/* * Copyright © 2015-2019 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_eu_validate.c * * This file implements a pass that validates shader assembly. * * The restrictions implemented herein are intended to verify that instructions * in shader assembly do not violate restrictions documented in the graphics * programming reference manuals. * * The restrictions are difficult for humans to quickly verify due to their * complexity and abundance. * * It is critical that this code is thoroughly unit tested because false * results will lead developers astray, which is worse than having no validator * at all. Functional changes to this file without corresponding unit tests (in * test_eu_validate.cpp) will be rejected. */ #include "brw_eu.h" /* We're going to do lots of string concatenation, so this should help. */ struct string { char *str; size_t len; }; static void cat(struct string *dest, const struct string src) { dest->str = realloc(dest->str, dest->len + src.len + 1); memcpy(dest->str + dest->len, src.str, src.len); dest->str[dest->len + src.len] = '\0'; dest->len = dest->len + src.len; } #define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)}) static bool contains(const struct string haystack, const struct string needle) { return haystack.str && memmem(haystack.str, haystack.len, needle.str, needle.len) != NULL; } #define CONTAINS(haystack, needle) \ contains(haystack, (struct string){needle, strlen(needle)}) #define error(str) "\tERROR: " str "\n" #define ERROR_INDENT "\t " #define ERROR(msg) ERROR_IF(true, msg) #define ERROR_IF(cond, msg) \ do { \ if ((cond) && !CONTAINS(error_msg, error(msg))) { \ CAT(error_msg, error(msg)); \ } \ } while(0) #define CHECK(func, args...) \ do { \ struct string __msg = func(devinfo, inst, ##args); \ if (__msg.str) { \ cat(&error_msg, __msg); \ free(__msg.str); \ } \ } while (0) #define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0) #define WIDTH(width) (1 << (width)) static bool inst_is_send(const struct gen_device_info *devinfo, const brw_inst *inst) { switch (brw_inst_opcode(devinfo, inst)) { case BRW_OPCODE_SEND: case BRW_OPCODE_SENDC: case BRW_OPCODE_SENDS: case BRW_OPCODE_SENDSC: return true; default: return false; } } static bool inst_is_split_send(const struct gen_device_info *devinfo, const brw_inst *inst) { if (devinfo->gen >= 12) { return inst_is_send(devinfo, inst); } else { switch (brw_inst_opcode(devinfo, inst)) { case BRW_OPCODE_SENDS: case BRW_OPCODE_SENDSC: return true; default: return false; } } } static unsigned signed_type(unsigned type) { switch (type) { case BRW_REGISTER_TYPE_UD: return BRW_REGISTER_TYPE_D; case BRW_REGISTER_TYPE_UW: return BRW_REGISTER_TYPE_W; case BRW_REGISTER_TYPE_UB: return BRW_REGISTER_TYPE_B; case BRW_REGISTER_TYPE_UQ: return BRW_REGISTER_TYPE_Q; default: return type; } } static enum brw_reg_type inst_dst_type(const struct gen_device_info *devinfo, const brw_inst *inst) { return (devinfo->gen < 12 || !inst_is_send(devinfo, inst)) ? brw_inst_dst_type(devinfo, inst) : BRW_REGISTER_TYPE_D; } static bool inst_is_raw_move(const struct gen_device_info *devinfo, const brw_inst *inst) { unsigned dst_type = signed_type(inst_dst_type(devinfo, inst)); unsigned src_type = signed_type(brw_inst_src0_type(devinfo, inst)); if (brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) { /* FIXME: not strictly true */ if (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_VF || brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UV || brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_V) { return false; } } else if (brw_inst_src0_negate(devinfo, inst) || brw_inst_src0_abs(devinfo, inst)) { return false; } return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MOV && brw_inst_saturate(devinfo, inst) == 0 && dst_type == src_type; } static bool dst_is_null(const struct gen_device_info *devinfo, const brw_inst *inst) { return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE && brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL; } static bool src0_is_null(const struct gen_device_info *devinfo, const brw_inst *inst) { return brw_inst_src0_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT && brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE && brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL; } static bool src1_is_null(const struct gen_device_info *devinfo, const brw_inst *inst) { return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE && brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL; } static bool src0_is_acc(const struct gen_device_info *devinfo, const brw_inst *inst) { return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE && (brw_inst_src0_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR; } static bool src1_is_acc(const struct gen_device_info *devinfo, const brw_inst *inst) { return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE && (brw_inst_src1_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR; } static bool src0_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst) { return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 && brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 && brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0; } static bool src1_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst) { return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 && brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 && brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0; } static unsigned num_sources_from_inst(const struct gen_device_info *devinfo, const brw_inst *inst) { const struct opcode_desc *desc = brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)); unsigned math_function; if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) { math_function = brw_inst_math_function(devinfo, inst); } else if (devinfo->gen < 6 && brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) { if (brw_inst_sfid(devinfo, inst) == BRW_SFID_MATH) { /* src1 must be a descriptor (including the information to determine * that the SEND is doing an extended math operation), but src0 can * actually be null since it serves as the source of the implicit GRF * to MRF move. * * If we stop using that functionality, we'll have to revisit this. */ return 2; } else { /* Send instructions are allowed to have null sources since they use * the base_mrf field to specify which message register source. */ return 0; } } else { assert(desc->nsrc < 4); return desc->nsrc; } switch (math_function) { case BRW_MATH_FUNCTION_INV: case BRW_MATH_FUNCTION_LOG: case BRW_MATH_FUNCTION_EXP: case BRW_MATH_FUNCTION_SQRT: case BRW_MATH_FUNCTION_RSQ: case BRW_MATH_FUNCTION_SIN: case BRW_MATH_FUNCTION_COS: case BRW_MATH_FUNCTION_SINCOS: case GEN8_MATH_FUNCTION_INVM: case GEN8_MATH_FUNCTION_RSQRTM: return 1; case BRW_MATH_FUNCTION_FDIV: case BRW_MATH_FUNCTION_POW: case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER: case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT: case BRW_MATH_FUNCTION_INT_DIV_REMAINDER: return 2; default: unreachable("not reached"); } } static struct string sources_not_null(const struct gen_device_info *devinfo, const brw_inst *inst) { unsigned num_sources = num_sources_from_inst(devinfo, inst); struct string error_msg = { .str = NULL, .len = 0 }; /* Nothing to test. 3-src instructions can only have GRF sources, and * there's no bit to control the file. */ if (num_sources == 3) return (struct string){}; /* Nothing to test. Split sends can only encode a file in sources that are * allowed to be NULL. */ if (inst_is_split_send(devinfo, inst)) return (struct string){}; if (num_sources >= 1 && brw_inst_opcode(devinfo, inst) != BRW_OPCODE_SYNC) ERROR_IF(src0_is_null(devinfo, inst), "src0 is null"); if (num_sources == 2) ERROR_IF(src1_is_null(devinfo, inst), "src1 is null"); return error_msg; } static struct string alignment_supported(const struct gen_device_info *devinfo, const brw_inst *inst) { struct string error_msg = { .str = NULL, .len = 0 }; ERROR_IF(devinfo->gen >= 11 && brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16, "Align16 not supported"); return error_msg; } static bool inst_uses_src_acc(const struct gen_device_info *devinfo, const brw_inst *inst) { /* Check instructions that use implicit accumulator sources */ switch (brw_inst_opcode(devinfo, inst)) { case BRW_OPCODE_MAC: case BRW_OPCODE_MACH: case BRW_OPCODE_SADA2: return true; default: break; } /* FIXME: support 3-src instructions */ unsigned num_sources = num_sources_from_inst(devinfo, inst); assert(num_sources < 3); return src0_is_acc(devinfo, inst) || (num_sources > 1 && src1_is_acc(devinfo, inst)); } static struct string send_restrictions(const struct gen_device_info *devinfo, const brw_inst *inst) { struct string error_msg = { .str = NULL, .len = 0 }; if (inst_is_split_send(devinfo, inst)) { ERROR_IF(brw_inst_send_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE && brw_inst_send_src1_reg_nr(devinfo, inst) != BRW_ARF_NULL, "src1 of split send must be a GRF or NULL"); ERROR_IF(brw_inst_eot(devinfo, inst) && brw_inst_src0_da_reg_nr(devinfo, inst) < 112, "send with EOT must use g112-g127"); ERROR_IF(brw_inst_eot(devinfo, inst) && brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE && brw_inst_send_src1_reg_nr(devinfo, inst) < 112, "send with EOT must use g112-g127"); if (brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE) { /* Assume minimums if we don't know */ unsigned mlen = 1; if (!brw_inst_send_sel_reg32_desc(devinfo, inst)) { const uint32_t desc = brw_inst_send_desc(devinfo, inst); mlen = brw_message_desc_mlen(devinfo, desc); } unsigned ex_mlen = 1; if (!brw_inst_send_sel_reg32_ex_desc(devinfo, inst)) { const uint32_t ex_desc = brw_inst_sends_ex_desc(devinfo, inst); ex_mlen = brw_message_ex_desc_ex_mlen(devinfo, ex_desc); } const unsigned src0_reg_nr = brw_inst_src0_da_reg_nr(devinfo, inst); const unsigned src1_reg_nr = brw_inst_send_src1_reg_nr(devinfo, inst); ERROR_IF((src0_reg_nr <= src1_reg_nr && src1_reg_nr < src0_reg_nr + mlen) || (src1_reg_nr <= src0_reg_nr && src0_reg_nr < src1_reg_nr + ex_mlen), "split send payloads must not overlap"); } } else if (inst_is_send(devinfo, inst)) { ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT, "send must use direct addressing"); if (devinfo->gen >= 7) { ERROR_IF(brw_inst_send_src0_reg_file(devinfo, inst) != BRW_GENERAL_REGISTER_FILE, "send from non-GRF"); ERROR_IF(brw_inst_eot(devinfo, inst) && brw_inst_src0_da_reg_nr(devinfo, inst) < 112, "send with EOT must use g112-g127"); } if (devinfo->gen >= 8) { ERROR_IF(!dst_is_null(devinfo, inst) && (brw_inst_dst_da_reg_nr(devinfo, inst) + brw_inst_rlen(devinfo, inst) > 127) && (brw_inst_src0_da_reg_nr(devinfo, inst) + brw_inst_mlen(devinfo, inst) > brw_inst_dst_da_reg_nr(devinfo, inst)), "r127 must not be used for return address when there is " "a src and dest overlap"); } } return error_msg; } static bool is_unsupported_inst(const struct gen_device_info *devinfo, const brw_inst *inst) { return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_ILLEGAL; } /** * Returns whether a combination of two types would qualify as mixed float * operation mode */ static inline bool types_are_mixed_float(enum brw_reg_type t0, enum brw_reg_type t1) { return (t0 == BRW_REGISTER_TYPE_F && t1 == BRW_REGISTER_TYPE_HF) || (t1 == BRW_REGISTER_TYPE_F && t0 == BRW_REGISTER_TYPE_HF); } static enum brw_reg_type execution_type_for_type(enum brw_reg_type type) { switch (type) { case BRW_REGISTER_TYPE_NF: case BRW_REGISTER_TYPE_DF: case BRW_REGISTER_TYPE_F: case BRW_REGISTER_TYPE_HF: return type; case BRW_REGISTER_TYPE_VF: return BRW_REGISTER_TYPE_F; case BRW_REGISTER_TYPE_Q: case BRW_REGISTER_TYPE_UQ: return BRW_REGISTER_TYPE_Q; case BRW_REGISTER_TYPE_D: case BRW_REGISTER_TYPE_UD: return BRW_REGISTER_TYPE_D; case BRW_REGISTER_TYPE_W: case BRW_REGISTER_TYPE_UW: case BRW_REGISTER_TYPE_B: case BRW_REGISTER_TYPE_UB: case BRW_REGISTER_TYPE_V: case BRW_REGISTER_TYPE_UV: return BRW_REGISTER_TYPE_W; } unreachable("not reached"); } /** * Returns the execution type of an instruction \p inst */ static enum brw_reg_type execution_type(const struct gen_device_info *devinfo, const brw_inst *inst) { unsigned num_sources = num_sources_from_inst(devinfo, inst); enum brw_reg_type src0_exec_type, src1_exec_type; /* Execution data type is independent of destination data type, except in * mixed F/HF instructions. */ enum brw_reg_type dst_exec_type = inst_dst_type(devinfo, inst); src0_exec_type = execution_type_for_type(brw_inst_src0_type(devinfo, inst)); if (num_sources == 1) { if (src0_exec_type == BRW_REGISTER_TYPE_HF) return dst_exec_type; return src0_exec_type; } src1_exec_type = execution_type_for_type(brw_inst_src1_type(devinfo, inst)); if (types_are_mixed_float(src0_exec_type, src1_exec_type) || types_are_mixed_float(src0_exec_type, dst_exec_type) || types_are_mixed_float(src1_exec_type, dst_exec_type)) { return BRW_REGISTER_TYPE_F; } if (src0_exec_type == src1_exec_type) return src0_exec_type; /* Mixed operand types where one is float is float on Gen < 6 * (and not allowed on later platforms) */ if (devinfo->gen < 6 && (src0_exec_type == BRW_REGISTER_TYPE_F || src1_exec_type == BRW_REGISTER_TYPE_F)) return BRW_REGISTER_TYPE_F; if (src0_exec_type == BRW_REGISTER_TYPE_Q || src1_exec_type == BRW_REGISTER_TYPE_Q) return BRW_REGISTER_TYPE_Q; if (src0_exec_type == BRW_REGISTER_TYPE_D || src1_exec_type == BRW_REGISTER_TYPE_D) return BRW_REGISTER_TYPE_D; if (src0_exec_type == BRW_REGISTER_TYPE_W || src1_exec_type == BRW_REGISTER_TYPE_W) return BRW_REGISTER_TYPE_W; if (src0_exec_type == BRW_REGISTER_TYPE_DF || src1_exec_type == BRW_REGISTER_TYPE_DF) return BRW_REGISTER_TYPE_DF; unreachable("not reached"); } /** * Returns whether a region is packed * * A region is packed if its elements are adjacent in memory, with no * intervening space, no overlap, and no replicated values. */ static bool is_packed(unsigned vstride, unsigned width, unsigned hstride) { if (vstride == width) { if (vstride == 1) { return hstride == 0; } else { return hstride == 1; } } return false; } /** * Returns whether an instruction is an explicit or implicit conversion * to/from half-float. */ static bool is_half_float_conversion(const struct gen_device_info *devinfo, const brw_inst *inst) { enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst); unsigned num_sources = num_sources_from_inst(devinfo, inst); enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst); if (dst_type != src0_type && (dst_type == BRW_REGISTER_TYPE_HF || src0_type == BRW_REGISTER_TYPE_HF)) { return true; } else if (num_sources > 1) { enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst); return dst_type != src1_type && (dst_type == BRW_REGISTER_TYPE_HF || src1_type == BRW_REGISTER_TYPE_HF); } return false; } /* * Returns whether an instruction is using mixed float operation mode */ static bool is_mixed_float(const struct gen_device_info *devinfo, const brw_inst *inst) { if (devinfo->gen < 8) return false; if (inst_is_send(devinfo, inst)) return false; unsigned opcode = brw_inst_opcode(devinfo, inst); const struct opcode_desc *desc = brw_opcode_desc(devinfo, opcode); if (desc->ndst == 0) return false; /* FIXME: support 3-src instructions */ unsigned num_sources = num_sources_from_inst(devinfo, inst); assert(num_sources < 3); enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst); enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst); if (num_sources == 1) return types_are_mixed_float(src0_type, dst_type); enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst); return types_are_mixed_float(src0_type, src1_type) || types_are_mixed_float(src0_type, dst_type) || types_are_mixed_float(src1_type, dst_type); } /** * Returns whether an instruction is an explicit or implicit conversion * to/from byte. */ static bool is_byte_conversion(const struct gen_device_info *devinfo, const brw_inst *inst) { enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst); unsigned num_sources = num_sources_from_inst(devinfo, inst); enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst); if (dst_type != src0_type && (type_sz(dst_type) == 1 || type_sz(src0_type) == 1)) { return true; } else if (num_sources > 1) { enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst); return dst_type != src1_type && (type_sz(dst_type) == 1 || type_sz(src1_type) == 1); } return false; } /** * Checks restrictions listed in "General Restrictions Based on Operand Types" * in the "Register Region Restrictions" section. */ static struct string general_restrictions_based_on_operand_types(const struct gen_device_info *devinfo, const brw_inst *inst) { const struct opcode_desc *desc = brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)); unsigned num_sources = num_sources_from_inst(devinfo, inst); unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst); struct string error_msg = { .str = NULL, .len = 0 }; if (devinfo->gen >= 11) { if (num_sources == 3) { ERROR_IF(brw_reg_type_to_size(brw_inst_3src_a1_src1_type(devinfo, inst)) == 1 || brw_reg_type_to_size(brw_inst_3src_a1_src2_type(devinfo, inst)) == 1, "Byte data type is not supported for src1/2 register regioning. This includes " "byte broadcast as well."); } if (num_sources == 2) { ERROR_IF(brw_reg_type_to_size(brw_inst_src1_type(devinfo, inst)) == 1, "Byte data type is not supported for src1 register regioning. This includes " "byte broadcast as well."); } } if (num_sources == 3) return error_msg; if (inst_is_send(devinfo, inst)) return error_msg; if (exec_size == 1) return error_msg; if (desc->ndst == 0) return error_msg; /* The PRMs say: * * Where n is the largest element size in bytes for any source or * destination operand type, ExecSize * n must be <= 64. * * But we do not attempt to enforce it, because it is implied by other * rules: * * - that the destination stride must match the execution data type * - sources may not span more than two adjacent GRF registers * - destination may not span more than two adjacent GRF registers * * In fact, checking it would weaken testing of the other rules. */ unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst)); enum brw_reg_type dst_type = inst_dst_type(devinfo, inst); bool dst_type_is_byte = inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_B || inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_UB; if (dst_type_is_byte) { if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) { if (!inst_is_raw_move(devinfo, inst)) ERROR("Only raw MOV supports a packed-byte destination"); return error_msg; } } unsigned exec_type = execution_type(devinfo, inst); unsigned exec_type_size = brw_reg_type_to_size(exec_type); unsigned dst_type_size = brw_reg_type_to_size(dst_type); /* On IVB/BYT, region parameters and execution size for DF are in terms of * 32-bit elements, so they are doubled. For evaluating the validity of an * instruction, we halve them. */ if (devinfo->gen == 7 && !devinfo->is_haswell && exec_type_size == 8 && dst_type_size == 4) dst_type_size = 8; if (is_byte_conversion(devinfo, inst)) { /* From the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV: * * "There is no direct conversion from B/UB to DF or DF to B/UB. * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB." * * Even if these restrictions are listed for the MOV instruction, we * validate this more generally, since there is the possibility * of implicit conversions from other instructions. */ enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst); enum brw_reg_type src1_type = num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : 0; ERROR_IF(type_sz(dst_type) == 1 && (type_sz(src0_type) == 8 || (num_sources > 1 && type_sz(src1_type) == 8)), "There are no direct conversions between 64-bit types and B/UB"); ERROR_IF(type_sz(dst_type) == 8 && (type_sz(src0_type) == 1 || (num_sources > 1 && type_sz(src1_type) == 1)), "There are no direct conversions between 64-bit types and B/UB"); } if (is_half_float_conversion(devinfo, inst)) { /** * A helper to validate used in the validation of the following restriction * from the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV: * * "There is no direct conversion from HF to DF or DF to HF. * There is no direct conversion from HF to Q/UQ or Q/UQ to HF." * * Even if these restrictions are listed for the MOV instruction, we * validate this more generally, since there is the possibility * of implicit conversions from other instructions, such us implicit * conversion from integer to HF with the ADD instruction in SKL+. */ enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst); enum brw_reg_type src1_type = num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : 0; ERROR_IF(dst_type == BRW_REGISTER_TYPE_HF && (type_sz(src0_type) == 8 || (num_sources > 1 && type_sz(src1_type) == 8)), "There are no direct conversions between 64-bit types and HF"); ERROR_IF(type_sz(dst_type) == 8 && (src0_type == BRW_REGISTER_TYPE_HF || (num_sources > 1 && src1_type == BRW_REGISTER_TYPE_HF)), "There are no direct conversions between 64-bit types and HF"); /* From the BDW+ PRM: * * "Conversion between Integer and HF (Half Float) must be * DWord-aligned and strided by a DWord on the destination." * * Also, the above restrictions seems to be expanded on CHV and SKL+ by: * * "There is a relaxed alignment rule for word destinations. When * the destination type is word (UW, W, HF), destination data types * can be aligned to either the lowest word or the second lowest * word of the execution channel. This means the destination data * words can be either all in the even word locations or all in the * odd word locations." * * We do not implement the second rule as is though, since empirical * testing shows inconsistencies: * - It suggests that packed 16-bit is not allowed, which is not true. * - It suggests that conversions from Q/DF to W (which need to be * 64-bit aligned on the destination) are not possible, which is * not true. * * So from this rule we only validate the implication that conversions * from F to HF need to be DWord strided (except in Align1 mixed * float mode where packed fp16 destination is allowed so long as the * destination is oword-aligned). * * Finally, we only validate this for Align1 because Align16 always * requires packed destinations, so these restrictions can't possibly * apply to Align16 mode. */ if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) { if ((dst_type == BRW_REGISTER_TYPE_HF && (brw_reg_type_is_integer(src0_type) || (num_sources > 1 && brw_reg_type_is_integer(src1_type)))) || (brw_reg_type_is_integer(dst_type) && (src0_type == BRW_REGISTER_TYPE_HF || (num_sources > 1 && src1_type == BRW_REGISTER_TYPE_HF)))) { ERROR_IF(dst_stride * dst_type_size != 4, "Conversions between integer and half-float must be " "strided by a DWord on the destination"); unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst); ERROR_IF(subreg % 4 != 0, "Conversions between integer and half-float must be " "aligned to a DWord on the destination"); } else if ((devinfo->is_cherryview || devinfo->gen >= 9) && dst_type == BRW_REGISTER_TYPE_HF) { unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst); ERROR_IF(dst_stride != 2 && !(is_mixed_float(devinfo, inst) && dst_stride == 1 && subreg % 16 == 0), "Conversions to HF must have either all words in even " "word locations or all words in odd word locations or " "be mixed-float with Oword-aligned packed destination"); } } } /* There are special regioning rules for mixed-float mode in CHV and SKL that * override the general rule for the ratio of sizes of the destination type * and the execution type. We will add validation for those in a later patch. */ bool validate_dst_size_and_exec_size_ratio = !is_mixed_float(devinfo, inst) || !(devinfo->is_cherryview || devinfo->gen >= 9); if (validate_dst_size_and_exec_size_ratio && exec_type_size > dst_type_size) { if (!(dst_type_is_byte && inst_is_raw_move(devinfo, inst))) { ERROR_IF(dst_stride * dst_type_size != exec_type_size, "Destination stride must be equal to the ratio of the sizes " "of the execution data type to the destination type"); } unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst); if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 && brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) { /* The i965 PRM says: * * Implementation Restriction: The relaxed alignment rule for byte * destination (#10.5) is not supported. */ if ((devinfo->gen > 4 || devinfo->is_g4x) && dst_type_is_byte) { ERROR_IF(subreg % exec_type_size != 0 && subreg % exec_type_size != 1, "Destination subreg must be aligned to the size of the " "execution data type (or to the next lowest byte for byte " "destinations)"); } else { ERROR_IF(subreg % exec_type_size != 0, "Destination subreg must be aligned to the size of the " "execution data type"); } } } return error_msg; } /** * Checks restrictions listed in "General Restrictions on Regioning Parameters" * in the "Register Region Restrictions" section. */ static struct string general_restrictions_on_region_parameters(const struct gen_device_info *devinfo, const brw_inst *inst) { const struct opcode_desc *desc = brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)); unsigned num_sources = num_sources_from_inst(devinfo, inst); unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst); struct string error_msg = { .str = NULL, .len = 0 }; if (num_sources == 3) return (struct string){}; /* Split sends don't have the bits in the instruction to encode regions so * there's nothing to check. */ if (inst_is_split_send(devinfo, inst)) return (struct string){}; if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) { if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1, "Destination Horizontal Stride must be 1"); if (num_sources >= 1) { if (devinfo->is_haswell || devinfo->gen >= 8) { ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE && brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 && brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 && brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4, "In Align16 mode, only VertStride of 0, 2, or 4 is allowed"); } else { ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE && brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 && brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4, "In Align16 mode, only VertStride of 0 or 4 is allowed"); } } if (num_sources == 2) { if (devinfo->is_haswell || devinfo->gen >= 8) { ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE && brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 && brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 && brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4, "In Align16 mode, only VertStride of 0, 2, or 4 is allowed"); } else { ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE && brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 && brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4, "In Align16 mode, only VertStride of 0 or 4 is allowed"); } } return error_msg; } for (unsigned i = 0; i < num_sources; i++) { unsigned vstride, width, hstride, element_size, subreg; enum brw_reg_type type; #define DO_SRC(n) \ if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \ BRW_IMMEDIATE_VALUE) \ continue; \ \ vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \ width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \ hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \ type = brw_inst_src ## n ## _type(devinfo, inst); \ element_size = brw_reg_type_to_size(type); \ subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst) if (i == 0) { DO_SRC(0); } else { DO_SRC(1); } #undef DO_SRC /* On IVB/BYT, region parameters and execution size for DF are in terms of * 32-bit elements, so they are doubled. For evaluating the validity of an * instruction, we halve them. */ if (devinfo->gen == 7 && !devinfo->is_haswell && element_size == 8) element_size = 4; /* ExecSize must be greater than or equal to Width. */ ERROR_IF(exec_size < width, "ExecSize must be greater than or equal " "to Width"); /* If ExecSize = Width and HorzStride ≠ 0, * VertStride must be set to Width * HorzStride. */ if (exec_size == width && hstride != 0) { ERROR_IF(vstride != width * hstride, "If ExecSize = Width and HorzStride ≠ 0, " "VertStride must be set to Width * HorzStride"); } /* If Width = 1, HorzStride must be 0 regardless of the values of * ExecSize and VertStride. */ if (width == 1) { ERROR_IF(hstride != 0, "If Width = 1, HorzStride must be 0 regardless " "of the values of ExecSize and VertStride"); } /* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */ if (exec_size == 1 && width == 1) { ERROR_IF(vstride != 0 || hstride != 0, "If ExecSize = Width = 1, both VertStride " "and HorzStride must be 0"); } /* If VertStride = HorzStride = 0, Width must be 1 regardless of the * value of ExecSize. */ if (vstride == 0 && hstride == 0) { ERROR_IF(width != 1, "If VertStride = HorzStride = 0, Width must be " "1 regardless of the value of ExecSize"); } /* VertStride must be used to cross GRF register boundaries. This rule * implies that elements within a 'Width' cannot cross GRF boundaries. */ const uint64_t mask = (1ULL << element_size) - 1; unsigned rowbase = subreg; for (int y = 0; y < exec_size / width; y++) { uint64_t access_mask = 0; unsigned offset = rowbase; for (int x = 0; x < width; x++) { access_mask |= mask << offset; offset += hstride * element_size; } rowbase += vstride * element_size; if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) { ERROR("VertStride must be used to cross GRF register boundaries"); break; } } } /* Dst.HorzStride must not be 0. */ if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) { ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0, "Destination Horizontal Stride must not be 0"); } return error_msg; } static struct string special_restrictions_for_mixed_float_mode(const struct gen_device_info *devinfo, const brw_inst *inst) { struct string error_msg = { .str = NULL, .len = 0 }; const unsigned opcode = brw_inst_opcode(devinfo, inst); const unsigned num_sources = num_sources_from_inst(devinfo, inst); if (num_sources >= 3) return error_msg; if (!is_mixed_float(devinfo, inst)) return error_msg; unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst); bool is_align16 = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16; enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst); enum brw_reg_type src1_type = num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : 0; enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst); unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst)); bool dst_is_packed = is_packed(exec_size * dst_stride, exec_size, dst_stride); /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "Indirect addressing on source is not supported when source and * destination data types are mixed float." */ ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT || (num_sources > 1 && brw_inst_src1_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT), "Indirect addressing on source is not supported when source and " "destination data types are mixed float"); /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "No SIMD16 in mixed mode when destination is f32. Instruction * execution size must be no more than 8." */ ERROR_IF(exec_size > 8 && dst_type == BRW_REGISTER_TYPE_F, "Mixed float mode with 32-bit float destination is limited " "to SIMD8"); if (is_align16) { /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "In Align16 mode, when half float and float data types are mixed * between source operands OR between source and destination operands, * the register content are assumed to be packed." * * Since Align16 doesn't have a concept of horizontal stride (or width), * it means that vertical stride must always be 4, since 0 and 2 would * lead to replicated data, and any other value is disallowed in Align16. */ ERROR_IF(brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4, "Align16 mixed float mode assumes packed data (vstride must be 4"); ERROR_IF(num_sources >= 2 && brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4, "Align16 mixed float mode assumes packed data (vstride must be 4"); /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "For Align16 mixed mode, both input and output packed f16 data * must be oword aligned, no oword crossing in packed f16." * * The previous rule requires that Align16 operands are always packed, * and since there is only one bit for Align16 subnr, which represents * offsets 0B and 16B, this rule is always enforced and we don't need to * validate it. */ /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "No SIMD16 in mixed mode when destination is packed f16 for both * Align1 and Align16." * * And: * * "In Align16 mode, when half float and float data types are mixed * between source operands OR between source and destination operands, * the register content are assumed to be packed." * * Which implies that SIMD16 is not available in Align16. This is further * confirmed by: * * "For Align16 mixed mode, both input and output packed f16 data * must be oword aligned, no oword crossing in packed f16" * * Since oword-aligned packed f16 data would cross oword boundaries when * the execution size is larger than 8. */ ERROR_IF(exec_size > 8, "Align16 mixed float mode is limited to SIMD8"); /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "No accumulator read access for Align16 mixed float." */ ERROR_IF(inst_uses_src_acc(devinfo, inst), "No accumulator read access for Align16 mixed float"); } else { assert(!is_align16); /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "No SIMD16 in mixed mode when destination is packed f16 for both * Align1 and Align16." */ ERROR_IF(exec_size > 8 && dst_is_packed && dst_type == BRW_REGISTER_TYPE_HF, "Align1 mixed float mode is limited to SIMD8 when destination " "is packed half-float"); /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "Math operations for mixed mode: * - In Align1, f16 inputs need to be strided" */ if (opcode == BRW_OPCODE_MATH) { if (src0_type == BRW_REGISTER_TYPE_HF) { ERROR_IF(STRIDE(brw_inst_src0_hstride(devinfo, inst)) <= 1, "Align1 mixed mode math needs strided half-float inputs"); } if (num_sources >= 2 && src1_type == BRW_REGISTER_TYPE_HF) { ERROR_IF(STRIDE(brw_inst_src1_hstride(devinfo, inst)) <= 1, "Align1 mixed mode math needs strided half-float inputs"); } } if (dst_type == BRW_REGISTER_TYPE_HF && dst_stride == 1) { /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "In Align1, destination stride can be smaller than execution * type. When destination is stride of 1, 16 bit packed data is * updated on the destination. However, output packed f16 data * must be oword aligned, no oword crossing in packed f16." * * The requirement of not crossing oword boundaries for 16-bit oword * aligned data means that execution size is limited to 8. */ unsigned subreg; if (brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst); else subreg = brw_inst_dst_ia_subreg_nr(devinfo, inst); ERROR_IF(subreg % 16 != 0, "Align1 mixed mode packed half-float output must be " "oword aligned"); ERROR_IF(exec_size > 8, "Align1 mixed mode packed half-float output must not " "cross oword boundaries (max exec size is 8)"); /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "When source is float or half float from accumulator register and * destination is half float with a stride of 1, the source must * register aligned. i.e., source must have offset zero." * * Align16 mixed float mode doesn't allow accumulator access on sources, * so we only need to check this for Align1. */ if (src0_is_acc(devinfo, inst) && (src0_type == BRW_REGISTER_TYPE_F || src0_type == BRW_REGISTER_TYPE_HF)) { ERROR_IF(brw_inst_src0_da1_subreg_nr(devinfo, inst) != 0, "Mixed float mode requires register-aligned accumulator " "source reads when destination is packed half-float"); } if (num_sources > 1 && src1_is_acc(devinfo, inst) && (src1_type == BRW_REGISTER_TYPE_F || src1_type == BRW_REGISTER_TYPE_HF)) { ERROR_IF(brw_inst_src1_da1_subreg_nr(devinfo, inst) != 0, "Mixed float mode requires register-aligned accumulator " "source reads when destination is packed half-float"); } } /* From the SKL PRM, Special Restrictions for Handling Mixed Mode * Float Operations: * * "No swizzle is allowed when an accumulator is used as an implicit * source or an explicit source in an instruction. i.e. when * destination is half float with an implicit accumulator source, * destination stride needs to be 2." * * FIXME: it is not quite clear what the first sentence actually means * or its link to the implication described after it, so we only * validate the explicit implication, which is clearly described. */ if (dst_type == BRW_REGISTER_TYPE_HF && inst_uses_src_acc(devinfo, inst)) { ERROR_IF(dst_stride != 2, "Mixed float mode with implicit/explicit accumulator " "source and half-float destination requires a stride " "of 2 on the destination"); } } return error_msg; } /** * Creates an \p access_mask for an \p exec_size, \p element_size, and a region * * An \p access_mask is a 32-element array of uint64_t, where each uint64_t is * a bitmask of bytes accessed by the region. * * For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4 * instruction would be * * access_mask[0] = 0x00000000000000F0 * access_mask[1] = 0x000000000000F000 * access_mask[2] = 0x0000000000F00000 * access_mask[3] = 0x00000000F0000000 * access_mask[4-31] = 0 * * because the first execution channel accesses bytes 7-4 and the second * execution channel accesses bytes 15-12, etc. */ static void align1_access_mask(uint64_t access_mask[static 32], unsigned exec_size, unsigned element_size, unsigned subreg, unsigned vstride, unsigned width, unsigned hstride) { const uint64_t mask = (1ULL << element_size) - 1; unsigned rowbase = subreg; unsigned element = 0; for (int y = 0; y < exec_size / width; y++) { unsigned offset = rowbase; for (int x = 0; x < width; x++) { access_mask[element++] = mask << offset; offset += hstride * element_size; } rowbase += vstride * element_size; } assert(element == 0 || element == exec_size); } /** * Returns the number of registers accessed according to the \p access_mask */ static int registers_read(const uint64_t access_mask[static 32]) { int regs_read = 0; for (unsigned i = 0; i < 32; i++) { if (access_mask[i] > 0xFFFFFFFF) { return 2; } else if (access_mask[i]) { regs_read = 1; } } return regs_read; } /** * Checks restrictions listed in "Region Alignment Rules" in the "Register * Region Restrictions" section. */ static struct string region_alignment_rules(const struct gen_device_info *devinfo, const brw_inst *inst) { const struct opcode_desc *desc = brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)); unsigned num_sources = num_sources_from_inst(devinfo, inst); unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst); uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32]; struct string error_msg = { .str = NULL, .len = 0 }; if (num_sources == 3) return (struct string){}; if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) return (struct string){}; if (inst_is_send(devinfo, inst)) return (struct string){}; memset(dst_access_mask, 0, sizeof(dst_access_mask)); memset(src0_access_mask, 0, sizeof(src0_access_mask)); memset(src1_access_mask, 0, sizeof(src1_access_mask)); for (unsigned i = 0; i < num_sources; i++) { unsigned vstride, width, hstride, element_size, subreg; enum brw_reg_type type; /* In Direct Addressing mode, a source cannot span more than 2 adjacent * GRF registers. */ #define DO_SRC(n) \ if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \ BRW_ADDRESS_DIRECT) \ continue; \ \ if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \ BRW_IMMEDIATE_VALUE) \ continue; \ \ vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \ width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \ hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \ type = brw_inst_src ## n ## _type(devinfo, inst); \ element_size = brw_reg_type_to_size(type); \ subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \ align1_access_mask(src ## n ## _access_mask, \ exec_size, element_size, subreg, \ vstride, width, hstride) if (i == 0) { DO_SRC(0); } else { DO_SRC(1); } #undef DO_SRC unsigned num_vstride = exec_size / width; unsigned num_hstride = width; unsigned vstride_elements = (num_vstride - 1) * vstride; unsigned hstride_elements = (num_hstride - 1) * hstride; unsigned offset = (vstride_elements + hstride_elements) * element_size + subreg; ERROR_IF(offset >= 64, "A source cannot span more than 2 adjacent GRF registers"); } if (desc->ndst == 0 || dst_is_null(devinfo, inst)) return error_msg; unsigned stride = STRIDE(brw_inst_dst_hstride(devinfo, inst)); enum brw_reg_type dst_type = inst_dst_type(devinfo, inst); unsigned element_size = brw_reg_type_to_size(dst_type); unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst); unsigned offset = ((exec_size - 1) * stride * element_size) + subreg; ERROR_IF(offset >= 64, "A destination cannot span more than 2 adjacent GRF registers"); if (error_msg.str) return error_msg; /* On IVB/BYT, region parameters and execution size for DF are in terms of * 32-bit elements, so they are doubled. For evaluating the validity of an * instruction, we halve them. */ if (devinfo->gen == 7 && !devinfo->is_haswell && element_size == 8) element_size = 4; align1_access_mask(dst_access_mask, exec_size, element_size, subreg, exec_size == 1 ? 0 : exec_size * stride, exec_size == 1 ? 1 : exec_size, exec_size == 1 ? 0 : stride); unsigned dst_regs = registers_read(dst_access_mask); unsigned src0_regs = registers_read(src0_access_mask); unsigned src1_regs = registers_read(src1_access_mask); /* The SNB, IVB, HSW, BDW, and CHV PRMs say: * * When an instruction has a source region spanning two registers and a * destination region contained in one register, the number of elements * must be the same between two sources and one of the following must be * true: * * 1. The destination region is entirely contained in the lower OWord * of a register. * 2. The destination region is entirely contained in the upper OWord * of a register. * 3. The destination elements are evenly split between the two OWords * of a register. */ if (devinfo->gen <= 8) { if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) { unsigned upper_oword_writes = 0, lower_oword_writes = 0; for (unsigned i = 0; i < exec_size; i++) { if (dst_access_mask[i] > 0x0000FFFF) { upper_oword_writes++; } else { assert(dst_access_mask[i] != 0); lower_oword_writes++; } } ERROR_IF(lower_oword_writes != 0 && upper_oword_writes != 0 && upper_oword_writes != lower_oword_writes, "Writes must be to only one OWord or " "evenly split between OWords"); } } /* The IVB and HSW PRMs say: * * When an instruction has a source region that spans two registers and * the destination spans two registers, the destination elements must be * evenly split between the two registers [...] * * The SNB PRM contains similar wording (but written in a much more * confusing manner). * * The BDW PRM says: * * When destination spans two registers, the source may be one or two * registers. The destination elements must be evenly split between the * two registers. * * The SKL PRM says: * * When destination of MATH instruction spans two registers, the * destination elements must be evenly split between the two registers. * * It is not known whether this restriction applies to KBL other Gens after * SKL. */ if (devinfo->gen <= 8 || brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) { /* Nothing explicitly states that on Gen < 8 elements must be evenly * split between two destination registers in the two exceptional * source-region-spans-one-register cases, but since Broadwell requires * evenly split writes regardless of source region, we assume that it was * an oversight and require it. */ if (dst_regs == 2) { unsigned upper_reg_writes = 0, lower_reg_writes = 0; for (unsigned i = 0; i < exec_size; i++) { if (dst_access_mask[i] > 0xFFFFFFFF) { upper_reg_writes++; } else { assert(dst_access_mask[i] != 0); lower_reg_writes++; } } ERROR_IF(upper_reg_writes != lower_reg_writes, "Writes must be evenly split between the two " "destination registers"); } } /* The IVB and HSW PRMs say: * * When an instruction has a source region that spans two registers and * the destination spans two registers, the destination elements must be * evenly split between the two registers and each destination register * must be entirely derived from one source register. * * Note: In such cases, the regioning parameters must ensure that the * offset from the two source registers is the same. * * The SNB PRM contains similar wording (but written in a much more * confusing manner). * * There are effectively three rules stated here: * * For an instruction with a source and a destination spanning two * registers, * * (1) destination elements must be evenly split between the two * registers * (2) all destination elements in a register must be derived * from one source register * (3) the offset (i.e. the starting location in each of the two * registers spanned by a region) must be the same in the two * registers spanned by a region * * It is impossible to violate rule (1) without violating (2) or (3), so we * do not attempt to validate it. */ if (devinfo->gen <= 7 && dst_regs == 2) { for (unsigned i = 0; i < num_sources; i++) { #define DO_SRC(n) \ if (src ## n ## _regs <= 1) \ continue; \ \ for (unsigned i = 0; i < exec_size; i++) { \ if ((dst_access_mask[i] > 0xFFFFFFFF) != \ (src ## n ## _access_mask[i] > 0xFFFFFFFF)) { \ ERROR("Each destination register must be entirely derived " \ "from one source register"); \ break; \ } \ } \ \ unsigned offset_0 = \ brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \ unsigned offset_1 = offset_0; \ \ for (unsigned i = 0; i < exec_size; i++) { \ if (src ## n ## _access_mask[i] > 0xFFFFFFFF) { \ offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32; \ break; \ } \ } \ \ ERROR_IF(num_sources == 2 && offset_0 != offset_1, \ "The offset from the two source registers " \ "must be the same") if (i == 0) { DO_SRC(0); } else { DO_SRC(1); } #undef DO_SRC } } /* The IVB and HSW PRMs say: * * When destination spans two registers, the source MUST span two * registers. The exception to the above rule: * 1. When source is scalar, the source registers are not * incremented. * 2. When source is packed integer Word and destination is packed * integer DWord, the source register is not incremented by the * source sub register is incremented. * * The SNB PRM does not contain this rule, but the internal documentation * indicates that it applies to SNB as well. We assume that the rule applies * to Gen <= 5 although their PRMs do not state it. * * While the documentation explicitly says in exception (2) that the * destination must be an integer DWord, the hardware allows at least a * float destination type as well. We emit such instructions from * * fs_visitor::emit_interpolation_setup_gen6 * fs_visitor::emit_fragcoord_interpolation * * and have for years with no ill effects. * * Additionally the simulator source code indicates that the real condition * is that the size of the destination type is 4 bytes. */ if (devinfo->gen <= 7 && dst_regs == 2) { enum brw_reg_type dst_type = inst_dst_type(devinfo, inst); bool dst_is_packed_dword = is_packed(exec_size * stride, exec_size, stride) && brw_reg_type_to_size(dst_type) == 4; for (unsigned i = 0; i < num_sources; i++) { #define DO_SRC(n) \ unsigned vstride, width, hstride; \ vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \ width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \ hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \ bool src ## n ## _is_packed_word = \ is_packed(vstride, width, hstride) && \ (brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_W || \ brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_UW); \ \ ERROR_IF(src ## n ## _regs == 1 && \ !src ## n ## _has_scalar_region(devinfo, inst) && \ !(dst_is_packed_dword && src ## n ## _is_packed_word), \ "When the destination spans two registers, the source must " \ "span two registers\n" ERROR_INDENT "(exceptions for scalar " \ "source and packed-word to packed-dword expansion)") if (i == 0) { DO_SRC(0); } else { DO_SRC(1); } #undef DO_SRC } } return error_msg; } static struct string vector_immediate_restrictions(const struct gen_device_info *devinfo, const brw_inst *inst) { unsigned num_sources = num_sources_from_inst(devinfo, inst); struct string error_msg = { .str = NULL, .len = 0 }; if (num_sources == 3 || num_sources == 0) return (struct string){}; unsigned file = num_sources == 1 ? brw_inst_src0_reg_file(devinfo, inst) : brw_inst_src1_reg_file(devinfo, inst); if (file != BRW_IMMEDIATE_VALUE) return (struct string){}; enum brw_reg_type dst_type = inst_dst_type(devinfo, inst); unsigned dst_type_size = brw_reg_type_to_size(dst_type); unsigned dst_subreg = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 ? brw_inst_dst_da1_subreg_nr(devinfo, inst) : 0; unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst)); enum brw_reg_type type = num_sources == 1 ? brw_inst_src0_type(devinfo, inst) : brw_inst_src1_type(devinfo, inst); /* The PRMs say: * * When an immediate vector is used in an instruction, the destination * must be 128-bit aligned with destination horizontal stride equivalent * to a word for an immediate integer vector (v) and equivalent to a * DWord for an immediate float vector (vf). * * The text has not been updated for the addition of the immediate unsigned * integer vector type (uv) on SNB, but presumably the same restriction * applies. */ switch (type) { case BRW_REGISTER_TYPE_V: case BRW_REGISTER_TYPE_UV: case BRW_REGISTER_TYPE_VF: ERROR_IF(dst_subreg % (128 / 8) != 0, "Destination must be 128-bit aligned in order to use immediate " "vector types"); if (type == BRW_REGISTER_TYPE_VF) { ERROR_IF(dst_type_size * dst_stride != 4, "Destination must have stride equivalent to dword in order " "to use the VF type"); } else { ERROR_IF(dst_type_size * dst_stride != 2, "Destination must have stride equivalent to word in order " "to use the V or UV type"); } break; default: break; } return error_msg; } static struct string special_requirements_for_handling_double_precision_data_types( const struct gen_device_info *devinfo, const brw_inst *inst) { unsigned num_sources = num_sources_from_inst(devinfo, inst); struct string error_msg = { .str = NULL, .len = 0 }; if (num_sources == 3 || num_sources == 0) return (struct string){}; /* Split sends don't have types so there's no doubles there. */ if (inst_is_split_send(devinfo, inst)) return (struct string){}; enum brw_reg_type exec_type = execution_type(devinfo, inst); unsigned exec_type_size = brw_reg_type_to_size(exec_type); enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, inst); enum brw_reg_type dst_type = inst_dst_type(devinfo, inst); unsigned dst_type_size = brw_reg_type_to_size(dst_type); unsigned dst_hstride = STRIDE(brw_inst_dst_hstride(devinfo, inst)); unsigned dst_reg = brw_inst_dst_da_reg_nr(devinfo, inst); unsigned dst_subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst); unsigned dst_address_mode = brw_inst_dst_address_mode(devinfo, inst); bool is_integer_dword_multiply = devinfo->gen >= 8 && brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MUL && (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_D || brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UD) && (brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_D || brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_UD); if (dst_type_size != 8 && exec_type_size != 8 && !is_integer_dword_multiply) return (struct string){}; for (unsigned i = 0; i < num_sources; i++) { unsigned vstride, width, hstride, type_size, reg, subreg, address_mode; bool is_scalar_region; enum brw_reg_file file; enum brw_reg_type type; #define DO_SRC(n) \ if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \ BRW_IMMEDIATE_VALUE) \ continue; \ \ is_scalar_region = src ## n ## _has_scalar_region(devinfo, inst); \ vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \ width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \ hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \ file = brw_inst_src ## n ## _reg_file(devinfo, inst); \ type = brw_inst_src ## n ## _type(devinfo, inst); \ type_size = brw_reg_type_to_size(type); \ reg = brw_inst_src ## n ## _da_reg_nr(devinfo, inst); \ subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \ address_mode = brw_inst_src ## n ## _address_mode(devinfo, inst) if (i == 0) { DO_SRC(0); } else { DO_SRC(1); } #undef DO_SRC /* The PRMs say that for CHV, BXT: * * When source or destination datatype is 64b or operation is integer * DWord multiply, regioning in Align1 must follow these rules: * * 1. Source and Destination horizontal stride must be aligned to the * same qword. * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride. * 3. Source and Destination offset must be the same, except the case * of scalar source. * * We assume that the restriction applies to GLK as well. */ if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 && (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) { unsigned src_stride = hstride * type_size; unsigned dst_stride = dst_hstride * dst_type_size; ERROR_IF(!is_scalar_region && (src_stride % 8 != 0 || dst_stride % 8 != 0 || src_stride != dst_stride), "Source and destination horizontal stride must equal and a " "multiple of a qword when the execution type is 64-bit"); ERROR_IF(vstride != width * hstride, "Vstride must be Width * Hstride when the execution type is " "64-bit"); ERROR_IF(!is_scalar_region && dst_subreg != subreg, "Source and destination offset must be the same when the " "execution type is 64-bit"); } /* The PRMs say that for CHV, BXT: * * When source or destination datatype is 64b or operation is integer * DWord multiply, indirect addressing must not be used. * * We assume that the restriction applies to GLK as well. */ if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) { ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode || BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode, "Indirect addressing is not allowed when the execution type " "is 64-bit"); } /* The PRMs say that for CHV, BXT: * * ARF registers must never be used with 64b datatype or when * operation is integer DWord multiply. * * We assume that the restriction applies to GLK as well. * * We assume that the restriction does not apply to the null register. */ if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) { ERROR_IF(brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MAC || brw_inst_acc_wr_control(devinfo, inst) || (BRW_ARCHITECTURE_REGISTER_FILE == file && reg != BRW_ARF_NULL) || (BRW_ARCHITECTURE_REGISTER_FILE == dst_file && dst_reg != BRW_ARF_NULL), "Architecture registers cannot be used when the execution " "type is 64-bit"); } } /* The PRMs say that for BDW, SKL: * * If Align16 is required for an operation with QW destination and non-QW * source datatypes, the execution size cannot exceed 2. * * We assume that the restriction applies to all Gen8+ parts. */ if (devinfo->gen >= 8) { enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst); enum brw_reg_type src1_type = num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : src0_type; unsigned src0_type_size = brw_reg_type_to_size(src0_type); unsigned src1_type_size = brw_reg_type_to_size(src1_type); ERROR_IF(brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 && dst_type_size == 8 && (src0_type_size != 8 || src1_type_size != 8) && brw_inst_exec_size(devinfo, inst) > BRW_EXECUTE_2, "In Align16 exec size cannot exceed 2 with a QWord destination " "and a non-QWord source"); } /* The PRMs say that for CHV, BXT: * * When source or destination datatype is 64b or operation is integer * DWord multiply, DepCtrl must not be used. * * We assume that the restriction applies to GLK as well. */ if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) { ERROR_IF(brw_inst_no_dd_check(devinfo, inst) || brw_inst_no_dd_clear(devinfo, inst), "DepCtrl is not allowed when the execution type is 64-bit"); } return error_msg; } static struct string instruction_restrictions(const struct gen_device_info *devinfo, const brw_inst *inst) { struct string error_msg = { .str = NULL, .len = 0 }; /* From GEN:BUG:1604601757: * * "When multiplying a DW and any lower precision integer, source modifier * is not supported." */ if (devinfo->gen >= 12 && brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MUL) { enum brw_reg_type exec_type = execution_type(devinfo, inst); const bool src0_valid = type_sz(brw_inst_src0_type(devinfo, inst)) == 4 || brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE || !(brw_inst_src0_negate(devinfo, inst) || brw_inst_src0_abs(devinfo, inst)); const bool src1_valid = type_sz(brw_inst_src1_type(devinfo, inst)) == 4 || brw_inst_src1_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE || !(brw_inst_src1_negate(devinfo, inst) || brw_inst_src1_abs(devinfo, inst)); ERROR_IF(!brw_reg_type_is_floating_point(exec_type) && type_sz(exec_type) == 4 && !(src0_valid && src1_valid), "When multiplying a DW and any lower precision integer, source " "modifier is not supported."); } return error_msg; } bool brw_validate_instructions(const struct gen_device_info *devinfo, const void *assembly, int start_offset, int end_offset, struct disasm_info *disasm) { bool valid = true; for (int src_offset = start_offset; src_offset < end_offset;) { struct string error_msg = { .str = NULL, .len = 0 }; const brw_inst *inst = assembly + src_offset; bool is_compact = brw_inst_cmpt_control(devinfo, inst); brw_inst uncompacted; if (is_compact) { brw_compact_inst *compacted = (void *)inst; brw_uncompact_instruction(devinfo, &uncompacted, compacted); inst = &uncompacted; } if (is_unsupported_inst(devinfo, inst)) { ERROR("Instruction not supported on this Gen"); } else { CHECK(sources_not_null); CHECK(send_restrictions); CHECK(alignment_supported); CHECK(general_restrictions_based_on_operand_types); CHECK(general_restrictions_on_region_parameters); CHECK(special_restrictions_for_mixed_float_mode); CHECK(region_alignment_rules); CHECK(vector_immediate_restrictions); CHECK(special_requirements_for_handling_double_precision_data_types); CHECK(instruction_restrictions); } if (error_msg.str && disasm) { disasm_insert_error(disasm, src_offset, error_msg.str); } valid = valid && error_msg.len == 0; free(error_msg.str); if (is_compact) { src_offset += sizeof(brw_compact_inst); } else { src_offset += sizeof(brw_inst); } } return valid; }