/* * Copyright © 2010 - 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef BRW_COMPILER_H #define BRW_COMPILER_H #include #include "common/gen_device_info.h" #include "main/mtypes.h" #include "main/macros.h" #include "util/ralloc.h" #ifdef __cplusplus extern "C" { #endif struct ra_regs; struct nir_shader; struct brw_program; struct brw_compiler { const struct gen_device_info *devinfo; struct { struct ra_regs *regs; /** * Array of the ra classes for the unaligned contiguous register * block sizes used. */ int *classes; /** * Mapping for register-allocated objects in *regs to the first * GRF for that object. */ uint8_t *ra_reg_to_grf; } vec4_reg_set; struct { struct ra_regs *regs; /** * Array of the ra classes for the unaligned contiguous register * block sizes used, indexed by register size. */ int classes[16]; /** * Mapping from classes to ra_reg ranges. Each of the per-size * classes corresponds to a range of ra_reg nodes. This array stores * those ranges in the form of first ra_reg in each class and the * total number of ra_reg elements in the last array element. This * way the range of the i'th class is given by: * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] ) */ int class_to_ra_reg_range[17]; /** * Mapping for register-allocated objects in *regs to the first * GRF for that object. */ uint8_t *ra_reg_to_grf; /** * ra class for the aligned pairs we use for PLN, which doesn't * appear in *classes. */ int aligned_pairs_class; } fs_reg_sets[3]; void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3); void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3); bool scalar_stage[MESA_SHADER_STAGES]; struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES]; /** * Apply workarounds for SIN and COS output range problems. * This can negatively impact performance. */ bool precise_trig; /** * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State * Base Address? (If not, it's a normal GPU address.) */ bool constant_buffer_0_is_relative; /** * Whether or not the driver supports pull constants. If not, the compiler * will attempt to push everything. */ bool supports_pull_constants; }; /** * Program key structures. * * When drawing, we look for the currently bound shaders in the program * cache. This is essentially a hash table lookup, and these are the keys. * * Sometimes OpenGL features specified as state need to be simulated via * shader code, due to a mismatch between the API and the hardware. This * is often referred to as "non-orthagonal state" or "NOS". We store NOS * in the program key so it's considered when searching for a program. If * we haven't seen a particular combination before, we have to recompile a * new specialized version. * * Shader compilation should not look up state in gl_context directly, but * instead use the copy in the program key. This guarantees recompiles will * happen correctly. * * @{ */ enum PACKED gen6_gather_sampler_wa { WA_SIGN = 1, /* whether we need to sign extend */ WA_8BIT = 2, /* if we have an 8bit format needing wa */ WA_16BIT = 4, /* if we have a 16bit format needing wa */ }; /** * Sampler information needed by VS, WM, and GS program cache keys. */ struct brw_sampler_prog_key_data { /** * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles. */ uint16_t swizzles[MAX_SAMPLERS]; uint32_t gl_clamp_mask[3]; /** * For RG32F, gather4's channel select is broken. */ uint32_t gather_channel_quirk_mask; /** * Whether this sampler uses the compressed multisample surface layout. */ uint32_t compressed_multisample_layout_mask; /** * Whether this sampler is using 16x multisampling. If so fetching from * this sampler will be handled with a different instruction, ld2dms_w * instead of ld2dms. */ uint32_t msaa_16; /** * For Sandybridge, which shader w/a we need for gather quirks. */ enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS]; /** * Texture units that have a YUV image bound. */ uint32_t y_u_v_image_mask; uint32_t y_uv_image_mask; uint32_t yx_xuxv_image_mask; uint32_t xy_uxvx_image_mask; }; /** * The VF can't natively handle certain types of attributes, such as GL_FIXED * or most 10_10_10_2 types. These flags enable various VS workarounds to * "fix" attributes at the beginning of shaders. */ #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */ #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */ #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */ #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */ #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */ /** * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user * input vertex attributes. In Vulkan, we expose up to 28 user vertex input * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0. */ #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28) /** The program key for Vertex Shaders. */ struct brw_vs_prog_key { unsigned program_string_id; /** * Per-attribute workaround flags * * For each attribute, a combination of BRW_ATTRIB_WA_*. * * For OpenGL, where we expose a maximum of 16 user input atttributes * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can * expose up to 28 user input vertex attributes that are mapped to slots * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large * enough to hold this many slots. */ uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)]; bool copy_edgeflag:1; bool clamp_vertex_color:1; /** * How many user clipping planes are being uploaded to the vertex shader as * push constants. * * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to * clip distances. */ unsigned nr_userclip_plane_consts:4; /** * For pre-Gen6 hardware, a bitfield indicating which texture coordinates * are going to be replaced with point coordinates (as a consequence of a * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because * our SF thread requires exact matching between VS outputs and FS inputs, * these texture coordinates will need to be unconditionally included in * the VUE, even if they aren't written by the vertex shader. */ uint8_t point_coord_replace; struct brw_sampler_prog_key_data tex; }; /** The program key for Tessellation Control Shaders. */ struct brw_tcs_prog_key { unsigned program_string_id; GLenum tes_primitive_mode; unsigned input_vertices; /** A bitfield of per-patch outputs written. */ uint32_t patch_outputs_written; /** A bitfield of per-vertex outputs written. */ uint64_t outputs_written; bool quads_workaround; struct brw_sampler_prog_key_data tex; }; /** The program key for Tessellation Evaluation Shaders. */ struct brw_tes_prog_key { unsigned program_string_id; /** A bitfield of per-patch inputs read. */ uint32_t patch_inputs_read; /** A bitfield of per-vertex inputs read. */ uint64_t inputs_read; struct brw_sampler_prog_key_data tex; }; /** The program key for Geometry Shaders. */ struct brw_gs_prog_key { unsigned program_string_id; struct brw_sampler_prog_key_data tex; }; enum brw_sf_primitive { BRW_SF_PRIM_POINTS = 0, BRW_SF_PRIM_LINES = 1, BRW_SF_PRIM_TRIANGLES = 2, BRW_SF_PRIM_UNFILLED_TRIS = 3, }; struct brw_sf_prog_key { uint64_t attrs; bool contains_flat_varying; unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */ uint8_t point_sprite_coord_replace; enum brw_sf_primitive primitive:2; bool do_twoside_color:1; bool frontface_ccw:1; bool do_point_sprite:1; bool do_point_coord:1; bool sprite_origin_lower_left:1; bool userclip_active:1; }; enum brw_clip_mode { BRW_CLIP_MODE_NORMAL = 0, BRW_CLIP_MODE_CLIP_ALL = 1, BRW_CLIP_MODE_CLIP_NON_REJECTED = 2, BRW_CLIP_MODE_REJECT_ALL = 3, BRW_CLIP_MODE_ACCEPT_ALL = 4, BRW_CLIP_MODE_KERNEL_CLIP = 5, }; enum brw_clip_fill_mode { BRW_CLIP_FILL_MODE_LINE = 0, BRW_CLIP_FILL_MODE_POINT = 1, BRW_CLIP_FILL_MODE_FILL = 2, BRW_CLIP_FILL_MODE_CULL = 3, }; /* Note that if unfilled primitives are being emitted, we have to fix * up polygon offset and flatshading at this point: */ struct brw_clip_prog_key { uint64_t attrs; bool contains_flat_varying; bool contains_noperspective_varying; unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */ unsigned primitive:4; unsigned nr_userclip:4; bool pv_first:1; bool do_unfilled:1; enum brw_clip_fill_mode fill_cw:2; /* includes cull information */ enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */ bool offset_cw:1; bool offset_ccw:1; bool copy_bfc_cw:1; bool copy_bfc_ccw:1; enum brw_clip_mode clip_mode:3; float offset_factor; float offset_units; float offset_clamp; }; /* A big lookup table is used to figure out which and how many * additional regs will inserted before the main payload in the WM * program execution. These mainly relate to depth and stencil * processing and the early-depth-test optimization. */ enum brw_wm_iz_bits { BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1, BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2, BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4, BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8, BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10, BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20, BRW_WM_IZ_BIT_MAX = 0x40 }; enum brw_wm_aa_enable { BRW_WM_AA_NEVER, BRW_WM_AA_SOMETIMES, BRW_WM_AA_ALWAYS }; /** The program key for Fragment/Pixel Shaders. */ struct brw_wm_prog_key { /* Some collection of BRW_WM_IZ_* */ uint8_t iz_lookup; bool stats_wm:1; bool flat_shade:1; unsigned nr_color_regions:5; bool replicate_alpha:1; bool clamp_fragment_color:1; bool persample_interp:1; bool multisample_fbo:1; bool frag_coord_adds_sample_pos:1; enum brw_wm_aa_enable line_aa:2; bool high_quality_derivatives:1; bool force_dual_color_blend:1; bool coherent_fb_fetch:1; uint64_t input_slots_valid; unsigned program_string_id; GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */ float alpha_test_ref; struct brw_sampler_prog_key_data tex; }; struct brw_cs_prog_key { uint32_t program_string_id; struct brw_sampler_prog_key_data tex; }; /* * Image metadata structure as laid out in the shader parameter * buffer. Entries have to be 16B-aligned for the vec4 back-end to be * able to use them. That's okay because the padding and any unused * entries [most of them except when we're doing untyped surface * access] will be removed by the uniform packing pass. */ #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12 #define BRW_IMAGE_PARAM_TILING_OFFSET 16 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20 #define BRW_IMAGE_PARAM_SIZE 24 struct brw_image_param { /** Surface binding table index. */ uint32_t surface_idx; /** Offset applied to the X and Y surface coordinates. */ uint32_t offset[2]; /** Surface X, Y and Z dimensions. */ uint32_t size[3]; /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in * pixels, vertical slice stride in pixels. */ uint32_t stride[4]; /** Log2 of the tiling modulus in the X, Y and Z dimension. */ uint32_t tiling[3]; /** * Right shift to apply for bit 6 address swizzling. Two different * swizzles can be specified and will be applied one after the other. The * resulting address will be: * * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^ * (addr >> swizzling[1]))) * * Use \c 0xff if any of the swizzles is not required. */ uint32_t swizzling[2]; }; /** Max number of render targets in a shader */ #define BRW_MAX_DRAW_BUFFERS 8 /** * Max number of binding table entries used for stream output. * * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64. * * On Gen6, the size of transform feedback data is limited not by the number * of components but by the number of binding table entries we set aside. We * use one binding table entry for a float, one entry for a vector, and one * entry per matrix column. Since the only way we can communicate our * transform feedback capabilities to the client is via * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the * worst case, in which all the varyings are floats, so we use up one binding * table entry per component. Therefore we need to set aside at least 64 * binding table entries for use by transform feedback. * * Note: since we don't currently pack varyings, it is currently impossible * for the client to actually use up all of these binding table entries--if * all of their varyings were floats, they would run out of varying slots and * fail to link. But that's a bug, so it seems prudent to go ahead and * allocate the number of binding table entries we will need once the bug is * fixed. */ #define BRW_MAX_SOL_BINDINGS 64 /** * Binding table index for the first gen6 SOL binding. */ #define BRW_GEN6_SOL_BINDING_START 0 /** * Stride in bytes between shader_time entries. * * We separate entries by a cacheline to reduce traffic between EUs writing to * different entries. */ #define BRW_SHADER_TIME_STRIDE 64 struct brw_ubo_range { uint16_t block; uint8_t start; uint8_t length; }; /* We reserve the first 2^16 values for builtins */ #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0) enum brw_param_builtin { BRW_PARAM_BUILTIN_ZERO, BRW_PARAM_BUILTIN_CLIP_PLANE_0_X, BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_0_W, BRW_PARAM_BUILTIN_CLIP_PLANE_1_X, BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_1_W, BRW_PARAM_BUILTIN_CLIP_PLANE_2_X, BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_2_W, BRW_PARAM_BUILTIN_CLIP_PLANE_3_X, BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_3_W, BRW_PARAM_BUILTIN_CLIP_PLANE_4_X, BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_4_W, BRW_PARAM_BUILTIN_CLIP_PLANE_5_X, BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_5_W, BRW_PARAM_BUILTIN_CLIP_PLANE_6_X, BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_6_W, BRW_PARAM_BUILTIN_CLIP_PLANE_7_X, BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y, BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z, BRW_PARAM_BUILTIN_CLIP_PLANE_7_W, BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X, BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y, BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z, BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W, BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X, BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y, BRW_PARAM_BUILTIN_THREAD_LOCAL_ID, }; #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \ (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp)) #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \ ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \ (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W) #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \ (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2) #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \ (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3) struct brw_stage_prog_data { struct { /** size of our binding table. */ uint32_t size_bytes; /** @{ * surface indices for the various groups of surfaces */ uint32_t pull_constants_start; uint32_t texture_start; uint32_t gather_texture_start; uint32_t ubo_start; uint32_t ssbo_start; uint32_t abo_start; uint32_t image_start; uint32_t shader_time_start; uint32_t plane_start[3]; /** @} */ } binding_table; struct brw_ubo_range ubo_ranges[4]; GLuint nr_params; /**< number of float params/constants */ GLuint nr_pull_params; unsigned curb_read_length; unsigned total_scratch; unsigned total_shared; unsigned program_size; /** * Register where the thread expects to find input data from the URB * (typically uniforms, followed by vertex or fragment attributes). */ unsigned dispatch_grf_start_reg; bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */ /* 32-bit identifiers for all push/pull parameters. These can be anything * the driver wishes them to be; the core of the back-end compiler simply * re-arranges them. The one restriction is that the bottom 2^16 values * are reserved for builtins defined in the brw_param_builtin enum defined * above. */ uint32_t *param; uint32_t *pull_param; }; static inline uint32_t * brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data, unsigned nr_new_params) { unsigned old_nr_params = prog_data->nr_params; prog_data->nr_params += nr_new_params; prog_data->param = reralloc(ralloc_parent(prog_data->param), prog_data->param, uint32_t, prog_data->nr_params); return prog_data->param + old_nr_params; } static inline void brw_mark_surface_used(struct brw_stage_prog_data *prog_data, unsigned surf_index) { /* A binding table index is 8 bits and the top 3 values are reserved for * special things (stateless and SLM). */ assert(surf_index <= 252); prog_data->binding_table.size_bytes = MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4); } enum brw_barycentric_mode { BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0, BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1, BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2, BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3, BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4, BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5, BRW_BARYCENTRIC_MODE_COUNT = 6 }; #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \ ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \ (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \ (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE)) enum brw_pixel_shader_computed_depth_mode { BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */ BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */ BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */ BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */ }; /* Data about a particular attempt to compile a program. Note that * there can be many of these, each in a different GL state * corresponding to a different brw_wm_prog_key struct, with different * compiled programs. */ struct brw_wm_prog_data { struct brw_stage_prog_data base; GLuint num_varying_inputs; uint8_t reg_blocks_0; uint8_t reg_blocks_2; uint8_t dispatch_grf_start_reg_2; uint32_t prog_offset_2; struct { /** @{ * surface indices the WM-specific surfaces */ uint32_t render_target_start; uint32_t render_target_read_start; /** @} */ } binding_table; uint8_t computed_depth_mode; bool computed_stencil; bool early_fragment_tests; bool post_depth_coverage; bool inner_coverage; bool dispatch_8; bool dispatch_16; bool dual_src_blend; bool persample_dispatch; bool uses_pos_offset; bool uses_omask; bool uses_kill; bool uses_src_depth; bool uses_src_w; bool uses_sample_mask; bool has_render_target_reads; bool has_side_effects; bool pulls_bary; bool contains_flat_varying; bool contains_noperspective_varying; /** * Mask of which interpolation modes are required by the fragment shader. * Used in hardware setup on gen6+. */ uint32_t barycentric_interp_modes; /** * Mask of which FS inputs are marked flat by the shader source. This is * needed for setting up 3DSTATE_SF/SBE. */ uint32_t flat_inputs; /* Mapping of VUE slots to interpolation modes. * Used by the Gen4-5 clip/sf/wm stages. */ unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */ /** * Map from gl_varying_slot to the position within the FS setup data * payload where the varying's attribute vertex deltas should be delivered. * For varying slots that are not used by the FS, the value is -1. */ int urb_setup[VARYING_SLOT_MAX]; }; struct brw_push_const_block { unsigned dwords; /* Dword count, not reg aligned */ unsigned regs; unsigned size; /* Bytes, register aligned */ }; struct brw_cs_prog_data { struct brw_stage_prog_data base; GLuint dispatch_grf_start_reg_16; unsigned local_size[3]; unsigned simd_size; unsigned threads; bool uses_barrier; bool uses_num_work_groups; struct { struct brw_push_const_block cross_thread; struct brw_push_const_block per_thread; struct brw_push_const_block total; } push; struct { /** @{ * surface indices the CS-specific surfaces */ uint32_t work_groups_start; /** @} */ } binding_table; }; /** * Enum representing the i965-specific vertex results that don't correspond * exactly to any element of gl_varying_slot. The values of this enum are * assigned such that they don't conflict with gl_varying_slot. */ typedef enum { BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX, BRW_VARYING_SLOT_PAD, /** * Technically this is not a varying but just a placeholder that * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord * builtin variable to be compiled correctly. see compile_sf_prog() for * more info. */ BRW_VARYING_SLOT_PNTC, BRW_VARYING_SLOT_COUNT } brw_varying_slot; /** * We always program SF to start reading at an offset of 1 (2 varying slots) * from the start of the vertex URB entry. This causes it to skip: * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+ */ #define BRW_SF_URB_ENTRY_READ_OFFSET 1 /** * Bitmask indicating which fragment shader inputs represent varyings (and * hence have to be delivered to the fragment shader by the SF/SBE stage). */ #define BRW_FS_VARYING_INPUT_MASK \ (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \ ~VARYING_BIT_POS & ~VARYING_BIT_FACE) /** * Data structure recording the relationship between the gl_varying_slot enum * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a * single octaword within the VUE (128 bits). * * Note that each BRW register contains 256 bits (2 octawords), so when * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as * in a vertex shader), each register corresponds to a single VUE slot, since * it contains data for two separate vertices. */ struct brw_vue_map { /** * Bitfield representing all varying slots that are (a) stored in this VUE * map, and (b) actually written by the shader. Does not include any of * the additional varying slots defined in brw_varying_slot. */ uint64_t slots_valid; /** * Is this VUE map for a separate shader pipeline? * * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched * without the linker having a chance to dead code eliminate unused varyings. * * This means that we have to use a fixed slot layout, based on the output's * location field, rather than assigning slots in a compact contiguous block. */ bool separate; /** * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are * not stored in a slot (because they are not written, or because * additional processing is applied before storing them in the VUE), the * value is -1. */ signed char varying_to_slot[VARYING_SLOT_TESS_MAX]; /** * Map from VUE slot to gl_varying_slot value. For slots that do not * directly correspond to a gl_varying_slot, the value comes from * brw_varying_slot. * * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD. */ signed char slot_to_varying[VARYING_SLOT_TESS_MAX]; /** * Total number of VUE slots in use */ int num_slots; /** * Number of per-patch VUE slots. Only valid for tessellation control * shader outputs and tessellation evaluation shader inputs. */ int num_per_patch_slots; /** * Number of per-vertex VUE slots. Only valid for tessellation control * shader outputs and tessellation evaluation shader inputs. */ int num_per_vertex_slots; }; void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map); /** * Convert a VUE slot number into a byte offset within the VUE. */ static inline GLuint brw_vue_slot_to_offset(GLuint slot) { return 16*slot; } /** * Convert a vertex output (brw_varying_slot) into a byte offset within the * VUE. */ static inline GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying) { return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]); } void brw_compute_vue_map(const struct gen_device_info *devinfo, struct brw_vue_map *vue_map, uint64_t slots_valid, bool separate_shader); void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map, uint64_t slots_valid, uint32_t is_patch); /* brw_interpolation_map.c */ void brw_setup_vue_interpolation(struct brw_vue_map *vue_map, struct nir_shader *nir, struct brw_wm_prog_data *prog_data, const struct gen_device_info *devinfo); enum shader_dispatch_mode { DISPATCH_MODE_4X1_SINGLE = 0, DISPATCH_MODE_4X2_DUAL_INSTANCE = 1, DISPATCH_MODE_4X2_DUAL_OBJECT = 2, DISPATCH_MODE_SIMD8 = 3, }; /** * @defgroup Tessellator parameter enumerations. * * These correspond to the hardware values in 3DSTATE_TE, and are provided * as part of the tessellation evaluation shader. * * @{ */ enum brw_tess_partitioning { BRW_TESS_PARTITIONING_INTEGER = 0, BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1, BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2, }; enum brw_tess_output_topology { BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0, BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1, BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2, BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3, }; enum brw_tess_domain { BRW_TESS_DOMAIN_QUAD = 0, BRW_TESS_DOMAIN_TRI = 1, BRW_TESS_DOMAIN_ISOLINE = 2, }; /** @} */ struct brw_vue_prog_data { struct brw_stage_prog_data base; struct brw_vue_map vue_map; /** Should the hardware deliver input VUE handles for URB pull loads? */ bool include_vue_handles; GLuint urb_read_length; GLuint total_grf; uint32_t clip_distance_mask; uint32_t cull_distance_mask; /* Used for calculating urb partitions. In the VS, this is the size of the * URB entry used for both input and output to the thread. In the GS, this * is the size of the URB entry used for output. */ GLuint urb_entry_size; enum shader_dispatch_mode dispatch_mode; }; struct brw_vs_prog_data { struct brw_vue_prog_data base; GLbitfield64 inputs_read; GLbitfield64 double_inputs_read; unsigned nr_attribute_slots; bool uses_vertexid; bool uses_instanceid; bool uses_basevertex; bool uses_baseinstance; bool uses_drawid; }; struct brw_tcs_prog_data { struct brw_vue_prog_data base; /** Number vertices in output patch */ int instances; }; struct brw_tes_prog_data { struct brw_vue_prog_data base; enum brw_tess_partitioning partitioning; enum brw_tess_output_topology output_topology; enum brw_tess_domain domain; }; struct brw_gs_prog_data { struct brw_vue_prog_data base; unsigned vertices_in; /** * Size of an output vertex, measured in HWORDS (32 bytes). */ unsigned output_vertex_size_hwords; unsigned output_topology; /** * Size of the control data (cut bits or StreamID bits), in hwords (32 * bytes). 0 if there is no control data. */ unsigned control_data_header_size_hwords; /** * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID * if the control data is StreamID bits, or * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits). * Ignored if control_data_header_size is 0. */ unsigned control_data_format; bool include_primitive_id; /** * The number of vertices emitted, if constant - otherwise -1. */ int static_vertex_count; int invocations; /** * Gen6: Provoking vertex convention for odd-numbered triangles * in tristrips. */ GLuint pv_first:1; /** * Gen6: Number of varyings that are output to transform feedback. */ GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */ /** * Gen6: Map from the index of a transform feedback binding table entry to the * gl_varying_slot that should be streamed out through that binding table * entry. */ unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */]; /** * Gen6: Map from the index of a transform feedback binding table entry to the * swizzles that should be used when streaming out data through that * binding table entry. */ unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */]; }; struct brw_sf_prog_data { uint32_t urb_read_length; uint32_t total_grf; /* Each vertex may have upto 12 attributes, 4 components each, * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11 * rows. * * Actually we use 4 for each, so call it 12 rows. */ unsigned urb_entry_size; }; struct brw_clip_prog_data { uint32_t curb_read_length; /* user planes? */ uint32_t clip_mode; uint32_t urb_read_length; uint32_t total_grf; }; #define DEFINE_PROG_DATA_DOWNCAST(stage) \ static inline struct brw_##stage##_prog_data * \ brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \ { \ return (struct brw_##stage##_prog_data *) prog_data; \ } DEFINE_PROG_DATA_DOWNCAST(vue) DEFINE_PROG_DATA_DOWNCAST(vs) DEFINE_PROG_DATA_DOWNCAST(tcs) DEFINE_PROG_DATA_DOWNCAST(tes) DEFINE_PROG_DATA_DOWNCAST(gs) DEFINE_PROG_DATA_DOWNCAST(wm) DEFINE_PROG_DATA_DOWNCAST(cs) DEFINE_PROG_DATA_DOWNCAST(ff_gs) DEFINE_PROG_DATA_DOWNCAST(clip) DEFINE_PROG_DATA_DOWNCAST(sf) #undef DEFINE_PROG_DATA_DOWNCAST /** @} */ struct brw_compiler * brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo); /** * Compile a vertex shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_vs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_vs_prog_key *key, struct brw_vs_prog_data *prog_data, const struct nir_shader *shader, bool use_legacy_snorm_formula, int shader_time_index, char **error_str); /** * Compile a tessellation control shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_tcs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_tcs_prog_key *key, struct brw_tcs_prog_data *prog_data, const struct nir_shader *nir, int shader_time_index, char **error_str); /** * Compile a tessellation evaluation shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_tes(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_tes_prog_key *key, const struct brw_vue_map *input_vue_map, struct brw_tes_prog_data *prog_data, const struct nir_shader *shader, struct gl_program *prog, int shader_time_index, char **error_str); /** * Compile a vertex shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_gs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_gs_prog_key *key, struct brw_gs_prog_data *prog_data, const struct nir_shader *shader, struct gl_program *prog, int shader_time_index, char **error_str); /** * Compile a strips and fans shader. * * This is a fixed-function shader determined entirely by the shader key and * a VUE map. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_sf(const struct brw_compiler *compiler, void *mem_ctx, const struct brw_sf_prog_key *key, struct brw_sf_prog_data *prog_data, struct brw_vue_map *vue_map, unsigned *final_assembly_size); /** * Compile a clipper shader. * * This is a fixed-function shader determined entirely by the shader key and * a VUE map. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_clip(const struct brw_compiler *compiler, void *mem_ctx, const struct brw_clip_prog_key *key, struct brw_clip_prog_data *prog_data, struct brw_vue_map *vue_map, unsigned *final_assembly_size); /** * Compile a fragment shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_fs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_wm_prog_key *key, struct brw_wm_prog_data *prog_data, const struct nir_shader *shader, struct gl_program *prog, int shader_time_index8, int shader_time_index16, bool allow_spilling, bool use_rep_send, struct brw_vue_map *vue_map, char **error_str); /** * Compile a compute shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_cs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_cs_prog_key *key, struct brw_cs_prog_data *prog_data, const struct nir_shader *shader, int shader_time_index, char **error_str); static inline uint32_t encode_slm_size(unsigned gen, uint32_t bytes) { uint32_t slm_size = 0; /* Shared Local Memory is specified as powers of two, and encoded in * INTERFACE_DESCRIPTOR_DATA with the following representations: * * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB | * ------------------------------------------------------------------- * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 | * ------------------------------------------------------------------- * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | */ assert(bytes <= 64 * 1024); if (bytes > 0) { /* Shared Local Memory Size is specified as powers of two. */ slm_size = util_next_power_of_two(bytes); if (gen >= 9) { /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */ slm_size = ffs(MAX2(slm_size, 1024)) - 10; } else { /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */ slm_size = MAX2(slm_size, 4096) / 4096; } } return slm_size; } /** * Return true if the given shader stage is dispatched contiguously by the * relevant fixed function starting from channel 0 of the SIMD thread, which * implies that the dispatch mask of a thread can be assumed to have the form * '2^n - 1' for some n. */ static inline bool brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo, gl_shader_stage stage, const struct brw_stage_prog_data *prog_data) { /* The code below makes assumptions about the hardware's thread dispatch * behavior that could be proven wrong in future generations -- Make sure * to do a full test run with brw_fs_test_dispatch_packing() hooked up to * the NIR front-end before changing this assertion. */ assert(devinfo->gen <= 10); switch (stage) { case MESA_SHADER_FRAGMENT: { /* The PSD discards subspans coming in with no lit samples, which in the * per-pixel shading case implies that each subspan will either be fully * lit (due to the VMask being used to allow derivative computations), * or not dispatched at all. In per-sample dispatch mode individual * samples from the same subspan have a fixed relative location within * the SIMD thread, so dispatch of unlit samples cannot be avoided in * general and we should return false. */ const struct brw_wm_prog_data *wm_prog_data = (const struct brw_wm_prog_data *)prog_data; return !wm_prog_data->persample_dispatch; } case MESA_SHADER_COMPUTE: /* Compute shaders will be spawned with either a fully enabled dispatch * mask or with whatever bottom/right execution mask was given to the * GPGPU walker command to be used along the workgroup edges -- In both * cases the dispatch mask is required to be tightly packed for our * invocation index calculations to work. */ return true; default: /* Most remaining fixed functions are limited to use a packed dispatch * mask due to the hardware representation of the dispatch mask as a * single counter representing the number of enabled channels. */ return true; } } /** * Computes the first varying slot in the URB produced by the previous stage * that is used in the next stage. We do this by testing the varying slots in * the previous stage's vue map against the inputs read in the next stage. * * Note that: * * - Each URB offset contains two varying slots and we can only skip a * full offset if both slots are unused, so the value we return here is always * rounded down to the closest multiple of two. * * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are * part of the vue header, so if these are read we can't skip anything. */ static inline int brw_compute_first_urb_slot_required(uint64_t inputs_read, const struct brw_vue_map *prev_stage_vue_map) { if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) { for (int i = 0; i < prev_stage_vue_map->num_slots; i++) { int varying = prev_stage_vue_map->slot_to_varying[i]; if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0) return ROUND_DOWN_TO(i, 2); } } return 0; } #ifdef __cplusplus } /* extern "C" */ #endif #endif /* BRW_COMPILER_H */