lower_shuffle = true, }; OPT(nir_lower_subgroups, &subgroups_options); OPT(nir_lower_clip_cull_distance_arrays); if ((devinfo->gen >= 8 || devinfo->is_haswell) && is_scalar) { /* TODO: Yes, we could in theory do this on gen6 and earlier. However, * that would require plumbing through support for these indirect * scratch read/write messages with message registers and that's just a * pain. Also, the primary benefit of this is for compute shaders which * won't run on gen6 and earlier anyway. * * On gen7 and earlier the scratch space size is limited to 12kB. * By enabling this optimization we may easily exceed this limit without * having any fallback. * * The threshold of 128B was chosen semi-arbitrarily. The idea is that * 128B per channel on a SIMD8 program is 32 registers or 25% of the * register file. Any array that large is likely to cause pressure * issues. Also, this value is sufficiently high that the benchmarks * known to suffer from large temporary array issues are helped but * nothing else in shader-db is hurt except for maybe that one kerbal * space program shader. */ OPT(nir_lower_vars_to_scratch, nir_var_function_temp, 128, glsl_get_natural_size_align_bytes); } nir_variable_mode indirect_mask = brw_nir_no_indirect_mask(compiler, nir->info.stage); OPT(nir_lower_indirect_derefs, indirect_mask); /* Lower array derefs of vectors for SSBO and UBO loads. For both UBOs and * SSBOs, our back-end is capable of loading an entire vec4 at a time and * we would like to take advantage of that whenever possible regardless of * whether or not the app gives us full loads. This should allow the * optimizer to combine UBO and SSBO load operations and save us some send * messages. */ OPT(nir_lower_array_deref_of_vec, nir_var_mem_ubo | nir_var_mem_ssbo, nir_lower_direct_array_deref_of_vec_load); /* Get rid of split copies */ brw_nir_optimize(nir, compiler, is_scalar, false); } void brw_nir_link_shaders(const struct brw_compiler *compiler, nir_shader *producer, nir_shader *consumer) { nir_lower_io_arrays_to_elements(producer, consumer); nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements"); nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements"); const bool p_is_scalar = compiler->scalar_stage[producer->info.stage]; const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage]; if (p_is_scalar && c_is_scalar) { NIR_PASS_V(producer, nir_lower_io_to_scalar_early, nir_var_shader_out); NIR_PASS_V(consumer, nir_lower_io_to_scalar_early, nir_var_shader_in); brw_nir_optimize(producer, compiler, p_is_scalar, false); brw_nir_optimize(consumer, compiler, c_is_scalar, false); } if (nir_link_opt_varyings(producer, consumer)) brw_nir_optimize(consumer, compiler, c_is_scalar, false); NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_out); NIR_PASS_V(consumer, nir_remove_dead_variables, nir_var_shader_in); if (nir_remove_unused_varyings(producer, consumer)) { NIR_PASS_V(producer, nir_lower_global_vars_to_local); NIR_PASS_V(consumer, nir_lower_global_vars_to_local); /* The backend might not be able to handle indirects on * temporaries so we need to lower indirects on any of the * varyings we have demoted here. */ NIR_PASS_V(producer, nir_lower_indirect_derefs, brw_nir_no_indirect_mask(compiler, producer->info.stage)); NIR_PASS_V(consumer, nir_lower_indirect_derefs, brw_nir_no_indirect_mask(compiler, consumer->info.stage)); brw_nir_optimize(producer, compiler, p_is_scalar, false); brw_nir_optimize(consumer, compiler, c_is_scalar, false); } NIR_PASS_V(producer, nir_lower_io_to_vector, nir_var_shader_out); NIR_PASS_V(producer, nir_opt_combine_stores, nir_var_shader_out); NIR_PASS_V(consumer, nir_lower_io_to_vector, nir_var_shader_in); if (producer->info.stage != MESA_SHADER_TESS_CTRL) { /* Calling lower_io_to_vector creates output variable writes with * write-masks. On non-TCS outputs, the back-end can't handle it and we * need to call nir_lower_io_to_temporaries to get rid of them. This, * in turn, creates temporary variables and extra copy_deref intrinsics * that we need to clean up. */ NIR_PASS_V(producer, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(producer), true, false); NIR_PASS_V(producer, nir_lower_global_vars_to_local); NIR_PASS_V(producer, nir_split_var_copies); NIR_PASS_V(producer, nir_lower_var_copies); } } /* Prepare the given shader for codegen * * This function is intended to be called right before going into the actual * backend and is highly backend-specific. Also, once this function has been * called on a shader, it will no longer be in SSA form so most optimizations * will not work. */ void brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler, bool is_scalar) { const struct gen_device_info *devinfo = compiler->devinfo; bool debug_enabled = (INTEL_DEBUG & intel_debug_flag_for_shader_stage(nir->info.stage)); UNUSED bool progress; /* Written by OPT */ OPT(brw_nir_lower_mem_access_bit_sizes, devinfo); do { progress = false; OPT(nir_opt_algebraic_before_ffma); } while (progress); brw_nir_optimize(nir, compiler, is_scalar, false); if (OPT(nir_lower_int64, nir->options->lower_int64_options)) brw_nir_optimize(nir, compiler, is_scalar, false); if (devinfo->gen >= 6) { /* Try and fuse multiply-adds */ OPT(brw_nir_opt_peephole_ffma); } if (OPT(nir_opt_comparison_pre)) { OPT(nir_copy_prop); OPT(nir_opt_dce); OPT(nir_opt_cse); /* Do the select peepehole again. nir_opt_comparison_pre (combined with * the other optimization passes) will have removed at least one * instruction from one of the branches of the if-statement, so now it * might be under the threshold of conversion to bcsel. * * See brw_nir_optimize for the explanation of is_vec4_tessellation. */ const bool is_vec4_tessellation = !is_scalar && (nir->info.stage == MESA_SHADER_TESS_CTRL || nir->info.stage == MESA_SHADER_TESS_EVAL); OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false); OPT(nir_opt_peephole_select, 1, is_vec4_tessellation, compiler->devinfo->gen >= 6); } do { progress = false; if (OPT(nir_opt_algebraic_late)) { /* At this late stage, anything that makes more constants will wreak * havok on the vec4 backend. The handling of constants in the vec4 * backend is not good. */ if (is_scalar) { OPT(nir_opt_constant_folding); OPT(nir_copy_prop); } OPT(nir_opt_dce); OPT(nir_opt_cse); } } while (progress); OPT(brw_nir_lower_conversions); if (is_scalar) OPT(nir_lower_alu_to_scalar, NULL, NULL); OPT(nir_lower_to_source_mods, nir_lower_all_source_mods); OPT(nir_copy_prop); OPT(nir_opt_dce); OPT(nir_opt_move, nir_move_comparisons); OPT(nir_lower_bool_to_int32); OPT(nir_lower_locals_to_regs); if (unlikely(debug_enabled)) { /* Re-index SSA defs so we print more sensible numbers. */ nir_foreach_function(function, nir) { if (function->impl) nir_index_ssa_defs(function->impl); } fprintf(stderr, "NIR (SSA form) for %s shader:\n", _mesa_shader_stage_to_string(nir->info.stage)); nir_print_shader(nir, stderr); } OPT(nir_convert_from_ssa, true); if (!is_scalar) { OPT(nir_move_vec_src_uses_to_dest); OPT(nir_lower_vec_to_movs); } OPT(nir_opt_dce); if (OPT(nir_opt_rematerialize_compares)) OPT(nir_opt_dce); /* This is the last pass we run before we start emitting stuff. It * determines when we need to insert boolean resolves on Gen <= 5. We * run it last because it stashes data in instr->pass_flags and we don't * want that to be squashed by other NIR passes. */ if (devinfo->gen <= 5) brw_nir_analyze_boolean_resolves(nir); nir_sweep(nir); if (unlikely(debug_enabled)) { fprintf(stderr, "NIR (final form) for %s shader:\n", _mesa_shader_stage_to_string(nir->info.stage)); nir_print_shader(nir, stderr); } } static bool brw_nir_apply_sampler_key(nir_shader *nir, const struct brw_compiler *compiler, const struct brw_sampler_prog_key_data *key_tex) { const struct gen_device_info *devinfo = compiler->devinfo; nir_lower_tex_options tex_options = { .lower_txd_clamp_bindless_sampler = true, .lower_txd_clamp_if_sampler_index_not_lt_16 = true, }; /* Iron Lake and prior require lowering of all rectangle textures */ if (devinfo->gen < 6) tex_options.lower_rect = true; /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */ if (devinfo->gen < 8) { tex_options.saturate_s = key_tex->gl_clamp_mask[0]; tex_options.saturate_t = key_tex->gl_clamp_mask[1]; tex_options.saturate_r = key_tex->gl_clamp_mask[2]; } /* Prior to Haswell, we have to fake texture swizzle */ for (unsigned s = 0; s < MAX_SAMPLERS; s++) { if (key_tex->swizzles[s] == SWIZZLE_NOOP) continue; tex_options.swizzle_result |= (1 << s); for (unsigned c = 0; c < 4; c++) tex_options.swizzles[s][c] = GET_SWZ(key_tex->swizzles[s], c); } /* Prior to Haswell, we have to lower gradients on shadow samplers */ tex_options.lower_txd_shadow = devinfo->gen < 8 && !devinfo->is_haswell; tex_options.lower_y_uv_external = key_tex->y_uv_image_mask; tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask; tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask; tex_options.lower_xy_uxvx_external = key_tex->xy_uxvx_image_mask; tex_options.lower_ayuv_external = key_tex->ayuv_image_mask; tex_options.lower_xyuv_external = key_tex->xyuv_image_mask; /* Setup array of scaling factors for each texture. */ memcpy(&tex_options.scale_factors, &key_tex->scale_factors, sizeof(tex_options.scale_factors)); return nir_lower_tex(nir, &tex_options); } static unsigned get_subgroup_size(gl_shader_stage stage, const struct brw_base_prog_key *key, unsigned max_subgroup_size) { switch (key->subgroup_size_type) { case BRW_SUBGROUP_SIZE_API_CONSTANT: /* We have to use the global constant size. */ return BRW_SUBGROUP_SIZE; case BRW_SUBGROUP_SIZE_UNIFORM: /* It has to be uniform across all invocations but can vary per stage * if we want. This gives us a bit more freedom. * * For compute, brw_nir_apply_key is called per-dispatch-width so this * is the actual subgroup size and not a maximum. However, we only * invoke one size of any given compute shader so it's still guaranteed * to be uniform across invocations. */ return max_subgroup_size; case BRW_SUBGROUP_SIZE_VARYING: /* The subgroup size is allowed to be fully varying. For geometry * stages, we know it's always 8 which is max_subgroup_size so we can * return that. For compute, brw_nir_apply_key is called once per * dispatch-width so max_subgroup_size is the real subgroup size. * * For fragment, we return 0 and let it fall through to the back-end * compiler. This means we can't optimize based on subgroup size but * that's a risk the client took when it asked for a varying subgroup * size. */ return stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size; case BRW_SUBGROUP_SIZE_REQUIRE_8: case BRW_SUBGROUP_SIZE_REQUIRE_16: case BRW_SUBGROUP_SIZE_REQUIRE_32: assert(stage == MESA_SHADER_COMPUTE); /* These enum values are expressly chosen to be equal to the subgroup * size that they require. */ return key->subgroup_size_type; } unreachable("Invalid subgroup size type"); } void brw_nir_apply_key(nir_shader *nir, const struct brw_compiler *compiler, const struct brw_base_prog_key *key, unsigned max_subgroup_size, bool is_scalar) { bool progress = false; OPT(brw_nir_apply_sampler_key, compiler, &key->tex); const nir_lower_subgroups_options subgroups_options = { .subgroup_size = get_subgroup_size(nir->info.stage, key, max_subgroup_size), .ballot_bit_size = 32, .lower_subgroup_masks = true, }; OPT(nir_lower_subgroups, &subgroups_options); if (progress) brw_nir_optimize(nir, compiler, is_scalar, false); } enum brw_conditional_mod brw_cmod_for_nir_comparison(nir_op op) { switch (op) { case nir_op_flt: case nir_op_flt32: case nir_op_ilt: case nir_op_ilt32: case nir_op_ult: case nir_op_ult32: return BRW_CONDITIONAL_L; case nir_op_fge: case nir_op_fge32: case nir_op_ige: case nir_op_ige32: case nir_op_uge: case nir_op_uge32: return BRW_CONDITIONAL_GE; case nir_op_feq: case nir_op_feq32: case nir_op_ieq: case nir_op_ieq32: case nir_op_b32all_fequal2: case nir_op_b32all_iequal2: case nir_op_b32all_fequal3: case nir_op_b32all_iequal3: case nir_op_b32all_fequal4: case nir_op_b32all_iequal4: return BRW_CONDITIONAL_Z; case nir_op_fne: case nir_op_fne32: case nir_op_ine: case nir_op_ine32: case nir_op_b32any_fnequal2: case nir_op_b32any_inequal2: case nir_op_b32any_fnequal3: case nir_op_b32any_inequal3: case nir_op_b32any_fnequal4: case nir_op_b32any_inequal4: return BRW_CONDITIONAL_NZ; default: unreachable("Unsupported NIR comparison op"); } } uint32_t brw_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic) { switch (atomic->intrinsic) { #define AOP_CASE(atom) \ case nir_intrinsic_image_atomic_##atom: \ case nir_intrinsic_bindless_image_atomic_##atom: \ case nir_intrinsic_ssbo_atomic_##atom: \ case nir_intrinsic_shared_atomic_##atom: \ case nir_intrinsic_global_atomic_##atom AOP_CASE(add): { unsigned src_idx; switch (atomic->intrinsic) { case nir_intrinsic_image_atomic_add: case nir_intrinsic_bindless_image_atomic_add: src_idx = 3; break; case nir_intrinsic_ssbo_atomic_add: src_idx = 2; break; case nir_intrinsic_shared_atomic_add: case nir_intrinsic_global_atomic_add: src_idx = 1; break; default: unreachable("Invalid add atomic opcode"); } if (nir_src_is_const(atomic->src[src_idx])) { int64_t add_val = nir_src_as_int(atomic->src[src_idx]); if (add_val == 1) return BRW_AOP_INC; else if (add_val == -1) return BRW_AOP_DEC; } return BRW_AOP_ADD; } AOP_CASE(imin): return BRW_AOP_IMIN; AOP_CASE(umin): return BRW_AOP_UMIN; AOP_CASE(imax): return BRW_AOP_IMAX; AOP_CASE(umax): return BRW_AOP_UMAX; AOP_CASE(and): return BRW_AOP_AND; AOP_CASE(or): return BRW_AOP_OR; AOP_CASE(xor): return BRW_AOP_XOR; AOP_CASE(exchange): return BRW_AOP_MOV; AOP_CASE(comp_swap): return BRW_AOP_CMPWR; #undef AOP_CASE #define AOP_CASE(atom) \ case nir_intrinsic_ssbo_atomic_##atom: \ case nir_intrinsic_shared_atomic_##atom: \ case nir_intrinsic_global_atomic_##atom AOP_CASE(fmin): return BRW_AOP_FMIN; AOP_CASE(fmax): return BRW_AOP_FMAX; AOP_CASE(fcomp_swap): return BRW_AOP_FCMPWR; #undef AOP_CASE default: unreachable("Unsupported NIR atomic intrinsic"); } } enum brw_reg_type brw_type_for_nir_type(const struct gen_device_info *devinfo, nir_alu_type type) { switch (type) { case nir_type_uint: case nir_type_uint32: return BRW_REGISTER_TYPE_UD; case nir_type_bool: case nir_type_int: case nir_type_bool32: case nir_type_int32: return BRW_REGISTER_TYPE_D; case nir_type_float: case nir_type_float32: return BRW_REGISTER_TYPE_F; case nir_type_float16: return BRW_REGISTER_TYPE_HF; case nir_type_float64: return BRW_REGISTER_TYPE_DF; case nir_type_int64: return devinfo->gen < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q; case nir_type_uint64: return devinfo->gen < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ; case nir_type_int16: return BRW_REGISTER_TYPE_W; case nir_type_uint16: return BRW_REGISTER_TYPE_UW; case nir_type_int8: return BRW_REGISTER_TYPE_B; case nir_type_uint8: return BRW_REGISTER_TYPE_UB; default: unreachable("unknown type"); } return BRW_REGISTER_TYPE_F; } /* Returns the glsl_base_type corresponding to a nir_alu_type. * This is used by both brw_vec4_nir and brw_fs_nir. */ enum glsl_base_type brw_glsl_base_type_for_nir_type(nir_alu_type type) { switch (type) { case nir_type_float: case nir_type_float32: return GLSL_TYPE_FLOAT; case nir_type_float16: return GLSL_TYPE_FLOAT16; case nir_type_float64: return GLSL_TYPE_DOUBLE; case nir_type_int: case nir_type_int32: return GLSL_TYPE_INT; case nir_type_uint: case nir_type_uint32: return GLSL_TYPE_UINT; case nir_type_int16: return GLSL_TYPE_INT16; case nir_type_uint16: return GLSL_TYPE_UINT16; default: unreachable("bad type"); } } nir_shader * brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler, const nir_shader_compiler_options *options, const struct brw_tcs_prog_key *key) { nir_builder b; nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_TESS_CTRL, options); nir_shader *nir = b.shader; nir_variable *var; nir_intrinsic_instr *load; nir_intrinsic_instr *store; nir_ssa_def *zero = nir_imm_int(&b, 0); nir_ssa_def *invoc_id = nir_load_invocation_id(&b); nir->info.inputs_read = key->outputs_written & ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER); nir->info.outputs_written = key->outputs_written; nir->info.tess.tcs_vertices_out = key->input_vertices; nir->info.name = ralloc_strdup(nir, "passthrough"); nir->num_uniforms = 8 * sizeof(uint32_t); var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_0"); var->data.location = 0; var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_1"); var->data.location = 1; /* Write the patch URB header. */ for (int i = 0; i <= 1; i++) { load = nir_intrinsic_instr_create(nir, nir_intrinsic_load_uniform); load->num_components = 4; load->src[0] = nir_src_for_ssa(zero); nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL); nir_intrinsic_set_base(load, i * 4 * sizeof(uint32_t)); nir_builder_instr_insert(&b, &load->instr); store = nir_intrinsic_instr_create(nir, nir_intrinsic_store_output); store->num_components = 4; store->src[0] = nir_src_for_ssa(&load->dest.ssa); store->src[1] = nir_src_for_ssa(zero); nir_intrinsic_set_base(store, VARYING_SLOT_TESS_LEVEL_INNER - i); nir_intrinsic_set_write_mask(store, WRITEMASK_XYZW); nir_builder_instr_insert(&b, &store->instr); } /* Copy inputs to outputs. */ uint64_t varyings = nir->info.inputs_read; while (varyings != 0) { const int varying = ffsll(varyings) - 1; load = nir_intrinsic_instr_create(nir, nir_intrinsic_load_per_vertex_input); load->num_components = 4; load->src[0] = nir_src_for_ssa(invoc_id); load->src[1] = nir_src_for_ssa(zero); nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL); nir_intrinsic_set_base(load, varying); nir_builder_instr_insert(&b, &load->instr); store = nir_intrinsic_instr_create(nir, nir_intrinsic_store_per_vertex_output); store->num_components = 4; store->src[0] = nir_src_for_ssa(&load->dest.ssa); store->src[1] = nir_src_for_ssa(invoc_id); store->src[2] = nir_src_for_ssa(zero); nir_intrinsic_set_base(store, varying); nir_intrinsic_set_write_mask(store, WRITEMASK_XYZW); nir_builder_instr_insert(&b, &store->instr); varyings &= ~BITFIELD64_BIT(varying); } nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs"); brw_preprocess_nir(compiler, nir, NULL); return nir; }