/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/ralloc.h" #include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */ #include "util/format_rgb9e5.h" #include "blorp_priv.h" #include "compiler/brw_eu_defines.h" #include "compiler/nir/nir_builder.h" #define FILE_DEBUG_FLAG DEBUG_BLORP struct brw_blorp_const_color_prog_key { enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */ bool use_simd16_replicated_data; bool pad[3]; }; static bool blorp_params_get_clear_kernel(struct blorp_context *blorp, struct blorp_params *params, bool use_replicated_data) { const struct brw_blorp_const_color_prog_key blorp_key = { .shader_type = BLORP_SHADER_TYPE_CLEAR, .use_simd16_replicated_data = use_replicated_data, }; if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key), ¶ms->wm_prog_kernel, ¶ms->wm_prog_data)) return true; void *mem_ctx = ralloc_context(NULL); nir_builder b; nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL); b.shader->info.name = ralloc_strdup(b.shader, "BLORP-clear"); nir_variable *v_color = BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type()); nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out, glsl_vec4_type(), "gl_FragColor"); frag_color->data.location = FRAG_RESULT_COLOR; nir_copy_var(&b, frag_color, v_color); struct brw_wm_prog_key wm_key; brw_blorp_init_wm_prog_key(&wm_key); struct brw_wm_prog_data prog_data; unsigned program_size; const unsigned *program = blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data, &prog_data, &program_size); bool result = blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key), program, program_size, &prog_data.base, sizeof(prog_data), ¶ms->wm_prog_kernel, ¶ms->wm_prog_data); ralloc_free(mem_ctx); return result; } struct layer_offset_vs_key { enum blorp_shader_type shader_type; unsigned num_inputs; }; /* In the case of doing attachment clears, we are using a surface state that * is handed to us so we can't set (and don't even know) the base array layer. * In order to do a layered clear in this scenario, we need some way of adding * the base array layer to the instance id. Unfortunately, our hardware has * no real concept of "base instance", so we have to do it manually in a * vertex shader. */ static bool blorp_params_get_layer_offset_vs(struct blorp_context *blorp, struct blorp_params *params) { struct layer_offset_vs_key blorp_key = { .shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS, }; if (params->wm_prog_data) blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs; if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key), ¶ms->vs_prog_kernel, ¶ms->vs_prog_data)) return true; void *mem_ctx = ralloc_context(NULL); nir_builder b; nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_VERTEX, NULL); b.shader->info.name = ralloc_strdup(b.shader, "BLORP-layer-offset-vs"); const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4); /* First we deal with the header which has instance and base instance */ nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in, uvec4_type, "header"); a_header->data.location = VERT_ATTRIB_GENERIC0; nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out, glsl_int_type(), "layer_id"); v_layer->data.location = VARYING_SLOT_LAYER; /* Compute the layer id */ nir_ssa_def *header = nir_load_var(&b, a_header); nir_ssa_def *base_layer = nir_channel(&b, header, 0); nir_ssa_def *instance = nir_channel(&b, header, 1); nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1); /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */ nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in, glsl_vec4_type(), "a_vertex"); a_vertex->data.location = VERT_ATTRIB_GENERIC1; nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out, glsl_vec4_type(), "v_pos"); v_pos->data.location = VARYING_SLOT_POS; nir_copy_var(&b, v_pos, a_vertex); /* Then we copy everything else */ for (unsigned i = 0; i < blorp_key.num_inputs; i++) { nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in, uvec4_type, "input"); a_in->data.location = VERT_ATTRIB_GENERIC2 + i; nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out, uvec4_type, "output"); v_out->data.location = VARYING_SLOT_VAR0 + i; nir_copy_var(&b, v_out, a_in); } struct brw_vs_prog_data vs_prog_data; memset(&vs_prog_data, 0, sizeof(vs_prog_data)); unsigned program_size; const unsigned *program = blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data, &program_size); bool result = blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key), program, program_size, &vs_prog_data.base.base, sizeof(vs_prog_data), ¶ms->vs_prog_kernel, ¶ms->vs_prog_data); ralloc_free(mem_ctx); return result; } /* The x0, y0, x1, and y1 parameters must already be populated with the render * area of the framebuffer to be cleared. */ static void get_fast_clear_rect(const struct isl_device *dev, const struct isl_surf *aux_surf, unsigned *x0, unsigned *y0, unsigned *x1, unsigned *y1) { unsigned int x_align, y_align; unsigned int x_scaledown, y_scaledown; /* Only single sampled surfaces need to (and actually can) be resolved. */ if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) { /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render * Target(s)", beneath the "Fast Color Clear" bullet (p327): * * Clear pass must have a clear rectangle that must follow * alignment rules in terms of pixels and lines as shown in the * table below. Further, the clear-rectangle height and width * must be multiple of the following dimensions. If the height * and width of the render target being cleared do not meet these * requirements, an MCS buffer can be created such that it * follows the requirement and covers the RT. * * The alignment size in the table that follows is related to the * alignment size that is baked into the CCS surface format but with X * alignment multiplied by 16 and Y alignment multiplied by 32. */ x_align = isl_format_get_layout(aux_surf->format)->bw; y_align = isl_format_get_layout(aux_surf->format)->bh; x_align *= 16; /* SKL+ line alignment requirement for Y-tiled are half those of the prior * generations. */ if (dev->info->gen >= 9) y_align *= 16; else y_align *= 32; /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render * Target(s)", beneath the "Fast Color Clear" bullet (p327): * * In order to optimize the performance MCS buffer (when bound to * 1X RT) clear similarly to MCS buffer clear for MSRT case, * clear rect is required to be scaled by the following factors * in the horizontal and vertical directions: * * The X and Y scale down factors in the table that follows are each * equal to half the alignment value computed above. */ x_scaledown = x_align / 2; y_scaledown = y_align / 2; /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color * Clear of Non-MultiSampled Render Target Restrictions": * * Clear rectangle must be aligned to two times the number of * pixels in the table shown below due to 16x16 hashing across the * slice. */ x_align *= 2; y_align *= 2; } else { assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT); /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render * Target(s)", beneath the "MSAA Compression" bullet (p326): * * Clear pass for this case requires that scaled down primitive * is sent down with upper left co-ordinate to coincide with * actual rectangle being cleared. For MSAA, clear rectangle’s * height and width need to as show in the following table in * terms of (width,height) of the RT. * * MSAA Width of Clear Rect Height of Clear Rect * 2X Ceil(1/8*width) Ceil(1/2*height) * 4X Ceil(1/8*width) Ceil(1/2*height) * 8X Ceil(1/2*width) Ceil(1/2*height) * 16X width Ceil(1/2*height) * * The text "with upper left co-ordinate to coincide with actual * rectangle being cleared" is a little confusing--it seems to imply * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to * feed the pipeline using the rectangle (x,y) to * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on * the number of samples. Experiments indicate that this is not * quite correct; actually, what the hardware appears to do is to * align whatever rectangle is sent down the pipeline to the nearest * multiple of 2x2 blocks, and then scale it up by a factor of N * horizontally and 2 vertically. So the resulting alignment is 4 * vertically and either 4 or 16 horizontally, and the scaledown * factor is 2 vertically and either 2 or 8 horizontally. */ switch (aux_surf->format) { case ISL_FORMAT_MCS_2X: case ISL_FORMAT_MCS_4X: x_scaledown = 8; break; case ISL_FORMAT_MCS_8X: x_scaledown = 2; break; case ISL_FORMAT_MCS_16X: x_scaledown = 1; break; default: unreachable("Unexpected MCS format for fast clear"); } y_scaledown = 2; x_align = x_scaledown * 2; y_align = y_scaledown * 2; } *x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown; *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown; *x1 = ALIGN(*x1, x_align) / x_scaledown; *y1 = ALIGN(*y1, y_align) / y_scaledown; } void blorp_fast_clear(struct blorp_batch *batch, const struct blorp_surf *surf, enum isl_format format, uint32_t level, uint32_t start_layer, uint32_t num_layers, uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1) { struct blorp_params params; blorp_params_init(¶ms); params.num_layers = num_layers; params.x0 = x0; params.y0 = y0; params.x1 = x1; params.y1 = y1; memset(¶ms.wm_inputs.clear_color, 0xff, 4*sizeof(float)); params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR; get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf, ¶ms.x0, ¶ms.y0, ¶ms.x1, ¶ms.y1); if (!blorp_params_get_clear_kernel(batch->blorp, ¶ms, true)) return; brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, surf, level, start_layer, format, true); params.num_samples = params.dst.surf.samples; batch->blorp->exec(batch, ¶ms); } static union isl_color_value swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle) { union isl_color_value dst = { .u32 = { 0, } }; /* We assign colors in ABGR order so that the first one will be taken in * RGBA precedence order. According to the PRM docs for shader channel * select, this matches Haswell hardware behavior. */ if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4) dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3]; if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4) dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2]; if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4) dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1]; if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4) dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0]; return dst; } void blorp_clear(struct blorp_batch *batch, const struct blorp_surf *surf, enum isl_format format, struct isl_swizzle swizzle, uint32_t level, uint32_t start_layer, uint32_t num_layers, uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, union isl_color_value clear_color, const bool color_write_disable[4]) { struct blorp_params params; blorp_params_init(¶ms); /* Manually apply the clear destination swizzle. This way swizzled clears * will work for swizzles which we can't normally use for rendering and it * also ensures that they work on pre-Haswell hardware which can't swizlle * at all. */ clear_color = swizzle_color_value(clear_color, swizzle); swizzle = ISL_SWIZZLE_IDENTITY; if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) { clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32); format = ISL_FORMAT_R32_UINT; } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) { /* Broadwell and earlier cannot render to this format so we need to work * around it by swapping the colors around and using B4G4R4A4 instead. */ const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE); clear_color = swizzle_color_value(clear_color, ARGB); format = ISL_FORMAT_B4G4R4A4_UNORM; } memcpy(¶ms.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4); bool use_simd16_replicated_data = true; /* From the SNB PRM (Vol4_Part1): * * "Replicated data (Message Type = 111) is only supported when * accessing tiled memory. Using this Message Type to access linear * (untiled) memory is UNDEFINED." */ if (surf->surf->tiling == ISL_TILING_LINEAR) use_simd16_replicated_data = false; /* Replicated clears don't work yet before gen6 */ if (batch->blorp->isl_dev->info->gen < 6) use_simd16_replicated_data = false; /* Constant color writes ignore everyting in blend and color calculator * state. This is not documented. */ if (color_write_disable) { for (unsigned i = 0; i < 4; i++) { params.color_write_disable[i] = color_write_disable[i]; if (color_write_disable[i]) use_simd16_replicated_data = false; } } if (!blorp_params_get_clear_kernel(batch->blorp, ¶ms, use_simd16_replicated_data)) return; if (!blorp_ensure_sf_program(batch->blorp, ¶ms)) return; while (num_layers > 0) { brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, surf, level, start_layer, format, true); params.dst.view.swizzle = swizzle; params.x0 = x0; params.y0 = y0; params.x1 = x1; params.y1 = y1; /* The MinLOD and MinimumArrayElement don't work properly for cube maps. * Convert them to a single slice on gen4. */ if (batch->blorp->isl_dev->info->gen == 4 && (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) { blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, ¶ms.dst); if (params.dst.tile_x_sa || params.dst.tile_y_sa) { /* This is gen4 so there is no multisampling and sa == px. */ params.x0 += params.dst.tile_x_sa; params.y0 += params.dst.tile_y_sa; params.x1 += params.dst.tile_x_sa; params.y1 += params.dst.tile_y_sa; } } params.num_samples = params.dst.surf.samples; /* We may be restricted on the number of layers we can bind at any one * time. In particular, Sandy Bridge has a maximum number of layers of * 512 but a maximum 3D texture size is much larger. */ params.num_layers = MIN2(params.dst.view.array_len, num_layers); batch->blorp->exec(batch, ¶ms); start_layer += params.num_layers; num_layers -= params.num_layers; } } void blorp_clear_depth_stencil(struct blorp_batch *batch, const struct blorp_surf *depth, const struct blorp_surf *stencil, uint32_t level, uint32_t start_layer, uint32_t num_layers, uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, bool clear_depth, float depth_value, uint8_t stencil_mask, uint8_t stencil_value) { struct blorp_params params; blorp_params_init(¶ms); params.x0 = x0; params.y0 = y0; params.x1 = x1; params.y1 = y1; while (num_layers > 0) { params.num_layers = num_layers; if (stencil_mask) { brw_blorp_surface_info_init(batch->blorp, ¶ms.stencil, stencil, level, start_layer, ISL_FORMAT_UNSUPPORTED, true); params.stencil_mask = stencil_mask; params.stencil_ref = stencil_value; params.dst.surf.samples = params.stencil.surf.samples; params.dst.surf.logical_level0_px = params.stencil.surf.logical_level0_px; params.dst.view = params.depth.view; params.num_samples = params.stencil.surf.samples; /* We may be restricted on the number of layers we can bind at any * one time. In particular, Sandy Bridge has a maximum number of * layers of 512 but a maximum 3D texture size is much larger. */ if (params.stencil.view.array_len < params.num_layers) params.num_layers = params.stencil.view.array_len; } if (clear_depth) { brw_blorp_surface_info_init(batch->blorp, ¶ms.depth, depth, level, start_layer, ISL_FORMAT_UNSUPPORTED, true); params.z = depth_value; params.depth_format = isl_format_get_depth_format(depth->surf->format, false); params.dst.surf.samples = params.depth.surf.samples; params.dst.surf.logical_level0_px = params.depth.surf.logical_level0_px; params.dst.view = params.depth.view; params.num_samples = params.depth.surf.samples; /* We may be restricted on the number of layers we can bind at any * one time. In particular, Sandy Bridge has a maximum number of * layers of 512 but a maximum 3D texture size is much larger. */ if (params.depth.view.array_len < params.num_layers) params.num_layers = params.depth.view.array_len; } batch->blorp->exec(batch, ¶ms); start_layer += params.num_layers; num_layers -= params.num_layers; } } bool blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format, uint32_t num_samples, uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1) { /* This function currently doesn't support any gen prior to gen8 */ assert(gen >= 8); if (gen == 8 && format == ISL_FORMAT_R16_UNORM) { /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample * block with the following property: as the number of samples increases, * the number of pixels representable by this block decreases by a factor * of the sample dimensions. Sample dimensions scale following the MSAA * interleaved pattern. * * Sample|Sample|Pixel * Count |Dim |Dim * =================== * 1 | 1x1 | 8x4 * 2 | 2x1 | 4x4 * 4 | 2x2 | 4x2 * 8 | 4x2 | 2x2 * 16 | 4x4 | 2x1 * * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL */ const struct isl_extent2d sa_block_dim = isl_get_interleaved_msaa_px_size_sa(num_samples); const uint8_t align_px_w = 8 / sa_block_dim.w; const uint8_t align_px_h = 4 / sa_block_dim.h; /* Fast depth clears clear an entire sample block at a time. As a result, * the rectangle must be aligned to the dimensions of the encompassing * pixel block for a successful operation. * * Fast clears can still work if the upper-left corner is aligned and the * bottom-rigtht corner touches the edge of a depth buffer whose extent * is unaligned. This is because each miplevel in the depth buffer is * padded by the Pixel Dim (similar to a standard compressed texture). * In this case, the clear rectangle could be padded by to match the full * depth buffer extent but to support multiple clearing techniques, we * chose to be unaware of the depth buffer's extent and thus don't handle * this case. */ if (x0 % align_px_w || y0 % align_px_h || x1 % align_px_w || y1 % align_px_h) return false; } return true; } /* Given a depth stencil attachment, this function performs a fast depth clear * on a depth portion and a regular clear on the stencil portion. When * performing a fast depth clear on the depth portion, the HiZ buffer is simply * tagged as cleared so the depth clear value is not actually needed. */ void blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch, uint32_t num_samples, uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, bool clear_depth, bool clear_stencil, uint8_t stencil_value) { assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL); struct blorp_params params; blorp_params_init(¶ms); params.num_layers = 1; params.hiz_op = BLORP_HIZ_OP_DEPTH_CLEAR; params.x0 = x0; params.y0 = y0; params.x1 = x1; params.y1 = y1; params.num_samples = num_samples; params.depth.enabled = clear_depth; params.stencil.enabled = clear_stencil; params.stencil_ref = stencil_value; batch->blorp->exec(batch, ¶ms); } /** Clear active color/depth/stencili attachments * * This function performs a clear operation on the currently bound * color/depth/stencil attachments. It is assumed that any information passed * in here is valid, consistent, and in-bounds relative to the currently * attached depth/stencil. The binding_table_offset parameter is the 32-bit * offset relative to surface state base address where pre-baked binding table * that we are to use lives. If clear_color is false, binding_table_offset * must point to a binding table with one entry which is a valid null surface * that matches the currently bound depth and stencil. */ void blorp_clear_attachments(struct blorp_batch *batch, uint32_t binding_table_offset, enum isl_format depth_format, uint32_t num_samples, uint32_t start_layer, uint32_t num_layers, uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, bool clear_color, union isl_color_value color_value, bool clear_depth, float depth_value, uint8_t stencil_mask, uint8_t stencil_value) { struct blorp_params params; blorp_params_init(¶ms); assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL); params.x0 = x0; params.y0 = y0; params.x1 = x1; params.y1 = y1; params.use_pre_baked_binding_table = true; params.pre_baked_binding_table_offset = binding_table_offset; params.num_layers = num_layers; params.num_samples = num_samples; if (clear_color) { params.dst.enabled = true; memcpy(¶ms.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4); /* Unfortunately, without knowing whether or not our destination surface * is tiled or not, we have to assume it may be linear. This means no * SIMD16_REPDATA for us. :-( */ if (!blorp_params_get_clear_kernel(batch->blorp, ¶ms, false)) return; } if (clear_depth) { params.depth.enabled = true; params.z = depth_value; params.depth_format = isl_format_get_depth_format(depth_format, false); } if (stencil_mask) { params.stencil.enabled = true; params.stencil_mask = stencil_mask; params.stencil_ref = stencil_value; } if (!blorp_params_get_layer_offset_vs(batch->blorp, ¶ms)) return; params.vs_inputs.base_layer = start_layer; batch->blorp->exec(batch, ¶ms); } void blorp_ccs_resolve(struct blorp_batch *batch, struct blorp_surf *surf, uint32_t level, uint32_t layer, enum isl_format format, enum blorp_fast_clear_op resolve_op) { struct blorp_params params; blorp_params_init(¶ms); /* Layered and mipmapped fast clear is only available from Gen8 onwards. */ assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 8 || (level == 0 && layer == 0)); brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, surf, level, layer, format, true); /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve": * * A rectangle primitive must be scaled down by the following factors * with respect to render target being resolved. * * The scaledown factors in the table that follows are related to the block * size of the CCS format. For IVB and HSW, we divide by two, for BDW we * multiply by 8 and 16. On Sky Lake, we multiply by 8. */ const struct isl_format_layout *aux_fmtl = isl_format_get_layout(params.dst.aux_surf.format); assert(aux_fmtl->txc == ISL_TXC_CCS); unsigned x_scaledown, y_scaledown; if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) { x_scaledown = aux_fmtl->bw * 8; y_scaledown = aux_fmtl->bh * 8; } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) { x_scaledown = aux_fmtl->bw * 8; y_scaledown = aux_fmtl->bh * 16; } else { x_scaledown = aux_fmtl->bw / 2; y_scaledown = aux_fmtl->bh / 2; } params.x0 = params.y0 = 0; params.x1 = minify(params.dst.aux_surf.logical_level0_px.width, level); params.y1 = minify(params.dst.aux_surf.logical_level0_px.height, level); params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown; params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown; if (batch->blorp->isl_dev->info->gen >= 9) { assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL || resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL); } else { /* Broadwell and earlier do not have a partial resolve */ assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL); } params.fast_clear_op = resolve_op; /* Note: there is no need to initialize push constants because it doesn't * matter what data gets dispatched to the render target. However, we must * ensure that the fragment shader delivers the data using the "replicated * color" message. */ if (!blorp_params_get_clear_kernel(batch->blorp, ¶ms, true)) return; batch->blorp->exec(batch, ¶ms); }