/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file opt_algebraic.cpp * * Takes advantage of association, commutivity, and other algebraic * properties to simplify expressions. */ #include "ir.h" #include "ir_visitor.h" #include "ir_rvalue_visitor.h" #include "ir_optimization.h" #include "ir_builder.h" #include "glsl_types.h" using namespace ir_builder; namespace { /** * Visitor class for replacing expressions with ir_constant values. */ class ir_algebraic_visitor : public ir_rvalue_visitor { public: ir_algebraic_visitor() { this->progress = false; this->mem_ctx = NULL; } virtual ~ir_algebraic_visitor() { } ir_rvalue *handle_expression(ir_expression *ir); void handle_rvalue(ir_rvalue **rvalue); bool reassociate_constant(ir_expression *ir1, int const_index, ir_constant *constant, ir_expression *ir2); void reassociate_operands(ir_expression *ir1, int op1, ir_expression *ir2, int op2); ir_rvalue *swizzle_if_required(ir_expression *expr, ir_rvalue *operand); void *mem_ctx; bool progress; }; } /* unnamed namespace */ static inline bool is_vec_zero(ir_constant *ir) { return (ir == NULL) ? false : ir->is_zero(); } static inline bool is_vec_one(ir_constant *ir) { return (ir == NULL) ? false : ir->is_one(); } static inline bool is_vec_negative_one(ir_constant *ir) { return (ir == NULL) ? false : ir->is_negative_one(); } static inline bool is_vec_basis(ir_constant *ir) { return (ir == NULL) ? false : ir->is_basis(); } static void update_type(ir_expression *ir) { if (ir->operands[0]->type->is_vector()) ir->type = ir->operands[0]->type; else ir->type = ir->operands[1]->type; } void ir_algebraic_visitor::reassociate_operands(ir_expression *ir1, int op1, ir_expression *ir2, int op2) { ir_rvalue *temp = ir2->operands[op2]; ir2->operands[op2] = ir1->operands[op1]; ir1->operands[op1] = temp; /* Update the type of ir2. The type of ir1 won't have changed -- * base types matched, and at least one of the operands of the 2 * binops is still a vector if any of them were. */ update_type(ir2); this->progress = true; } /** * Reassociates a constant down a tree of adds or multiplies. * * Consider (2 * (a * (b * 0.5))). We want to send up with a * b. */ bool ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index, ir_constant *constant, ir_expression *ir2) { if (!ir2 || ir1->operation != ir2->operation) return false; /* Don't want to even think about matrices. */ if (ir1->operands[0]->type->is_matrix() || ir1->operands[1]->type->is_matrix() || ir2->operands[0]->type->is_matrix() || ir2->operands[1]->type->is_matrix()) return false; ir_constant *ir2_const[2]; ir2_const[0] = ir2->operands[0]->constant_expression_value(); ir2_const[1] = ir2->operands[1]->constant_expression_value(); if (ir2_const[0] && ir2_const[1]) return false; if (ir2_const[0]) { reassociate_operands(ir1, const_index, ir2, 1); return true; } else if (ir2_const[1]) { reassociate_operands(ir1, const_index, ir2, 0); return true; } if (reassociate_constant(ir1, const_index, constant, ir2->operands[0]->as_expression())) { update_type(ir2); return true; } if (reassociate_constant(ir1, const_index, constant, ir2->operands[1]->as_expression())) { update_type(ir2); return true; } return false; } /* When eliminating an expression and just returning one of its operands, * we may need to swizzle that operand out to a vector if the expression was * vector type. */ ir_rvalue * ir_algebraic_visitor::swizzle_if_required(ir_expression *expr, ir_rvalue *operand) { if (expr->type->is_vector() && operand->type->is_scalar()) { return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0, expr->type->vector_elements); } else return operand; } ir_rvalue * ir_algebraic_visitor::handle_expression(ir_expression *ir) { ir_constant *op_const[4] = {NULL, NULL, NULL, NULL}; ir_expression *op_expr[4] = {NULL, NULL, NULL, NULL}; ir_expression *temp; unsigned int i; assert(ir->get_num_operands() <= 4); for (i = 0; i < ir->get_num_operands(); i++) { if (ir->operands[i]->type->is_matrix()) return ir; op_const[i] = ir->operands[i]->constant_expression_value(); op_expr[i] = ir->operands[i]->as_expression(); } if (this->mem_ctx == NULL) this->mem_ctx = ralloc_parent(ir); switch (ir->operation) { case ir_unop_abs: if (op_expr[0] == NULL) break; switch (op_expr[0]->operation) { case ir_unop_abs: case ir_unop_neg: this->progress = true; temp = new(mem_ctx) ir_expression(ir_unop_abs, ir->type, op_expr[0]->operands[0], NULL); return swizzle_if_required(ir, temp); default: break; } break; case ir_unop_neg: if (op_expr[0] == NULL) break; if (op_expr[0]->operation == ir_unop_neg) { this->progress = true; return swizzle_if_required(ir, op_expr[0]->operands[0]); } break; case ir_unop_logic_not: { enum ir_expression_operation new_op = ir_unop_logic_not; if (op_expr[0] == NULL) break; switch (op_expr[0]->operation) { case ir_binop_less: new_op = ir_binop_gequal; break; case ir_binop_greater: new_op = ir_binop_lequal; break; case ir_binop_lequal: new_op = ir_binop_greater; break; case ir_binop_gequal: new_op = ir_binop_less; break; case ir_binop_equal: new_op = ir_binop_nequal; break; case ir_binop_nequal: new_op = ir_binop_equal; break; case ir_binop_all_equal: new_op = ir_binop_any_nequal; break; case ir_binop_any_nequal: new_op = ir_binop_all_equal; break; default: /* The default case handler is here to silence a warning from GCC. */ break; } if (new_op != ir_unop_logic_not) { this->progress = true; return new(mem_ctx) ir_expression(new_op, ir->type, op_expr[0]->operands[0], op_expr[0]->operands[1]); } break; } case ir_binop_add: if (is_vec_zero(op_const[0])) { this->progress = true; return swizzle_if_required(ir, ir->operands[1]); } if (is_vec_zero(op_const[1])) { this->progress = true; return swizzle_if_required(ir, ir->operands[0]); } /* Reassociate addition of constants so that we can do constant * folding. */ if (op_const[0] && !op_const[1]) reassociate_constant(ir, 0, op_const[0], op_expr[1]); if (op_const[1] && !op_const[0]) reassociate_constant(ir, 1, op_const[1], op_expr[0]); break; case ir_binop_sub: if (is_vec_zero(op_const[0])) { this->progress = true; temp = new(mem_ctx) ir_expression(ir_unop_neg, ir->operands[1]->type, ir->operands[1], NULL); return swizzle_if_required(ir, temp); } if (is_vec_zero(op_const[1])) { this->progress = true; return swizzle_if_required(ir, ir->operands[0]); } break; case ir_binop_mul: if (is_vec_one(op_const[0])) { this->progress = true; return swizzle_if_required(ir, ir->operands[1]); } if (is_vec_one(op_const[1])) { this->progress = true; return swizzle_if_required(ir, ir->operands[0]); } if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) { this->progress = true; return ir_constant::zero(ir, ir->type); } if (is_vec_negative_one(op_const[0])) { this->progress = true; temp = new(mem_ctx) ir_expression(ir_unop_neg, ir->operands[1]->type, ir->operands[1], NULL); return swizzle_if_required(ir, temp); } if (is_vec_negative_one(op_const[1])) { this->progress = true; temp = new(mem_ctx) ir_expression(ir_unop_neg, ir->operands[0]->type, ir->operands[0], NULL); return swizzle_if_required(ir, temp); } /* Reassociate multiplication of constants so that we can do * constant folding. */ if (op_const[0] && !op_const[1]) reassociate_constant(ir, 0, op_const[0], op_expr[1]); if (op_const[1] && !op_const[0]) reassociate_constant(ir, 1, op_const[1], op_expr[0]); break; case ir_binop_div: if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) { this->progress = true; temp = new(mem_ctx) ir_expression(ir_unop_rcp, ir->operands[1]->type, ir->operands[1], NULL); return swizzle_if_required(ir, temp); } if (is_vec_one(op_const[1])) { this->progress = true; return swizzle_if_required(ir, ir->operands[0]); } break; case ir_binop_dot: if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) { this->progress = true; return ir_constant::zero(mem_ctx, ir->type); } if (is_vec_basis(op_const[0])) { this->progress = true; unsigned component = 0; for (unsigned c = 0; c < op_const[0]->type->vector_elements; c++) { if (op_const[0]->value.f[c] == 1.0) component = c; } return new(mem_ctx) ir_swizzle(ir->operands[1], component, 0, 0, 0, 1); } if (is_vec_basis(op_const[1])) { this->progress = true; unsigned component = 0; for (unsigned c = 0; c < op_const[1]->type->vector_elements; c++) { if (op_const[1]->value.f[c] == 1.0) component = c; } return new(mem_ctx) ir_swizzle(ir->operands[0], component, 0, 0, 0, 1); } break; case ir_binop_logic_and: /* FINISHME: Also simplify (a && a) to (a). */ if (is_vec_one(op_const[0])) { this->progress = true; return ir->operands[1]; } else if (is_vec_one(op_const[1])) { this->progress = true; return ir->operands[0]; } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) { this->progress = true; return ir_constant::zero(mem_ctx, ir->type); } else if (op_expr[0] && op_expr[0]->operation == ir_unop_logic_not && op_expr[1] && op_expr[1]->operation == ir_unop_logic_not) { /* De Morgan's Law: * (not A) and (not B) === not (A or B) */ temp = logic_not(logic_or(op_expr[0]->operands[0], op_expr[1]->operands[0])); this->progress = true; return swizzle_if_required(ir, temp); } break; case ir_binop_logic_xor: /* FINISHME: Also simplify (a ^^ a) to (false). */ if (is_vec_zero(op_const[0])) { this->progress = true; return ir->operands[1]; } else if (is_vec_zero(op_const[1])) { this->progress = true; return ir->operands[0]; } else if (is_vec_one(op_const[0])) { this->progress = true; return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type, ir->operands[1], NULL); } else if (is_vec_one(op_const[1])) { this->progress = true; return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type, ir->operands[0], NULL); } break; case ir_binop_logic_or: /* FINISHME: Also simplify (a || a) to (a). */ if (is_vec_zero(op_const[0])) { this->progress = true; return ir->operands[1]; } else if (is_vec_zero(op_const[1])) { this->progress = true; return ir->operands[0]; } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) { ir_constant_data data; for (unsigned i = 0; i < 16; i++) data.b[i] = true; this->progress = true; return new(mem_ctx) ir_constant(ir->type, &data); } else if (op_expr[0] && op_expr[0]->operation == ir_unop_logic_not && op_expr[1] && op_expr[1]->operation == ir_unop_logic_not) { /* De Morgan's Law: * (not A) or (not B) === not (A and B) */ temp = logic_not(logic_and(op_expr[0]->operands[0], op_expr[1]->operands[0])); this->progress = true; return swizzle_if_required(ir, temp); } break; case ir_unop_rcp: if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) { this->progress = true; return op_expr[0]->operands[0]; } /* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some * backends, except that some backends will have done sqrt -> * rcp(rsq(x)) and we don't want to undo it for them. */ /* As far as we know, all backends are OK with rsq. */ if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) { this->progress = true; temp = new(mem_ctx) ir_expression(ir_unop_rsq, op_expr[0]->operands[0]->type, op_expr[0]->operands[0], NULL); return swizzle_if_required(ir, temp); } break; case ir_triop_lrp: /* Operands are (x, y, a). */ if (is_vec_zero(op_const[2])) { this->progress = true; return swizzle_if_required(ir, ir->operands[0]); } else if (is_vec_one(op_const[2])) { this->progress = true; return swizzle_if_required(ir, ir->operands[1]); } break; default: break; } return ir; } void ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue) { if (!*rvalue) return; ir_expression *expr = (*rvalue)->as_expression(); if (!expr || expr->operation == ir_quadop_vector) return; *rvalue = handle_expression(expr); } bool do_algebraic(exec_list *instructions) { ir_algebraic_visitor v; visit_list_elements(&v, instructions); return v.progress; }