/* Copyright (c) Mark J. Kilgard, 1994. */ /** (c) Copyright 1993, Silicon Graphics, Inc. ALL RIGHTS RESERVED Permission to use, copy, modify, and distribute this software for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission notice appear in supporting documentation, and that the name of Silicon Graphics, Inc. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT, SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION, LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE. US Government Users Restricted Rights Use, duplication, or disclosure by the Government is subject to restrictions set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and/or in similar or successor clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished-- rights reserved under the copyright laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. OpenGL(TM) is a trademark of Silicon Graphics, Inc. */ #include <math.h> #include <GL/glut.h> #include "glutint.h" /* Some <math.h> files do not define M_PI... */ #ifndef M_PI #define M_PI 3.14159265 #endif static GLUquadricObj *quadObj; #define QUAD_OBJ_INIT() { if(!quadObj) initQuadObj(); } static void initQuadObj(void) { quadObj = gluNewQuadric(); if (!quadObj) __glutFatalError("out of memory."); } /* CENTRY */ void APIENTRY glutWireSphere(GLdouble radius, GLint slices, GLint stacks) { QUAD_OBJ_INIT(); gluQuadricDrawStyle(quadObj, GLU_LINE); gluQuadricNormals(quadObj, GLU_SMOOTH); /* If we ever changed/used the texture or orientation state of quadObj, we'd need to change it to the defaults here with gluQuadricTexture and/or gluQuadricOrientation. */ gluSphere(quadObj, radius, slices, stacks); } void APIENTRY glutSolidSphere(GLdouble radius, GLint slices, GLint stacks) { QUAD_OBJ_INIT(); gluQuadricDrawStyle(quadObj, GLU_FILL); gluQuadricNormals(quadObj, GLU_SMOOTH); /* If we ever changed/used the texture or orientation state of quadObj, we'd need to change it to the defaults here with gluQuadricTexture and/or gluQuadricOrientation. */ gluSphere(quadObj, radius, slices, stacks); } void APIENTRY glutWireCone(GLdouble base, GLdouble height, GLint slices, GLint stacks) { QUAD_OBJ_INIT(); gluQuadricDrawStyle(quadObj, GLU_LINE); gluQuadricNormals(quadObj, GLU_SMOOTH); /* If we ever changed/used the texture or orientation state of quadObj, we'd need to change it to the defaults here with gluQuadricTexture and/or gluQuadricOrientation. */ gluCylinder(quadObj, base, 0.0, height, slices, stacks); } void APIENTRY glutSolidCone(GLdouble base, GLdouble height, GLint slices, GLint stacks) { QUAD_OBJ_INIT(); gluQuadricDrawStyle(quadObj, GLU_FILL); gluQuadricNormals(quadObj, GLU_SMOOTH); /* If we ever changed/used the texture or orientation state of quadObj, we'd need to change it to the defaults here with gluQuadricTexture and/or gluQuadricOrientation. */ gluCylinder(quadObj, base, 0.0, height, slices, stacks); } /* ENDCENTRY */ static void drawBox(GLfloat size, GLenum type) { static GLfloat n[6][3] = { {-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, 0.0, -1.0} }; static GLint faces[6][4] = { {0, 1, 2, 3}, {3, 2, 6, 7}, {7, 6, 5, 4}, {4, 5, 1, 0}, {5, 6, 2, 1}, {7, 4, 0, 3} }; GLfloat v[8][3]; GLint i; v[0][0] = v[1][0] = v[2][0] = v[3][0] = -size / 2; v[4][0] = v[5][0] = v[6][0] = v[7][0] = size / 2; v[0][1] = v[1][1] = v[4][1] = v[5][1] = -size / 2; v[2][1] = v[3][1] = v[6][1] = v[7][1] = size / 2; v[0][2] = v[3][2] = v[4][2] = v[7][2] = -size / 2; v[1][2] = v[2][2] = v[5][2] = v[6][2] = size / 2; for (i = 0; i < 6; i++) { glBegin(type); glNormal3fv(&n[i][0]); glVertex3fv(&v[faces[i][0]][0]); glVertex3fv(&v[faces[i][1]][0]); glVertex3fv(&v[faces[i][2]][0]); glVertex3fv(&v[faces[i][3]][0]); glEnd(); } } /* CENTRY */ void APIENTRY glutWireCube(GLdouble size) { drawBox(size, GL_LINE_LOOP); } void APIENTRY glutSolidCube(GLdouble size) { drawBox(size, GL_QUADS); } /* ENDCENTRY */ static void doughnut(GLfloat r, GLfloat R, GLint nsides, GLint rings, GLenum type) { int i, j; GLfloat theta, phi, theta1, phi1; GLfloat p0[03], p1[3], p2[3], p3[3]; GLfloat n0[3], n1[3], n2[3], n3[3]; for (i = 0; i < rings; i++) { theta = (GLfloat) i *2.0 * M_PI / rings; theta1 = (GLfloat) (i + 1) * 2.0 * M_PI / rings; for (j = 0; j < nsides; j++) { phi = (GLfloat) j *2.0 * M_PI / nsides; phi1 = (GLfloat) (j + 1) * 2.0 * M_PI / nsides; p0[0] = cos(theta) * (R + r * cos(phi)); p0[1] = -sin(theta) * (R + r * cos(phi)); p0[2] = r * sin(phi); p1[0] = cos(theta1) * (R + r * cos(phi)); p1[1] = -sin(theta1) * (R + r * cos(phi)); p1[2] = r * sin(phi); p2[0] = cos(theta1) * (R + r * cos(phi1)); p2[1] = -sin(theta1) * (R + r * cos(phi1)); p2[2] = r * sin(phi1); p3[0] = cos(theta) * (R + r * cos(phi1)); p3[1] = -sin(theta) * (R + r * cos(phi1)); p3[2] = r * sin(phi1); n0[0] = cos(theta) * (cos(phi)); n0[1] = -sin(theta) * (cos(phi)); n0[2] = sin(phi); n1[0] = cos(theta1) * (cos(phi)); n1[1] = -sin(theta1) * (cos(phi)); n1[2] = sin(phi); n2[0] = cos(theta1) * (cos(phi1)); n2[1] = -sin(theta1) * (cos(phi1)); n2[2] = sin(phi1); n3[0] = cos(theta) * (cos(phi1)); n3[1] = -sin(theta) * (cos(phi1)); n3[2] = sin(phi1); glBegin(type); glNormal3fv(n3); glVertex3fv(p3); glNormal3fv(n2); glVertex3fv(p2); glNormal3fv(n1); glVertex3fv(p1); glNormal3fv(n0); glVertex3fv(p0); glEnd(); } } } /* CENTRY */ void APIENTRY glutWireTorus(GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint rings) { doughnut(innerRadius, outerRadius, nsides, rings, GL_LINE_LOOP); } void APIENTRY glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint rings) { doughnut(innerRadius, outerRadius, nsides, rings, GL_QUADS); } /* ENDCENTRY */ static GLfloat dodec[20][3]; static void initDodecahedron(void) { GLfloat alpha, beta; alpha = sqrt(2.0 / (3.0 + sqrt(5.0))); beta = 1.0 + sqrt(6.0 / (3.0 + sqrt(5.0)) - 2.0 + 2.0 * sqrt(2.0 / (3.0 + sqrt(5.0)))); /* *INDENT-OFF* */ dodec[0][0] = -alpha; dodec[0][1] = 0; dodec[0][2] = beta; dodec[1][0] = alpha; dodec[1][1] = 0; dodec[1][2] = beta; dodec[2][0] = -1; dodec[2][1] = -1; dodec[2][2] = -1; dodec[3][0] = -1; dodec[3][1] = -1; dodec[3][2] = 1; dodec[4][0] = -1; dodec[4][1] = 1; dodec[4][2] = -1; dodec[5][0] = -1; dodec[5][1] = 1; dodec[5][2] = 1; dodec[6][0] = 1; dodec[6][1] = -1; dodec[6][2] = -1; dodec[7][0] = 1; dodec[7][1] = -1; dodec[7][2] = 1; dodec[8][0] = 1; dodec[8][1] = 1; dodec[8][2] = -1; dodec[9][0] = 1; dodec[9][1] = 1; dodec[9][2] = 1; dodec[10][0] = beta; dodec[10][1] = alpha; dodec[10][2] = 0; dodec[11][0] = beta; dodec[11][1] = -alpha; dodec[11][2] = 0; dodec[12][0] = -beta; dodec[12][1] = alpha; dodec[12][2] = 0; dodec[13][0] = -beta; dodec[13][1] = -alpha; dodec[13][2] = 0; dodec[14][0] = -alpha; dodec[14][1] = 0; dodec[14][2] = -beta; dodec[15][0] = alpha; dodec[15][1] = 0; dodec[15][2] = -beta; dodec[16][0] = 0; dodec[16][1] = beta; dodec[16][2] = alpha; dodec[17][0] = 0; dodec[17][1] = beta; dodec[17][2] = -alpha; dodec[18][0] = 0; dodec[18][1] = -beta; dodec[18][2] = alpha; dodec[19][0] = 0; dodec[19][1] = -beta; dodec[19][2] = -alpha; /* *INDENT-ON* */ } #define DIFF3(_a,_b,_c) { \ (_c)[0] = (_a)[0] - (_b)[0]; \ (_c)[1] = (_a)[1] - (_b)[1]; \ (_c)[2] = (_a)[2] - (_b)[2]; \ } static void crossprod(GLfloat v1[3], GLfloat v2[3], GLfloat prod[3]) { GLfloat p[3]; /* in case prod == v1 or v2 */ p[0] = v1[1] * v2[2] - v2[1] * v1[2]; p[1] = v1[2] * v2[0] - v2[2] * v1[0]; p[2] = v1[0] * v2[1] - v2[0] * v1[1]; prod[0] = p[0]; prod[1] = p[1]; prod[2] = p[2]; } static void normalize(GLfloat v[3]) { GLfloat d; d = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); if (d == 0.0) { __glutWarning("normalize: zero length vector"); v[0] = d = 1.0; } d = 1 / d; v[0] *= d; v[1] *= d; v[2] *= d; } static void pentagon(int a, int b, int c, int d, int e, GLenum shadeType) { GLfloat n0[3], d1[3], d2[3]; DIFF3(dodec[a], dodec[b], d1); DIFF3(dodec[b], dodec[c], d2); crossprod(d1, d2, n0); normalize(n0); glBegin(shadeType); glNormal3fv(n0); glVertex3fv(&dodec[a][0]); glVertex3fv(&dodec[b][0]); glVertex3fv(&dodec[c][0]); glVertex3fv(&dodec[d][0]); glVertex3fv(&dodec[e][0]); glEnd(); } static void dodecahedron(GLenum type) { static int inited = 0; if (inited == 0) { inited = 1; initDodecahedron(); } pentagon(0, 1, 9, 16, 5, type); pentagon(1, 0, 3, 18, 7, type); pentagon(1, 7, 11, 10, 9, type); pentagon(11, 7, 18, 19, 6, type); pentagon(8, 17, 16, 9, 10, type); pentagon(2, 14, 15, 6, 19, type); pentagon(2, 13, 12, 4, 14, type); pentagon(2, 19, 18, 3, 13, type); pentagon(3, 0, 5, 12, 13, type); pentagon(6, 15, 8, 10, 11, type); pentagon(4, 17, 8, 15, 14, type); pentagon(4, 12, 5, 16, 17, type); } /* CENTRY */ void APIENTRY glutWireDodecahedron(void) { dodecahedron(GL_LINE_LOOP); } void APIENTRY glutSolidDodecahedron(void) { dodecahedron(GL_TRIANGLE_FAN); } /* ENDCENTRY */ static void recorditem(GLfloat * n1, GLfloat * n2, GLfloat * n3, GLenum shadeType) { GLfloat q0[3], q1[3]; DIFF3(n1, n2, q0); DIFF3(n2, n3, q1); crossprod(q0, q1, q1); normalize(q1); glBegin(shadeType); glNormal3fv(q1); glVertex3fv(n1); glVertex3fv(n2); glVertex3fv(n3); glEnd(); } static void subdivide(GLfloat * v0, GLfloat * v1, GLfloat * v2, GLenum shadeType) { int depth; GLfloat w0[3], w1[3], w2[3]; GLfloat l; int i, j, k, n; depth = 1; for (i = 0; i < depth; i++) { for (j = 0; i + j < depth; j++) { k = depth - i - j; for (n = 0; n < 3; n++) { w0[n] = (i * v0[n] + j * v1[n] + k * v2[n]) / depth; w1[n] = ((i + 1) * v0[n] + j * v1[n] + (k - 1) * v2[n]) / depth; w2[n] = (i * v0[n] + (j + 1) * v1[n] + (k - 1) * v2[n]) / depth; } l = sqrt(w0[0] * w0[0] + w0[1] * w0[1] + w0[2] * w0[2]); w0[0] /= l; w0[1] /= l; w0[2] /= l; l = sqrt(w1[0] * w1[0] + w1[1] * w1[1] + w1[2] * w1[2]); w1[0] /= l; w1[1] /= l; w1[2] /= l; l = sqrt(w2[0] * w2[0] + w2[1] * w2[1] + w2[2] * w2[2]); w2[0] /= l; w2[1] /= l; w2[2] /= l; recorditem(w1, w0, w2, shadeType); } } } static void drawtriangle(int i, GLfloat data[][3], int ndx[][3], GLenum shadeType) { GLfloat *x0, *x1, *x2; x0 = data[ndx[i][0]]; x1 = data[ndx[i][1]]; x2 = data[ndx[i][2]]; subdivide(x0, x1, x2, shadeType); } /* octahedron data: The octahedron produced is centered at the origin and has radius 1.0 */ static GLfloat odata[6][3] = { {1.0, 0.0, 0.0}, {-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, 0.0, -1.0} }; static int ondex[8][3] = { {0, 4, 2}, {1, 2, 4}, {0, 3, 4}, {1, 4, 3}, {0, 2, 5}, {1, 5, 2}, {0, 5, 3}, {1, 3, 5} }; static void octahedron(GLenum shadeType) { int i; for (i = 0; i < 8; i++) { drawtriangle(i, odata, ondex, shadeType); } } /* CENTRY */ void APIENTRY glutWireOctahedron(void) { octahedron(GL_LINE_LOOP); } void APIENTRY glutSolidOctahedron(void) { octahedron(GL_TRIANGLES); } /* ENDCENTRY */ /* icosahedron data: These numbers are rigged to make an icosahedron of radius 1.0 */ #define X .525731112119133606 #define Z .850650808352039932 static GLfloat idata[12][3] = { {-X, 0, Z}, {X, 0, Z}, {-X, 0, -Z}, {X, 0, -Z}, {0, Z, X}, {0, Z, -X}, {0, -Z, X}, {0, -Z, -X}, {Z, X, 0}, {-Z, X, 0}, {Z, -X, 0}, {-Z, -X, 0} }; static int index[20][3] = { {0, 4, 1}, {0, 9, 4}, {9, 5, 4}, {4, 5, 8}, {4, 8, 1}, {8, 10, 1}, {8, 3, 10}, {5, 3, 8}, {5, 2, 3}, {2, 7, 3}, {7, 10, 3}, {7, 6, 10}, {7, 11, 6}, {11, 0, 6}, {0, 1, 6}, {6, 1, 10}, {9, 0, 11}, {9, 11, 2}, {9, 2, 5}, {7, 2, 11}, }; static void icosahedron(GLenum shadeType) { int i; for (i = 0; i < 20; i++) { drawtriangle(i, idata, index, shadeType); } } /* CENTRY */ void APIENTRY glutWireIcosahedron(void) { icosahedron(GL_LINE_LOOP); } void APIENTRY glutSolidIcosahedron(void) { icosahedron(GL_TRIANGLES); } /* ENDCENTRY */ /* tetrahedron data: */ #define T 1.73205080756887729 static GLfloat tdata[4][3] = { {T, T, T}, {T, -T, -T}, {-T, T, -T}, {-T, -T, T} }; static int tndex[4][3] = { {0, 1, 3}, {2, 1, 0}, {3, 2, 0}, {1, 2, 3} }; static void tetrahedron(GLenum shadeType) { int i; for (i = 0; i < 4; i++) drawtriangle(i, tdata, tndex, shadeType); } /* CENTRY */ void APIENTRY glutWireTetrahedron(void) { tetrahedron(GL_LINE_LOOP); } void APIENTRY glutSolidTetrahedron(void) { tetrahedron(GL_TRIANGLES); } /* ENDCENTRY */