/* -*- c++ -*- */ /* * Copyright © 2010-2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef BRW_IR_FS_H #define BRW_IR_FS_H #include "brw_shader.h" class fs_inst; class fs_reg : public backend_reg { public: DECLARE_RALLOC_CXX_OPERATORS(fs_reg) void init(); fs_reg(); fs_reg(struct ::brw_reg reg); fs_reg(enum brw_reg_file file, int nr); fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type); bool equals(const fs_reg &r) const; bool is_contiguous() const; /** * Return the size in bytes of a single logical component of the * register assuming the given execution width. */ unsigned component_size(unsigned width) const; /** Register region horizontal stride */ uint8_t stride; }; static inline fs_reg negate(fs_reg reg) { assert(reg.file != IMM); reg.negate = !reg.negate; return reg; } static inline fs_reg retype(fs_reg reg, enum brw_reg_type type) { reg.type = type; return reg; } static inline fs_reg byte_offset(fs_reg reg, unsigned delta) { switch (reg.file) { case BAD_FILE: break; case VGRF: case ATTR: case UNIFORM: reg.offset += delta; break; case MRF: { const unsigned suboffset = reg.offset + delta; reg.nr += suboffset / REG_SIZE; reg.offset = suboffset % REG_SIZE; break; } case ARF: case FIXED_GRF: { const unsigned suboffset = reg.subnr + delta; reg.nr += suboffset / REG_SIZE; reg.subnr = suboffset % REG_SIZE; break; } case IMM: default: assert(delta == 0); } return reg; } static inline fs_reg horiz_offset(const fs_reg ®, unsigned delta) { switch (reg.file) { case BAD_FILE: case UNIFORM: case IMM: /* These only have a single component that is implicitly splatted. A * horizontal offset should be a harmless no-op. * XXX - Handle vector immediates correctly. */ return reg; case VGRF: case MRF: case ATTR: return byte_offset(reg, delta * reg.stride * type_sz(reg.type)); case ARF: case FIXED_GRF: if (reg.is_null()) { return reg; } else { const unsigned stride = reg.hstride ? 1 << (reg.hstride - 1) : 0; return byte_offset(reg, delta * stride * type_sz(reg.type)); } } unreachable("Invalid register file"); } static inline fs_reg offset(fs_reg reg, unsigned width, unsigned delta) { switch (reg.file) { case BAD_FILE: break; case ARF: case FIXED_GRF: case MRF: case VGRF: case ATTR: case UNIFORM: return byte_offset(reg, delta * reg.component_size(width)); case IMM: assert(delta == 0); } return reg; } /** * Get the scalar channel of \p reg given by \p idx and replicate it to all * channels of the result. */ static inline fs_reg component(fs_reg reg, unsigned idx) { reg = horiz_offset(reg, idx); reg.stride = 0; return reg; } /** * Return an integer identifying the discrete address space a register is * contained in. A register is by definition fully contained in the single * reg_space it belongs to, so two registers with different reg_space ids are * guaranteed not to overlap. Most register files are a single reg_space of * its own, only the VGRF file is composed of multiple discrete address * spaces, one for each VGRF allocation. */ static inline uint32_t reg_space(const fs_reg &r) { return r.file << 16 | (r.file == VGRF ? r.nr : 0); } /** * Return the base offset in bytes of a register relative to the start of its * reg_space(). */ static inline unsigned reg_offset(const fs_reg &r) { return (r.file == VGRF || r.file == IMM ? 0 : r.nr) * (r.file == UNIFORM ? 4 : REG_SIZE) + r.offset + (r.file == ARF || r.file == FIXED_GRF ? r.subnr : 0); } /** * Return the amount of padding in bytes left unused between individual * components of register \p r due to a (horizontal) stride value greater than * one, or zero if components are tightly packed in the register file. */ static inline unsigned reg_padding(const fs_reg &r) { const unsigned stride = ((r.file != ARF && r.file != FIXED_GRF) ? r.stride : r.hstride == 0 ? 0 : 1 << (r.hstride - 1)); return (MAX2(1, stride) - 1) * type_sz(r.type); } /** * Return whether the register region starting at \p r and spanning \p dr * bytes could potentially overlap the register region starting at \p s and * spanning \p ds bytes. */ static inline bool regions_overlap(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds) { if (r.file == MRF && (r.nr & BRW_MRF_COMPR4)) { fs_reg t = r; t.nr &= ~BRW_MRF_COMPR4; /* COMPR4 regions are translated by the hardware during decompression * into two separate half-regions 4 MRFs apart from each other. */ return regions_overlap(t, dr / 2, s, ds) || regions_overlap(byte_offset(t, 4 * REG_SIZE), dr / 2, s, ds); } else if (s.file == MRF && (s.nr & BRW_MRF_COMPR4)) { return regions_overlap(s, ds, r, dr); } else { return reg_space(r) == reg_space(s) && !(reg_offset(r) + dr <= reg_offset(s) || reg_offset(s) + ds <= reg_offset(r)); } } /** * Check that the register region given by r [r.offset, r.offset + dr[ * is fully contained inside the register region given by s * [s.offset, s.offset + ds[. */ static inline bool region_contained_in(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds) { return reg_space(r) == reg_space(s) && reg_offset(r) >= reg_offset(s) && reg_offset(r) + dr <= reg_offset(s) + ds; } /** * Return whether the given register region is n-periodic, i.e. whether the * original region remains invariant after shifting it by \p n scalar * channels. */ static inline bool is_periodic(const fs_reg ®, unsigned n) { if (reg.file == BAD_FILE || reg.is_null()) { return true; } else if (reg.file == IMM) { const unsigned period = (reg.type == BRW_REGISTER_TYPE_UV || reg.type == BRW_REGISTER_TYPE_V ? 8 : reg.type == BRW_REGISTER_TYPE_VF ? 4 : 1); return n % period == 0; } else if (reg.file == ARF || reg.file == FIXED_GRF) { const unsigned period = (reg.hstride == 0 && reg.vstride == 0 ? 1 : reg.vstride == 0 ? 1 << reg.width : ~0); return n % period == 0; } else { return reg.stride == 0; } } static inline bool is_uniform(const fs_reg ®) { return is_periodic(reg, 1); } /** * Get the specified 8-component quarter of a register. * XXX - Maybe come up with a less misleading name for this (e.g. quarter())? */ static inline fs_reg half(const fs_reg ®, unsigned idx) { assert(idx < 2); return horiz_offset(reg, 8 * idx); } /** * Reinterpret each channel of register \p reg as a vector of values of the * given smaller type and take the i-th subcomponent from each. */ static inline fs_reg subscript(fs_reg reg, brw_reg_type type, unsigned i) { assert((i + 1) * type_sz(type) <= type_sz(reg.type)); if (reg.file == ARF || reg.file == FIXED_GRF) { /* The stride is encoded inconsistently for fixed GRF and ARF registers * as the log2 of the actual vertical and horizontal strides. */ const int delta = _mesa_logbase2(type_sz(reg.type)) - _mesa_logbase2(type_sz(type)); reg.hstride += (reg.hstride ? delta : 0); reg.vstride += (reg.vstride ? delta : 0); } else if (reg.file == IMM) { assert(reg.type == type); } else { reg.stride *= type_sz(reg.type) / type_sz(type); } return byte_offset(retype(reg, type), i * type_sz(type)); } static const fs_reg reg_undef; class fs_inst : public backend_instruction { fs_inst &operator=(const fs_inst &); void init(enum opcode opcode, uint8_t exec_width, const fs_reg &dst, const fs_reg *src, unsigned sources); public: DECLARE_RALLOC_CXX_OPERATORS(fs_inst) fs_inst(); fs_inst(enum opcode opcode, uint8_t exec_size); fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst); fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, const fs_reg &src0); fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, const fs_reg &src0, const fs_reg &src1); fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, const fs_reg &src0, const fs_reg &src1, const fs_reg &src2); fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, const fs_reg src[], unsigned sources); fs_inst(const fs_inst &that); ~fs_inst(); void resize_sources(uint8_t num_sources); bool equals(fs_inst *inst) const; bool is_send_from_grf() const; bool is_partial_write() const; bool is_copy_payload(const brw::simple_allocator &grf_alloc) const; unsigned components_read(unsigned i) const; unsigned size_read(int arg) const; bool can_do_source_mods(const struct gen_device_info *devinfo); bool can_change_types() const; bool has_side_effects() const; bool has_source_and_destination_hazard() const; /** * Return the subset of flag registers read by the instruction as a bitset * with byte granularity. */ unsigned flags_read(const gen_device_info *devinfo) const; /** * Return the subset of flag registers updated by the instruction (either * partially or fully) as a bitset with byte granularity. */ unsigned flags_written() const; fs_reg dst; fs_reg *src; uint8_t sources; /**< Number of fs_reg sources. */ bool eot:1; bool pi_noperspective:1; /**< Pixel interpolator noperspective flag */ }; /** * Make the execution of \p inst dependent on the evaluation of a possibly * inverted predicate. */ static inline fs_inst * set_predicate_inv(enum brw_predicate pred, bool inverse, fs_inst *inst) { inst->predicate = pred; inst->predicate_inverse = inverse; return inst; } /** * Make the execution of \p inst dependent on the evaluation of a predicate. */ static inline fs_inst * set_predicate(enum brw_predicate pred, fs_inst *inst) { return set_predicate_inv(pred, false, inst); } /** * Write the result of evaluating the condition given by \p mod to a flag * register. */ static inline fs_inst * set_condmod(enum brw_conditional_mod mod, fs_inst *inst) { inst->conditional_mod = mod; return inst; } /** * Clamp the result of \p inst to the saturation range of its destination * datatype. */ static inline fs_inst * set_saturate(bool saturate, fs_inst *inst) { inst->saturate = saturate; return inst; } /** * Return the number of dataflow registers written by the instruction (either * fully or partially) counted from 'floor(reg_offset(inst->dst) / * register_size)'. The somewhat arbitrary register size unit is 4B for the * UNIFORM and IMM files and 32B for all other files. */ inline unsigned regs_written(const fs_inst *inst) { assert(inst->dst.file != UNIFORM && inst->dst.file != IMM); return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE + inst->size_written - MIN2(inst->size_written, reg_padding(inst->dst)), REG_SIZE); } /** * Return the number of dataflow registers read by the instruction (either * fully or partially) counted from 'floor(reg_offset(inst->src[i]) / * register_size)'. The somewhat arbitrary register size unit is 4B for the * UNIFORM and IMM files and 32B for all other files. */ inline unsigned regs_read(const fs_inst *inst, unsigned i) { const unsigned reg_size = inst->src[i].file == UNIFORM || inst->src[i].file == IMM ? 4 : REG_SIZE; return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size + inst->size_read(i) - MIN2(inst->size_read(i), reg_padding(inst->src[i])), reg_size); } static inline enum brw_reg_type get_exec_type(const fs_inst *inst) { brw_reg_type exec_type = BRW_REGISTER_TYPE_B; for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file != BAD_FILE) { const brw_reg_type t = get_exec_type(inst->src[i].type); if (type_sz(t) > type_sz(exec_type)) exec_type = t; else if (type_sz(t) == type_sz(exec_type) && brw_reg_type_is_floating_point(t)) exec_type = t; } } if (exec_type == BRW_REGISTER_TYPE_B) exec_type = inst->dst.type; /* TODO: We need to handle half-float conversions. */ assert(exec_type != BRW_REGISTER_TYPE_HF || inst->dst.type == BRW_REGISTER_TYPE_HF); assert(exec_type != BRW_REGISTER_TYPE_B); return exec_type; } static inline unsigned get_exec_type_size(const fs_inst *inst) { return type_sz(get_exec_type(inst)); } #endif