/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_nir.h" #include "brw_shader.h" #include "common/gen_debug.h" #include "compiler/glsl_types.h" #include "compiler/nir/nir_builder.h" static bool is_input(nir_intrinsic_instr *intrin) { return intrin->intrinsic == nir_intrinsic_load_input || intrin->intrinsic == nir_intrinsic_load_per_vertex_input || intrin->intrinsic == nir_intrinsic_load_interpolated_input; } static bool is_output(nir_intrinsic_instr *intrin) { return intrin->intrinsic == nir_intrinsic_load_output || intrin->intrinsic == nir_intrinsic_load_per_vertex_output || intrin->intrinsic == nir_intrinsic_store_output || intrin->intrinsic == nir_intrinsic_store_per_vertex_output; } /** * In many cases, we just add the base and offset together, so there's no * reason to keep them separate. Sometimes, combining them is essential: * if a shader only accesses part of a compound variable (such as a matrix * or array), the variable's base may not actually exist in the VUE map. * * This pass adds constant offsets to instr->const_index[0], and resets * the offset source to 0. Non-constant offsets remain unchanged - since * we don't know what part of a compound variable is accessed, we allocate * storage for the entire thing. */ static bool add_const_offset_to_base_block(nir_block *block, nir_builder *b, nir_variable_mode mode) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if ((mode == nir_var_shader_in && is_input(intrin)) || (mode == nir_var_shader_out && is_output(intrin))) { nir_src *offset = nir_get_io_offset_src(intrin); nir_const_value *const_offset = nir_src_as_const_value(*offset); if (const_offset) { intrin->const_index[0] += const_offset->u32[0]; b->cursor = nir_before_instr(&intrin->instr); nir_instr_rewrite_src(&intrin->instr, offset, nir_src_for_ssa(nir_imm_int(b, 0))); } } } return true; } static void add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode) { nir_foreach_function(f, nir) { if (f->impl) { nir_builder b; nir_builder_init(&b, f->impl); nir_foreach_block(block, f->impl) { add_const_offset_to_base_block(block, &b, mode); } } } } static bool remap_vs_attrs(nir_block *block, shader_info *nir_info) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic == nir_intrinsic_load_input) { /* Attributes come in a contiguous block, ordered by their * gl_vert_attrib value. That means we can compute the slot * number for an attribute by masking out the enabled attributes * before it and counting the bits. */ int attr = intrin->const_index[0]; int slot = _mesa_bitcount_64(nir_info->inputs_read & BITFIELD64_MASK(attr)); intrin->const_index[0] = 4 * slot; } } return true; } static bool remap_inputs_with_vue_map(nir_block *block, const struct brw_vue_map *vue_map) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic == nir_intrinsic_load_input || intrin->intrinsic == nir_intrinsic_load_per_vertex_input) { int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]]; assert(vue_slot != -1); intrin->const_index[0] = vue_slot; } } return true; } static bool remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr, GLenum primitive_mode) { const int location = nir_intrinsic_base(intr); const unsigned component = nir_intrinsic_component(intr); bool out_of_bounds; if (location == VARYING_SLOT_TESS_LEVEL_INNER) { switch (primitive_mode) { case GL_QUADS: /* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */ nir_intrinsic_set_base(intr, 0); nir_intrinsic_set_component(intr, 3 - component); out_of_bounds = false; break; case GL_TRIANGLES: /* gl_TessLevelInner[0] lives at DWord 4. */ nir_intrinsic_set_base(intr, 1); out_of_bounds = component > 0; break; case GL_ISOLINES: out_of_bounds = true; break; default: unreachable("Bogus tessellation domain"); } } else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) { if (primitive_mode == GL_ISOLINES) { /* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */ nir_intrinsic_set_base(intr, 1); nir_intrinsic_set_component(intr, 2 + nir_intrinsic_component(intr)); out_of_bounds = component > 1; } else { /* Triangles use DWords 7-5 (reversed); Quads use 7-4 (reversed) */ nir_intrinsic_set_base(intr, 1); nir_intrinsic_set_component(intr, 3 - nir_intrinsic_component(intr)); out_of_bounds = component == 3 && primitive_mode == GL_TRIANGLES; } } else { return false; } if (out_of_bounds) { if (nir_intrinsic_infos[intr->intrinsic].has_dest) { b->cursor = nir_before_instr(&intr->instr); nir_ssa_def *undef = nir_ssa_undef(b, 1, 32); nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_src_for_ssa(undef)); } nir_instr_remove(&intr->instr); } return true; } static bool remap_patch_urb_offsets(nir_block *block, nir_builder *b, const struct brw_vue_map *vue_map, GLenum tes_primitive_mode) { const bool is_passthrough_tcs = b->shader->info->name && strcmp(b->shader->info->name, "passthrough") == 0; nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); gl_shader_stage stage = b->shader->stage; if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) || (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) { if (!is_passthrough_tcs && remap_tess_levels(b, intrin, tes_primitive_mode)) continue; int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]]; assert(vue_slot != -1); intrin->const_index[0] = vue_slot; nir_src *vertex = nir_get_io_vertex_index_src(intrin); if (vertex) { nir_const_value *const_vertex = nir_src_as_const_value(*vertex); if (const_vertex) { intrin->const_index[0] += const_vertex->u32[0] * vue_map->num_per_vertex_slots; } else { b->cursor = nir_before_instr(&intrin->instr); /* Multiply by the number of per-vertex slots. */ nir_ssa_def *vertex_offset = nir_imul(b, nir_ssa_for_src(b, *vertex, 1), nir_imm_int(b, vue_map->num_per_vertex_slots)); /* Add it to the existing offset */ nir_src *offset = nir_get_io_offset_src(intrin); nir_ssa_def *total_offset = nir_iadd(b, vertex_offset, nir_ssa_for_src(b, *offset, 1)); nir_instr_rewrite_src(&intrin->instr, offset, nir_src_for_ssa(total_offset)); } } } } return true; } void brw_nir_lower_vs_inputs(nir_shader *nir, bool is_scalar, bool use_legacy_snorm_formula, const uint8_t *vs_attrib_wa_flags) { /* Start with the location of the variable's base. */ foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } /* Now use nir_lower_io to walk dereference chains. Attribute arrays are * loaded as one vec4 or dvec4 per element (or matrix column), depending on * whether it is a double-precision type or not. */ nir_lower_io(nir, nir_var_shader_in, type_size_vec4, 0); /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_in); brw_nir_apply_attribute_workarounds(nir, use_legacy_snorm_formula, vs_attrib_wa_flags); if (is_scalar) { /* Finally, translate VERT_ATTRIB_* values into the actual registers. */ nir_foreach_function(function, nir) { if (function->impl) { nir_foreach_block(block, function->impl) { remap_vs_attrs(block, nir->info); } } } } } void brw_nir_lower_vue_inputs(nir_shader *nir, bool is_scalar, const struct brw_vue_map *vue_map) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } /* Inputs are stored in vec4 slots, so use type_size_vec4(). */ nir_lower_io(nir, nir_var_shader_in, type_size_vec4, 0); if (is_scalar || nir->stage != MESA_SHADER_GEOMETRY) { /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_in); nir_foreach_function(function, nir) { if (function->impl) { nir_foreach_block(block, function->impl) { remap_inputs_with_vue_map(block, vue_map); } } } } } void brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_in, type_size_vec4, 0); /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_in); nir_foreach_function(function, nir) { if (function->impl) { nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block(block, function->impl) { remap_patch_urb_offsets(block, &b, vue_map, nir->info->tess.primitive_mode); } } } } void brw_nir_lower_fs_inputs(nir_shader *nir, const struct gen_device_info *devinfo, const struct brw_wm_prog_key *key) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; /* Apply default interpolation mode. * * Everything defaults to smooth except for the legacy GL color * built-in variables, which might be flat depending on API state. */ if (var->data.interpolation == INTERP_MODE_NONE) { const bool flat = key->flat_shade && (var->data.location == VARYING_SLOT_COL0 || var->data.location == VARYING_SLOT_COL1); var->data.interpolation = flat ? INTERP_MODE_FLAT : INTERP_MODE_SMOOTH; } /* On Ironlake and below, there is only one interpolation mode. * Centroid interpolation doesn't mean anything on this hardware -- * there is no multisampling. */ if (devinfo->gen < 6) { var->data.centroid = false; var->data.sample = false; } } nir_lower_io_options lower_io_options = 0; if (key->persample_interp) lower_io_options |= nir_lower_io_force_sample_interpolation; nir_lower_io(nir, nir_var_shader_in, type_size_vec4, lower_io_options); /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_in); } void brw_nir_lower_vue_outputs(nir_shader *nir, bool is_scalar) { nir_foreach_variable(var, &nir->outputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_out, type_size_vec4, 0); } void brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map, GLenum tes_primitive_mode) { nir_foreach_variable(var, &nir->outputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_out, type_size_vec4, 0); /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_out); nir_foreach_function(function, nir) { if (function->impl) { nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block(block, function->impl) { remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode); } } } } void brw_nir_lower_fs_outputs(nir_shader *nir) { nir_foreach_variable(var, &nir->outputs) { var->data.driver_location = SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) | SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION); } nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0); } void brw_nir_lower_cs_shared(nir_shader *nir) { nir_assign_var_locations(&nir->shared, &nir->num_shared, type_size_scalar_bytes); nir_lower_io(nir, nir_var_shared, type_size_scalar_bytes, 0); } #define OPT(pass, ...) ({ \ bool this_progress = false; \ NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \ if (this_progress) \ progress = true; \ this_progress; \ }) static nir_shader * nir_optimize(nir_shader *nir, const struct brw_compiler *compiler, bool is_scalar) { nir_variable_mode indirect_mask = 0; if (compiler->glsl_compiler_options[nir->stage].EmitNoIndirectInput) indirect_mask |= nir_var_shader_in; if (compiler->glsl_compiler_options[nir->stage].EmitNoIndirectOutput) indirect_mask |= nir_var_shader_out; if (compiler->glsl_compiler_options[nir->stage].EmitNoIndirectTemp) indirect_mask |= nir_var_local; bool progress; do { progress = false; OPT(nir_lower_vars_to_ssa); OPT(nir_opt_copy_prop_vars); if (is_scalar) { OPT(nir_lower_alu_to_scalar); } OPT(nir_copy_prop); if (is_scalar) { OPT(nir_lower_phis_to_scalar); } OPT(nir_copy_prop); OPT(nir_opt_dce); OPT(nir_opt_cse); OPT(nir_opt_peephole_select, 0); OPT(nir_opt_algebraic); OPT(nir_opt_constant_folding); OPT(nir_opt_dead_cf); if (OPT(nir_opt_trivial_continues)) { /* If nir_opt_trivial_continues makes progress, then we need to clean * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll * to make progress. */ OPT(nir_copy_prop); OPT(nir_opt_dce); } OPT(nir_opt_if); if (nir->options->max_unroll_iterations != 0) { OPT(nir_opt_loop_unroll, indirect_mask); } OPT(nir_opt_remove_phis); OPT(nir_opt_undef); OPT(nir_lower_doubles, nir_lower_drcp | nir_lower_dsqrt | nir_lower_drsq | nir_lower_dtrunc | nir_lower_dfloor | nir_lower_dceil | nir_lower_dfract | nir_lower_dround_even | nir_lower_dmod); OPT(nir_lower_64bit_pack); } while (progress); return nir; } /* Does some simple lowering and runs the standard suite of optimizations * * This is intended to be called more-or-less directly after you get the * shader out of GLSL or some other source. While it is geared towards i965, * it is not at all generator-specific except for the is_scalar flag. Even * there, it is safe to call with is_scalar = false for a shader that is * intended for the FS backend as long as nir_optimize is called again with * is_scalar = true to scalarize everything prior to code gen. */ nir_shader * brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir) { const struct gen_device_info *devinfo = compiler->devinfo; UNUSED bool progress; /* Written by OPT */ const bool is_scalar = compiler->scalar_stage[nir->stage]; if (nir->stage == MESA_SHADER_GEOMETRY) OPT(nir_lower_gs_intrinsics); /* See also brw_nir_trig_workarounds.py */ if (compiler->precise_trig && !(devinfo->gen >= 10 || devinfo->is_kabylake)) OPT(brw_nir_apply_trig_workarounds); static const nir_lower_tex_options tex_options = { .lower_txp = ~0, .lower_txf_offset = true, .lower_rect_offset = true, .lower_txd_cube_map = true, }; OPT(nir_lower_tex, &tex_options); OPT(nir_normalize_cubemap_coords); OPT(nir_lower_global_vars_to_local); OPT(nir_split_var_copies); nir = nir_optimize(nir, compiler, is_scalar); if (is_scalar) { OPT(nir_lower_load_const_to_scalar); } /* Lower a bunch of stuff */ OPT(nir_lower_var_copies); OPT(nir_lower_clip_cull_distance_arrays); nir_variable_mode indirect_mask = 0; if (compiler->glsl_compiler_options[nir->stage].EmitNoIndirectInput) indirect_mask |= nir_var_shader_in; if (compiler->glsl_compiler_options[nir->stage].EmitNoIndirectOutput) indirect_mask |= nir_var_shader_out; if (compiler->glsl_compiler_options[nir->stage].EmitNoIndirectTemp) indirect_mask |= nir_var_local; nir_lower_indirect_derefs(nir, indirect_mask); nir_lower_int64(nir, nir_lower_imul64 | nir_lower_isign64 | nir_lower_divmod64); /* Get rid of split copies */ nir = nir_optimize(nir, compiler, is_scalar); OPT(nir_remove_dead_variables, nir_var_local); return nir; } /* Prepare the given shader for codegen * * This function is intended to be called right before going into the actual * backend and is highly backend-specific. Also, once this function has been * called on a shader, it will no longer be in SSA form so most optimizations * will not work. */ nir_shader * brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler, bool is_scalar) { const struct gen_device_info *devinfo = compiler->devinfo; bool debug_enabled = (INTEL_DEBUG & intel_debug_flag_for_shader_stage(nir->stage)); UNUSED bool progress; /* Written by OPT */ nir = nir_optimize(nir, compiler, is_scalar); if (devinfo->gen >= 6) { /* Try and fuse multiply-adds */ OPT(brw_nir_opt_peephole_ffma); } OPT(nir_opt_algebraic_late); OPT(nir_lower_to_source_mods); OPT(nir_copy_prop); OPT(nir_opt_dce); OPT(nir_opt_move_comparisons); OPT(nir_lower_locals_to_regs); if (unlikely(debug_enabled)) { /* Re-index SSA defs so we print more sensible numbers. */ nir_foreach_function(function, nir) { if (function->impl) nir_index_ssa_defs(function->impl); } fprintf(stderr, "NIR (SSA form) for %s shader:\n", _mesa_shader_stage_to_string(nir->stage)); nir_print_shader(nir, stderr); } OPT(nir_convert_from_ssa, true); if (!is_scalar) { OPT(nir_move_vec_src_uses_to_dest); OPT(nir_lower_vec_to_movs); } /* This is the last pass we run before we start emitting stuff. It * determines when we need to insert boolean resolves on Gen <= 5. We * run it last because it stashes data in instr->pass_flags and we don't * want that to be squashed by other NIR passes. */ if (devinfo->gen <= 5) brw_nir_analyze_boolean_resolves(nir); nir_sweep(nir); if (unlikely(debug_enabled)) { fprintf(stderr, "NIR (final form) for %s shader:\n", _mesa_shader_stage_to_string(nir->stage)); nir_print_shader(nir, stderr); } return nir; } nir_shader * brw_nir_apply_sampler_key(nir_shader *nir, const struct brw_compiler *compiler, const struct brw_sampler_prog_key_data *key_tex, bool is_scalar) { const struct gen_device_info *devinfo = compiler->devinfo; nir_lower_tex_options tex_options = { 0 }; /* Iron Lake and prior require lowering of all rectangle textures */ if (devinfo->gen < 6) tex_options.lower_rect = true; /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */ if (devinfo->gen < 8) { tex_options.saturate_s = key_tex->gl_clamp_mask[0]; tex_options.saturate_t = key_tex->gl_clamp_mask[1]; tex_options.saturate_r = key_tex->gl_clamp_mask[2]; } /* Prior to Haswell, we have to fake texture swizzle */ for (unsigned s = 0; s < MAX_SAMPLERS; s++) { if (key_tex->swizzles[s] == SWIZZLE_NOOP) continue; tex_options.swizzle_result |= (1 << s); for (unsigned c = 0; c < 4; c++) tex_options.swizzles[s][c] = GET_SWZ(key_tex->swizzles[s], c); } /* Prior to Haswell, we have to lower gradients on shadow samplers */ tex_options.lower_txd_shadow = devinfo->gen < 8 && !devinfo->is_haswell; tex_options.lower_y_uv_external = key_tex->y_uv_image_mask; tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask; tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask; if (nir_lower_tex(nir, &tex_options)) { nir_validate_shader(nir); nir = nir_optimize(nir, compiler, is_scalar); } return nir; } enum brw_reg_type brw_type_for_nir_type(const struct gen_device_info *devinfo, nir_alu_type type) { switch (type) { case nir_type_uint: case nir_type_uint32: return BRW_REGISTER_TYPE_UD; case nir_type_bool: case nir_type_int: case nir_type_bool32: case nir_type_int32: return BRW_REGISTER_TYPE_D; case nir_type_float: case nir_type_float32: return BRW_REGISTER_TYPE_F; case nir_type_float64: return BRW_REGISTER_TYPE_DF; case nir_type_int64: return devinfo->gen < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q; case nir_type_uint64: return devinfo->gen < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ; default: unreachable("unknown type"); } return BRW_REGISTER_TYPE_F; } /* Returns the glsl_base_type corresponding to a nir_alu_type. * This is used by both brw_vec4_nir and brw_fs_nir. */ enum glsl_base_type brw_glsl_base_type_for_nir_type(nir_alu_type type) { switch (type) { case nir_type_float: case nir_type_float32: return GLSL_TYPE_FLOAT; case nir_type_float64: return GLSL_TYPE_DOUBLE; case nir_type_int: case nir_type_int32: return GLSL_TYPE_INT; case nir_type_uint: case nir_type_uint32: return GLSL_TYPE_UINT; default: unreachable("bad type"); } }