/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "spirv_to_nir_private.h" #include "nir_vla.h" #include "nir_control_flow.h" static struct vtn_ssa_value * vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant, const struct glsl_type *type) { struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant); if (entry) return entry->data; struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: if (glsl_type_is_vector_or_scalar(type)) { unsigned num_components = glsl_get_vector_elements(val->type); nir_load_const_instr *load = nir_load_const_instr_create(b->shader, num_components); for (unsigned i = 0; i < num_components; i++) load->value.u[i] = constant->value.u[i]; nir_instr_insert_before_cf_list(&b->impl->body, &load->instr); val->def = &load->def; } else { assert(glsl_type_is_matrix(type)); unsigned rows = glsl_get_vector_elements(val->type); unsigned columns = glsl_get_matrix_columns(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, columns); for (unsigned i = 0; i < columns; i++) { struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value); col_val->type = glsl_get_column_type(val->type); nir_load_const_instr *load = nir_load_const_instr_create(b->shader, rows); for (unsigned j = 0; j < rows; j++) load->value.u[j] = constant->value.u[rows * i + j]; nir_instr_insert_before_cf_list(&b->impl->body, &load->instr); col_val->def = &load->def; val->elems[i] = col_val; } } break; case GLSL_TYPE_ARRAY: { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); const struct glsl_type *elem_type = glsl_get_array_element(val->type); for (unsigned i = 0; i < elems; i++) val->elems[i] = vtn_const_ssa_value(b, constant->elements[i], elem_type); break; } case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) { const struct glsl_type *elem_type = glsl_get_struct_field(val->type, i); val->elems[i] = vtn_const_ssa_value(b, constant->elements[i], elem_type); } break; } default: unreachable("bad constant type"); } return val; } struct vtn_ssa_value * vtn_ssa_value(struct vtn_builder *b, uint32_t value_id) { struct vtn_value *val = vtn_untyped_value(b, value_id); switch (val->value_type) { case vtn_value_type_constant: return vtn_const_ssa_value(b, val->constant, val->const_type); case vtn_value_type_ssa: return val->ssa; default: unreachable("Invalid type for an SSA value"); } } static char * vtn_string_literal(struct vtn_builder *b, const uint32_t *words, unsigned word_count) { return ralloc_strndup(b, (char *)words, word_count * sizeof(*words)); } static const uint32_t * vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start, const uint32_t *end, vtn_instruction_handler handler) { const uint32_t *w = start; while (w < end) { SpvOp opcode = w[0] & SpvOpCodeMask; unsigned count = w[0] >> SpvWordCountShift; assert(count >= 1 && w + count <= end); if (!handler(b, opcode, w, count)) return w; w += count; } assert(w == end); return w; } static void vtn_handle_extension(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpExtInstImport: { struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension); if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) { val->ext_handler = vtn_handle_glsl450_instruction; } else { assert(!"Unsupported extension"); } break; } case SpvOpExtInst: { struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension); bool handled = val->ext_handler(b, w[4], w, count); (void)handled; assert(handled); break; } default: unreachable("Unhandled opcode"); } } static void _foreach_decoration_helper(struct vtn_builder *b, struct vtn_value *base_value, int member, struct vtn_value *value, vtn_decoration_foreach_cb cb, void *data) { int new_member = member; for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) { if (dec->member >= 0) { assert(member == -1); new_member = dec->member; } if (dec->group) { assert(dec->group->value_type == vtn_value_type_decoration_group); _foreach_decoration_helper(b, base_value, new_member, dec->group, cb, data); } else { cb(b, base_value, new_member, dec, data); } } } /** Iterates (recursively if needed) over all of the decorations on a value * * This function iterates over all of the decorations applied to a given * value. If it encounters a decoration group, it recurses into the group * and iterates over all of those decorations as well. */ void vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value, vtn_decoration_foreach_cb cb, void *data) { _foreach_decoration_helper(b, value, -1, value, cb, data); } static void vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { const uint32_t *w_end = w + count; const uint32_t target = w[1]; w += 2; int member = -1; switch (opcode) { case SpvOpDecorationGroup: vtn_push_value(b, target, vtn_value_type_undef); break; case SpvOpMemberDecorate: member = *(w++); /* fallthrough */ case SpvOpDecorate: { struct vtn_value *val = &b->values[target]; struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration); dec->member = member; dec->decoration = *(w++); dec->literals = w; /* Link into the list */ dec->next = val->decoration; val->decoration = dec; break; } case SpvOpGroupMemberDecorate: member = *(w++); /* fallthrough */ case SpvOpGroupDecorate: { struct vtn_value *group = &b->values[target]; assert(group->value_type == vtn_value_type_decoration_group); for (; w < w_end; w++) { struct vtn_value *val = &b->values[*w]; struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration); dec->member = member; dec->group = group; /* Link into the list */ dec->next = val->decoration; val->decoration = dec; } break; } default: unreachable("Unhandled opcode"); } } struct member_decoration_ctx { struct glsl_struct_field *fields; struct vtn_type *type; }; /* does a shallow copy of a vtn_type */ static struct vtn_type * vtn_type_copy(struct vtn_builder *b, struct vtn_type *src) { struct vtn_type *dest = ralloc(b, struct vtn_type); dest->type = src->type; dest->is_builtin = src->is_builtin; if (src->is_builtin) dest->builtin = src->builtin; if (!glsl_type_is_vector_or_scalar(src->type)) { switch (glsl_get_base_type(src->type)) { case GLSL_TYPE_ARRAY: dest->array_element = src->array_element; dest->stride = src->stride; break; case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: /* matrices */ dest->row_major = src->row_major; dest->stride = src->stride; break; case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(src->type); dest->members = ralloc_array(b, struct vtn_type *, elems); memcpy(dest->members, src->members, elems * sizeof(struct vtn_type *)); dest->offsets = ralloc_array(b, unsigned, elems); memcpy(dest->offsets, src->offsets, elems * sizeof(unsigned)); break; } default: unreachable("unhandled type"); } } return dest; } static void struct_member_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_ctx) { struct member_decoration_ctx *ctx = void_ctx; if (member < 0) return; switch (dec->decoration) { case SpvDecorationRelaxedPrecision: break; /* FIXME: Do nothing with this for now. */ case SpvDecorationSmooth: ctx->fields[member].interpolation = INTERP_QUALIFIER_SMOOTH; break; case SpvDecorationNoPerspective: ctx->fields[member].interpolation = INTERP_QUALIFIER_NOPERSPECTIVE; break; case SpvDecorationFlat: ctx->fields[member].interpolation = INTERP_QUALIFIER_FLAT; break; case SpvDecorationCentroid: ctx->fields[member].centroid = true; break; case SpvDecorationSample: ctx->fields[member].sample = true; break; case SpvDecorationLocation: ctx->fields[member].location = dec->literals[0]; break; case SpvDecorationBuiltIn: ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]); ctx->type->members[member]->is_builtin = true; ctx->type->members[member]->builtin = dec->literals[0]; ctx->type->builtin_block = true; break; case SpvDecorationOffset: ctx->type->offsets[member] = dec->literals[0]; break; case SpvDecorationMatrixStride: ctx->type->members[member]->stride = dec->literals[0]; break; case SpvDecorationColMajor: break; /* Nothing to do here. Column-major is the default. */ default: unreachable("Unhandled member decoration"); } } static void type_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *ctx) { struct vtn_type *type = val->type; if (member != -1) return; switch (dec->decoration) { case SpvDecorationArrayStride: type->stride = dec->literals[0]; break; case SpvDecorationBlock: type->block = true; break; case SpvDecorationBufferBlock: type->buffer_block = true; break; case SpvDecorationGLSLShared: case SpvDecorationGLSLPacked: /* Ignore these, since we get explicit offsets anyways */ break; default: unreachable("Unhandled type decoration"); } } static void vtn_handle_type(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type); val->type = rzalloc(b, struct vtn_type); val->type->is_builtin = false; switch (opcode) { case SpvOpTypeVoid: val->type->type = glsl_void_type(); break; case SpvOpTypeBool: val->type->type = glsl_bool_type(); break; case SpvOpTypeInt: val->type->type = glsl_int_type(); break; case SpvOpTypeFloat: val->type->type = glsl_float_type(); break; case SpvOpTypeVector: { const struct glsl_type *base = vtn_value(b, w[2], vtn_value_type_type)->type->type; unsigned elems = w[3]; assert(glsl_type_is_scalar(base)); val->type->type = glsl_vector_type(glsl_get_base_type(base), elems); break; } case SpvOpTypeMatrix: { struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type; unsigned columns = w[3]; assert(glsl_type_is_vector(base->type)); val->type->type = glsl_matrix_type(glsl_get_base_type(base->type), glsl_get_vector_elements(base->type), columns); val->type->array_element = base; val->type->row_major = false; val->type->stride = 0; break; } case SpvOpTypeArray: { struct vtn_type *array_element = vtn_value(b, w[2], vtn_value_type_type)->type; val->type->type = glsl_array_type(array_element->type, w[3]); val->type->array_element = array_element; val->type->stride = 0; break; } case SpvOpTypeStruct: { unsigned num_fields = count - 2; val->type->members = ralloc_array(b, struct vtn_type *, num_fields); val->type->offsets = ralloc_array(b, unsigned, num_fields); NIR_VLA(struct glsl_struct_field, fields, count); for (unsigned i = 0; i < num_fields; i++) { /* TODO: Handle decorators */ val->type->members[i] = vtn_value(b, w[i + 2], vtn_value_type_type)->type; fields[i].type = val->type->members[i]->type; fields[i].name = ralloc_asprintf(b, "field%d", i); fields[i].location = -1; fields[i].interpolation = 0; fields[i].centroid = 0; fields[i].sample = 0; fields[i].matrix_layout = 2; fields[i].stream = -1; } struct member_decoration_ctx ctx = { .fields = fields, .type = val->type }; vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx); const char *name = val->name ? val->name : "struct"; val->type->type = glsl_struct_type(fields, num_fields, name); break; } case SpvOpTypeFunction: { const struct glsl_type *return_type = vtn_value(b, w[2], vtn_value_type_type)->type->type; NIR_VLA(struct glsl_function_param, params, count - 3); for (unsigned i = 0; i < count - 3; i++) { params[i].type = vtn_value(b, w[i + 3], vtn_value_type_type)->type->type; /* FIXME: */ params[i].in = true; params[i].out = true; } val->type->type = glsl_function_type(return_type, params, count - 3); break; } case SpvOpTypePointer: /* FIXME: For now, we'll just do the really lame thing and return * the same type. The validator should ensure that the proper number * of dereferences happen */ val->type = vtn_value(b, w[3], vtn_value_type_type)->type; break; case SpvOpTypeImage: { const struct glsl_type *sampled_type = vtn_value(b, w[2], vtn_value_type_type)->type->type; assert(glsl_type_is_vector_or_scalar(sampled_type)); enum glsl_sampler_dim dim; switch ((SpvDim)w[3]) { case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break; case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break; case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break; case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break; case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break; case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break; default: unreachable("Invalid SPIR-V Sampler dimension"); } bool is_shadow = w[4]; bool is_array = w[5]; assert(w[6] == 0 && "FIXME: Handl multi-sampled textures"); assert(w[7] == 1 && "FIXME: Add support for non-sampled images"); val->type->type = glsl_sampler_type(dim, is_shadow, is_array, glsl_get_base_type(sampled_type)); break; } case SpvOpTypeSampledImage: val->type = vtn_value(b, w[2], vtn_value_type_type)->type; break; case SpvOpTypeRuntimeArray: case SpvOpTypeOpaque: case SpvOpTypeEvent: case SpvOpTypeDeviceEvent: case SpvOpTypeReserveId: case SpvOpTypeQueue: case SpvOpTypePipe: default: unreachable("Unhandled opcode"); } vtn_foreach_decoration(b, val, type_decoration_cb, NULL); } static void vtn_handle_constant(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant); val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->constant = ralloc(b, nir_constant); switch (opcode) { case SpvOpConstantTrue: assert(val->const_type == glsl_bool_type()); val->constant->value.u[0] = NIR_TRUE; break; case SpvOpConstantFalse: assert(val->const_type == glsl_bool_type()); val->constant->value.u[0] = NIR_FALSE; break; case SpvOpConstant: assert(glsl_type_is_scalar(val->const_type)); val->constant->value.u[0] = w[3]; break; case SpvOpConstantComposite: { unsigned elem_count = count - 3; nir_constant **elems = ralloc_array(b, nir_constant *, elem_count); for (unsigned i = 0; i < elem_count; i++) elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant; switch (glsl_get_base_type(val->const_type)) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: if (glsl_type_is_matrix(val->const_type)) { unsigned rows = glsl_get_vector_elements(val->const_type); assert(glsl_get_matrix_columns(val->const_type) == elem_count); for (unsigned i = 0; i < elem_count; i++) for (unsigned j = 0; j < rows; j++) val->constant->value.u[rows * i + j] = elems[i]->value.u[j]; } else { assert(glsl_type_is_vector(val->const_type)); assert(glsl_get_vector_elements(val->const_type) == elem_count); for (unsigned i = 0; i < elem_count; i++) val->constant->value.u[i] = elems[i]->value.u[0]; } ralloc_free(elems); break; case GLSL_TYPE_STRUCT: case GLSL_TYPE_ARRAY: ralloc_steal(val->constant, elems); val->constant->elements = elems; break; default: unreachable("Unsupported type for constants"); } break; } default: unreachable("Unhandled opcode"); } } static void vtn_get_builtin_location(SpvBuiltIn builtin, int *location, nir_variable_mode *mode) { switch (builtin) { case SpvBuiltInPosition: *location = VARYING_SLOT_POS; *mode = nir_var_shader_out; break; case SpvBuiltInPointSize: *location = VARYING_SLOT_PSIZ; *mode = nir_var_shader_out; break; case SpvBuiltInClipDistance: *location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */ *mode = nir_var_shader_in; break; case SpvBuiltInCullDistance: /* XXX figure this out */ unreachable("unhandled builtin"); case SpvBuiltInVertexId: /* Vulkan defines VertexID to be zero-based and reserves the new * builtin keyword VertexIndex to indicate the non-zero-based value. */ *location = SYSTEM_VALUE_VERTEX_ID_ZERO_BASE; *mode = nir_var_system_value; break; case SpvBuiltInInstanceId: *location = SYSTEM_VALUE_INSTANCE_ID; *mode = nir_var_system_value; break; case SpvBuiltInPrimitiveId: *location = VARYING_SLOT_PRIMITIVE_ID; *mode = nir_var_shader_out; break; case SpvBuiltInInvocationId: *location = SYSTEM_VALUE_INVOCATION_ID; *mode = nir_var_system_value; break; case SpvBuiltInLayer: *location = VARYING_SLOT_LAYER; *mode = nir_var_shader_out; break; case SpvBuiltInTessLevelOuter: case SpvBuiltInTessLevelInner: case SpvBuiltInTessCoord: case SpvBuiltInPatchVertices: unreachable("no tessellation support"); case SpvBuiltInFragCoord: *location = VARYING_SLOT_POS; *mode = nir_var_shader_in; break; case SpvBuiltInPointCoord: *location = VARYING_SLOT_PNTC; *mode = nir_var_shader_out; break; case SpvBuiltInFrontFacing: *location = VARYING_SLOT_FACE; *mode = nir_var_shader_out; break; case SpvBuiltInSampleId: *location = SYSTEM_VALUE_SAMPLE_ID; *mode = nir_var_shader_in; break; case SpvBuiltInSamplePosition: *location = SYSTEM_VALUE_SAMPLE_POS; *mode = nir_var_shader_in; break; case SpvBuiltInSampleMask: *location = SYSTEM_VALUE_SAMPLE_MASK_IN; /* XXX out? */ *mode = nir_var_shader_in; break; case SpvBuiltInFragColor: *location = FRAG_RESULT_COLOR; *mode = nir_var_shader_out; break; case SpvBuiltInFragDepth: *location = FRAG_RESULT_DEPTH; *mode = nir_var_shader_out; break; case SpvBuiltInHelperInvocation: unreachable("unsupported builtin"); /* XXX */ break; case SpvBuiltInNumWorkgroups: case SpvBuiltInWorkgroupSize: /* these are constants, need to be handled specially */ unreachable("unsupported builtin"); case SpvBuiltInWorkgroupId: case SpvBuiltInLocalInvocationId: case SpvBuiltInGlobalInvocationId: case SpvBuiltInLocalInvocationIndex: unreachable("no compute shader support"); default: unreachable("unsupported builtin"); } } static void var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_var) { assert(val->value_type == vtn_value_type_deref); assert(val->deref->deref.child == NULL); assert(val->deref->var == void_var); nir_variable *var = void_var; switch (dec->decoration) { case SpvDecorationRelaxedPrecision: break; /* FIXME: Do nothing with this for now. */ case SpvDecorationSmooth: var->data.interpolation = INTERP_QUALIFIER_SMOOTH; break; case SpvDecorationNoPerspective: var->data.interpolation = INTERP_QUALIFIER_NOPERSPECTIVE; break; case SpvDecorationFlat: var->data.interpolation = INTERP_QUALIFIER_FLAT; break; case SpvDecorationCentroid: var->data.centroid = true; break; case SpvDecorationSample: var->data.sample = true; break; case SpvDecorationInvariant: var->data.invariant = true; break; case SpvDecorationConstant: assert(var->constant_initializer != NULL); var->data.read_only = true; break; case SpvDecorationNonWritable: var->data.read_only = true; break; case SpvDecorationLocation: var->data.location = dec->literals[0]; break; case SpvDecorationComponent: var->data.location_frac = dec->literals[0]; break; case SpvDecorationIndex: var->data.explicit_index = true; var->data.index = dec->literals[0]; break; case SpvDecorationBinding: var->data.explicit_binding = true; var->data.binding = dec->literals[0]; break; case SpvDecorationDescriptorSet: var->data.descriptor_set = dec->literals[0]; break; case SpvDecorationBuiltIn: { nir_variable_mode mode; vtn_get_builtin_location(dec->literals[0], &var->data.location, &mode); var->data.explicit_location = true; var->data.mode = mode; if (mode == nir_var_shader_in || mode == nir_var_system_value) var->data.read_only = true; b->builtins[dec->literals[0]] = var; break; } case SpvDecorationRowMajor: case SpvDecorationColMajor: case SpvDecorationGLSLShared: case SpvDecorationPatch: case SpvDecorationRestrict: case SpvDecorationAliased: case SpvDecorationVolatile: case SpvDecorationCoherent: case SpvDecorationNonReadable: case SpvDecorationUniform: /* This is really nice but we have no use for it right now. */ case SpvDecorationCPacked: case SpvDecorationSaturatedConversion: case SpvDecorationStream: case SpvDecorationOffset: case SpvDecorationXfbBuffer: case SpvDecorationFuncParamAttr: case SpvDecorationFPRoundingMode: case SpvDecorationFPFastMathMode: case SpvDecorationLinkageAttributes: case SpvDecorationSpecId: break; default: unreachable("Unhandled variable decoration"); } } static nir_variable * get_builtin_variable(struct vtn_builder *b, const struct glsl_type *type, SpvBuiltIn builtin) { nir_variable *var = b->builtins[builtin]; if (!var) { var = ralloc(b->shader, nir_variable); var->type = type; nir_variable_mode mode; vtn_get_builtin_location(builtin, &var->data.location, &mode); var->data.explicit_location = true; var->data.mode = mode; var->name = ralloc_strdup(var, "builtin"); switch (mode) { case nir_var_shader_in: exec_list_push_tail(&b->shader->inputs, &var->node); break; case nir_var_shader_out: exec_list_push_tail(&b->shader->outputs, &var->node); break; case nir_var_system_value: exec_list_push_tail(&b->shader->system_values, &var->node); break; default: unreachable("bad builtin mode"); } b->builtins[builtin] = var; } return var; } static void vtn_builtin_load(struct vtn_builder *b, struct vtn_ssa_value *val, SpvBuiltIn builtin) { assert(glsl_type_is_vector_or_scalar(val->type)); nir_variable *var = get_builtin_variable(b, val->type, builtin); nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_var); nir_ssa_dest_init(&load->instr, &load->dest, glsl_get_vector_elements(val->type), NULL); load->variables[0] = nir_deref_var_create(load, var); load->num_components = glsl_get_vector_elements(val->type); nir_builder_instr_insert(&b->nb, &load->instr); val->def = &load->dest.ssa; } static void vtn_builtin_store(struct vtn_builder *b, struct vtn_ssa_value *val, SpvBuiltIn builtin) { assert(glsl_type_is_vector_or_scalar(val->type)); nir_variable *var = get_builtin_variable(b, val->type, builtin); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_var); store->variables[0] = nir_deref_var_create(store, var); store->num_components = glsl_get_vector_elements(val->type); store->src[0] = nir_src_for_ssa(val->def); nir_builder_instr_insert(&b->nb, &store->instr); } static struct vtn_ssa_value * _vtn_variable_load(struct vtn_builder *b, nir_deref_var *src_deref, struct vtn_type *src_type, nir_deref *src_deref_tail) { struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = src_deref_tail->type; if (src_type->is_builtin) { vtn_builtin_load(b, val, src_type->builtin); return val; } /* The deref tail may contain a deref to select a component of a vector (in * other words, it might not be an actual tail) so we have to save it away * here since we overwrite it later. */ nir_deref *old_child = src_deref_tail->child; if (glsl_type_is_vector_or_scalar(val->type)) { nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_var); load->variables[0] = nir_deref_as_var(nir_copy_deref(load, &src_deref->deref)); load->num_components = glsl_get_vector_elements(val->type); nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, NULL); nir_builder_instr_insert(&b->nb, &load->instr); if (src_deref->var->data.mode == nir_var_uniform && glsl_get_base_type(val->type) == GLSL_TYPE_BOOL) { /* Uniform boolean loads need to be fixed up since they're defined * to be zero/nonzero rather than NIR_FALSE/NIR_TRUE. */ val->def = nir_ine(&b->nb, &load->dest.ssa, nir_imm_int(&b->nb, 0)); } else { val->def = &load->dest.ssa; } } else if (glsl_get_base_type(val->type) == GLSL_TYPE_ARRAY || glsl_type_is_matrix(val->type)) { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); nir_deref_array *deref = nir_deref_array_create(b); deref->deref_array_type = nir_deref_array_type_direct; deref->deref.type = glsl_get_array_element(val->type); src_deref_tail->child = &deref->deref; for (unsigned i = 0; i < elems; i++) { deref->base_offset = i; val->elems[i] = _vtn_variable_load(b, src_deref, src_type->array_element, &deref->deref); } } else { assert(glsl_get_base_type(val->type) == GLSL_TYPE_STRUCT); unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); nir_deref_struct *deref = nir_deref_struct_create(b, 0); src_deref_tail->child = &deref->deref; for (unsigned i = 0; i < elems; i++) { deref->index = i; deref->deref.type = glsl_get_struct_field(val->type, i); val->elems[i] = _vtn_variable_load(b, src_deref, src_type->members[i], &deref->deref); } } src_deref_tail->child = old_child; return val; } static void _vtn_variable_store(struct vtn_builder *b, struct vtn_type *dest_type, nir_deref_var *dest_deref, nir_deref *dest_deref_tail, struct vtn_ssa_value *src) { if (dest_type->is_builtin) { vtn_builtin_store(b, src, dest_type->builtin); return; } nir_deref *old_child = dest_deref_tail->child; if (glsl_type_is_vector_or_scalar(src->type)) { nir_intrinsic_instr *store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_var); store->variables[0] = nir_deref_as_var(nir_copy_deref(store, &dest_deref->deref)); store->num_components = glsl_get_vector_elements(src->type); store->src[0] = nir_src_for_ssa(src->def); nir_builder_instr_insert(&b->nb, &store->instr); } else if (glsl_get_base_type(src->type) == GLSL_TYPE_ARRAY || glsl_type_is_matrix(src->type)) { unsigned elems = glsl_get_length(src->type); nir_deref_array *deref = nir_deref_array_create(b); deref->deref_array_type = nir_deref_array_type_direct; deref->deref.type = glsl_get_array_element(src->type); dest_deref_tail->child = &deref->deref; for (unsigned i = 0; i < elems; i++) { deref->base_offset = i; _vtn_variable_store(b, dest_type->array_element, dest_deref, &deref->deref, src->elems[i]); } } else { assert(glsl_get_base_type(src->type) == GLSL_TYPE_STRUCT); unsigned elems = glsl_get_length(src->type); nir_deref_struct *deref = nir_deref_struct_create(b, 0); dest_deref_tail->child = &deref->deref; for (unsigned i = 0; i < elems; i++) { deref->index = i; deref->deref.type = glsl_get_struct_field(src->type, i); _vtn_variable_store(b, dest_type->members[i], dest_deref, &deref->deref, src->elems[i]); } } dest_deref_tail->child = old_child; } static struct vtn_ssa_value * _vtn_block_load(struct vtn_builder *b, nir_intrinsic_op op, unsigned set, nir_ssa_def *binding, unsigned offset, nir_ssa_def *indirect, struct vtn_type *type) { struct vtn_ssa_value *val = ralloc(b, struct vtn_ssa_value); val->type = type->type; val->transposed = NULL; if (glsl_type_is_vector_or_scalar(type->type)) { nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, op); load->num_components = glsl_get_vector_elements(type->type); load->const_index[0] = set; load->src[0] = nir_src_for_ssa(binding); load->const_index[1] = offset; if (indirect) load->src[1] = nir_src_for_ssa(indirect); nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, NULL); nir_builder_instr_insert(&b->nb, &load->instr); val->def = &load->dest.ssa; } else { unsigned elems = glsl_get_length(type->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); if (glsl_type_is_struct(type->type)) { for (unsigned i = 0; i < elems; i++) { val->elems[i] = _vtn_block_load(b, op, set, binding, offset + type->offsets[i], indirect, type->members[i]); } } else { for (unsigned i = 0; i < elems; i++) { val->elems[i] = _vtn_block_load(b, op, set, binding, offset + i * type->stride, indirect, type->array_element); } } } return val; } static struct vtn_ssa_value * vtn_block_load(struct vtn_builder *b, nir_deref_var *src, struct vtn_type *type, nir_deref *src_tail) { unsigned set = src->var->data.descriptor_set; nir_ssa_def *binding = nir_imm_int(&b->nb, src->var->data.binding); nir_deref *deref = &src->deref; /* The block variable may be an array, in which case the array index adds * an offset to the binding. Figure out that index now. */ if (deref->child->deref_type == nir_deref_type_array) { deref = deref->child; type = type->array_element; nir_deref_array *deref_array = nir_deref_as_array(deref); if (deref_array->deref_array_type == nir_deref_array_type_direct) { binding = nir_imm_int(&b->nb, src->var->data.binding + deref_array->base_offset); } else { binding = nir_iadd(&b->nb, binding, deref_array->indirect.ssa); } } unsigned offset = 0; nir_ssa_def *indirect = NULL; while (deref != src_tail) { deref = deref->child; switch (deref->deref_type) { case nir_deref_type_array: { nir_deref_array *deref_array = nir_deref_as_array(deref); if (deref_array->deref_array_type == nir_deref_array_type_direct) { offset += type->stride * deref_array->base_offset; } else { nir_ssa_def *offset = nir_imul(&b->nb, deref_array->indirect.ssa, nir_imm_int(&b->nb, type->stride)); indirect = indirect ? nir_iadd(&b->nb, indirect, offset) : offset; } type = type->array_element; break; } case nir_deref_type_struct: { nir_deref_struct *deref_struct = nir_deref_as_struct(deref); offset += type->offsets[deref_struct->index]; type = type->members[deref_struct->index]; break; } default: unreachable("unknown deref type"); } } /* TODO SSBO's */ nir_intrinsic_op op = indirect ? nir_intrinsic_load_ubo_indirect : nir_intrinsic_load_ubo; return _vtn_block_load(b, op, set, binding, offset, indirect, type); } /* * Gets the NIR-level deref tail, which may have as a child an array deref * selecting which component due to OpAccessChain supporting per-component * indexing in SPIR-V. */ static nir_deref * get_deref_tail(nir_deref_var *deref) { nir_deref *cur = &deref->deref; while (!glsl_type_is_vector_or_scalar(cur->type) && cur->child) cur = cur->child; return cur; } static nir_ssa_def *vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index); static nir_ssa_def *vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *index); static struct vtn_ssa_value * vtn_variable_load(struct vtn_builder *b, nir_deref_var *src, struct vtn_type *src_type) { nir_deref *src_tail = get_deref_tail(src); struct vtn_ssa_value *val; if (src->var->interface_type && src->var->data.mode == nir_var_uniform) val = vtn_block_load(b, src, src_type, src_tail); else val = _vtn_variable_load(b, src, src_type, src_tail); if (src_tail->child) { nir_deref_array *vec_deref = nir_deref_as_array(src_tail->child); assert(vec_deref->deref.child == NULL); val->type = vec_deref->deref.type; if (vec_deref->deref_array_type == nir_deref_array_type_direct) val->def = vtn_vector_extract(b, val->def, vec_deref->base_offset); else val->def = vtn_vector_extract_dynamic(b, val->def, vec_deref->indirect.ssa); } return val; } static nir_ssa_def * vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, unsigned index); static nir_ssa_def * vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, nir_ssa_def *index); static void vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src, nir_deref_var *dest, struct vtn_type *dest_type) { nir_deref *dest_tail = get_deref_tail(dest); if (dest_tail->child) { struct vtn_ssa_value *val = _vtn_variable_load(b, dest, dest_type, dest_tail); nir_deref_array *deref = nir_deref_as_array(dest_tail->child); assert(deref->deref.child == NULL); if (deref->deref_array_type == nir_deref_array_type_direct) val->def = vtn_vector_insert(b, val->def, src->def, deref->base_offset); else val->def = vtn_vector_insert_dynamic(b, val->def, src->def, deref->indirect.ssa); _vtn_variable_store(b, dest_type, dest, dest_tail, val); } else { _vtn_variable_store(b, dest_type, dest, dest_tail, src); } } static void vtn_variable_copy(struct vtn_builder *b, nir_deref_var *src, nir_deref_var *dest, struct vtn_type *type) { nir_deref *src_tail = get_deref_tail(src); if (src_tail->child || src->var->interface_type) { assert(get_deref_tail(dest)->child); struct vtn_ssa_value *val = vtn_variable_load(b, src, type); vtn_variable_store(b, val, dest, type); } else { nir_intrinsic_instr *copy = nir_intrinsic_instr_create(b->shader, nir_intrinsic_copy_var); copy->variables[0] = nir_deref_as_var(nir_copy_deref(copy, &dest->deref)); copy->variables[1] = nir_deref_as_var(nir_copy_deref(copy, &src->deref)); nir_builder_instr_insert(&b->nb, ©->instr); } } static void vtn_handle_variables(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpVariable: { struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_deref); nir_variable *var = ralloc(b->shader, nir_variable); var->type = type->type; var->name = ralloc_strdup(var, val->name); bool builtin_block = false; if (type->block) { var->interface_type = type->type; builtin_block = type->builtin_block; } else if (glsl_type_is_array(type->type) && (type->array_element->block || type->array_element->buffer_block)) { var->interface_type = type->array_element->type; builtin_block = type->array_element->builtin_block; } else { var->interface_type = NULL; } switch ((SpvStorageClass)w[3]) { case SpvStorageClassUniform: case SpvStorageClassUniformConstant: var->data.mode = nir_var_uniform; var->data.read_only = true; break; case SpvStorageClassInput: var->data.mode = nir_var_shader_in; var->data.read_only = true; break; case SpvStorageClassOutput: var->data.mode = nir_var_shader_out; break; case SpvStorageClassPrivateGlobal: var->data.mode = nir_var_global; break; case SpvStorageClassFunction: var->data.mode = nir_var_local; break; case SpvStorageClassWorkgroupLocal: case SpvStorageClassWorkgroupGlobal: case SpvStorageClassGeneric: case SpvStorageClassAtomicCounter: default: unreachable("Unhandled variable storage class"); } if (count > 4) { assert(count == 5); var->constant_initializer = vtn_value(b, w[4], vtn_value_type_constant)->constant; } val->deref = nir_deref_var_create(b, var); val->deref_type = type; /* We handle decorations first because decorations might give us * location information. We use the data.explicit_location field to * note that the location provided is the "final" location. If * data.explicit_location == false, this means that it's relative to * whatever the base location is. */ vtn_foreach_decoration(b, val, var_decoration_cb, var); if (!var->data.explicit_location) { if (b->execution_model == SpvExecutionModelFragment && var->data.mode == nir_var_shader_out) { var->data.location += FRAG_RESULT_DATA0; } else if (b->execution_model == SpvExecutionModelVertex && var->data.mode == nir_var_shader_in) { var->data.location += VERT_ATTRIB_GENERIC0; } else if (var->data.mode == nir_var_shader_in || var->data.mode == nir_var_shader_out) { var->data.location += VARYING_SLOT_VAR0; } } /* If this was a uniform block, then we're not going to actually use the * variable (we're only going to use it to compute offsets), so don't * declare it in the shader. */ if (var->data.mode == nir_var_uniform && var->interface_type) break; /* Builtin blocks are lowered to individual variables during SPIR-V -> * NIR, so don't declare them either. */ if (builtin_block) break; switch (var->data.mode) { case nir_var_shader_in: exec_list_push_tail(&b->shader->inputs, &var->node); break; case nir_var_shader_out: exec_list_push_tail(&b->shader->outputs, &var->node); break; case nir_var_global: exec_list_push_tail(&b->shader->globals, &var->node); break; case nir_var_local: exec_list_push_tail(&b->impl->locals, &var->node); break; case nir_var_uniform: exec_list_push_tail(&b->shader->uniforms, &var->node); break; case nir_var_system_value: exec_list_push_tail(&b->shader->system_values, &var->node); break; } break; } case SpvOpAccessChain: case SpvOpInBoundsAccessChain: { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_deref); nir_deref_var *base = vtn_value(b, w[3], vtn_value_type_deref)->deref; val->deref = nir_deref_as_var(nir_copy_deref(b, &base->deref)); struct vtn_type *deref_type = vtn_value(b, w[3], vtn_value_type_deref)->deref_type; nir_deref *tail = &val->deref->deref; while (tail->child) tail = tail->child; for (unsigned i = 0; i < count - 4; i++) { assert(w[i + 4] < b->value_id_bound); struct vtn_value *idx_val = &b->values[w[i + 4]]; enum glsl_base_type base_type = glsl_get_base_type(tail->type); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: case GLSL_TYPE_ARRAY: { nir_deref_array *deref_arr = nir_deref_array_create(b); if (base_type == GLSL_TYPE_ARRAY || glsl_type_is_matrix(tail->type)) { deref_type = deref_type->array_element; } else { assert(glsl_type_is_vector(tail->type)); deref_type = ralloc(b, struct vtn_type); deref_type->type = glsl_scalar_type(base_type); } deref_arr->deref.type = deref_type->type; if (idx_val->value_type == vtn_value_type_constant) { unsigned idx = idx_val->constant->value.u[0]; deref_arr->deref_array_type = nir_deref_array_type_direct; deref_arr->base_offset = idx; } else { assert(idx_val->value_type == vtn_value_type_ssa); deref_arr->deref_array_type = nir_deref_array_type_indirect; deref_arr->base_offset = 0; deref_arr->indirect = nir_src_for_ssa(vtn_ssa_value(b, w[1])->def); } tail->child = &deref_arr->deref; break; } case GLSL_TYPE_STRUCT: { assert(idx_val->value_type == vtn_value_type_constant); unsigned idx = idx_val->constant->value.u[0]; deref_type = deref_type->members[idx]; nir_deref_struct *deref_struct = nir_deref_struct_create(b, idx); deref_struct->deref.type = deref_type->type; tail->child = &deref_struct->deref; break; } default: unreachable("Invalid type for deref"); } tail = tail->child; } /* For uniform blocks, we don't resolve the access chain until we * actually access the variable, so we need to keep around the original * type of the variable. */ if (base->var->interface_type && base->var->data.mode == nir_var_uniform) val->deref_type = vtn_value(b, w[3], vtn_value_type_deref)->deref_type; else val->deref_type = deref_type; break; } case SpvOpCopyMemory: { nir_deref_var *dest = vtn_value(b, w[1], vtn_value_type_deref)->deref; nir_deref_var *src = vtn_value(b, w[2], vtn_value_type_deref)->deref; struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_deref)->deref_type; vtn_variable_copy(b, src, dest, type); break; } case SpvOpLoad: { nir_deref_var *src = vtn_value(b, w[3], vtn_value_type_deref)->deref; struct vtn_type *src_type = vtn_value(b, w[3], vtn_value_type_deref)->deref_type; if (glsl_get_base_type(src_type->type) == GLSL_TYPE_SAMPLER) { vtn_push_value(b, w[2], vtn_value_type_deref)->deref = src; return; } struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = vtn_variable_load(b, src, src_type); break; } case SpvOpStore: { nir_deref_var *dest = vtn_value(b, w[1], vtn_value_type_deref)->deref; struct vtn_type *dest_type = vtn_value(b, w[1], vtn_value_type_deref)->deref_type; struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]); vtn_variable_store(b, src, dest, dest_type); break; } case SpvOpCopyMemorySized: case SpvOpArrayLength: case SpvOpImageTexelPointer: default: unreachable("Unhandled opcode"); } } static void vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { unreachable("Unhandled opcode"); } static struct vtn_ssa_value * vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type) { struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; if (!glsl_type_is_vector_or_scalar(type)) { unsigned elems = glsl_get_length(type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) { const struct glsl_type *child_type; switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: child_type = glsl_get_column_type(type); break; case GLSL_TYPE_ARRAY: child_type = glsl_get_array_element(type); break; case GLSL_TYPE_STRUCT: child_type = glsl_get_struct_field(type, i); break; default: unreachable("unkown base type"); } val->elems[i] = vtn_create_ssa_value(b, child_type); } } return val; } static nir_tex_src vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type) { nir_tex_src src; src.src = nir_src_for_ssa(vtn_value(b, index, vtn_value_type_ssa)->ssa->def); src.src_type = type; return src; } static void vtn_handle_texture(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); nir_deref_var *sampler = vtn_value(b, w[3], vtn_value_type_deref)->deref; nir_tex_src srcs[8]; /* 8 should be enough */ nir_tex_src *p = srcs; unsigned idx = 4; unsigned coord_components = 0; switch (opcode) { case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageFetch: case SpvOpImageGather: case SpvOpImageDrefGather: case SpvOpImageQueryLod: { /* All these types have the coordinate as their first real argument */ struct vtn_ssa_value *coord = vtn_ssa_value(b, w[idx++]); coord_components = glsl_get_vector_elements(coord->type); p->src = nir_src_for_ssa(coord->def); p->src_type = nir_tex_src_coord; p++; break; } default: break; } /* These all have an explicit depth value as their next source */ switch (opcode) { case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparitor); break; default: break; } /* Figure out the base texture operation */ nir_texop texop; switch (opcode) { case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: texop = nir_texop_tex; break; case SpvOpImageFetch: texop = nir_texop_txf; break; case SpvOpImageGather: case SpvOpImageDrefGather: texop = nir_texop_tg4; break; case SpvOpImageQuerySizeLod: case SpvOpImageQuerySize: texop = nir_texop_txs; break; case SpvOpImageQueryLod: texop = nir_texop_lod; break; case SpvOpImageQueryLevels: texop = nir_texop_query_levels; break; case SpvOpImageQuerySamples: default: unreachable("Unhandled opcode"); } /* Now we need to handle some number of optional arguments */ if (idx < count) { uint32_t operands = w[idx++]; if (operands & SpvImageOperandsBiasMask) { assert(texop == nir_texop_tex); texop = nir_texop_txb; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias); } if (operands & SpvImageOperandsLodMask) { assert(texop == nir_texop_tex); texop = nir_texop_txl; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod); } if (operands & SpvImageOperandsGradMask) { assert(texop == nir_texop_tex); texop = nir_texop_txd; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx); (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy); } if (operands & SpvImageOperandsOffsetMask || operands & SpvImageOperandsConstOffsetMask) (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset); if (operands & SpvImageOperandsConstOffsetsMask) assert(!"Constant offsets to texture gather not yet implemented"); if (operands & SpvImageOperandsSampleMask) { assert(texop == nir_texop_txf); texop = nir_texop_txf_ms; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index); } } /* We should have now consumed exactly all of the arguments */ assert(idx == count); nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs); const struct glsl_type *sampler_type = nir_deref_tail(&sampler->deref)->type; instr->sampler_dim = glsl_get_sampler_dim(sampler_type); switch (glsl_get_sampler_result_type(sampler_type)) { case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break; case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break; case GLSL_TYPE_UINT: instr->dest_type = nir_type_unsigned; break; case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break; default: unreachable("Invalid base type for sampler result"); } instr->op = texop; memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src)); instr->coord_components = coord_components; instr->is_array = glsl_sampler_type_is_array(sampler_type); instr->is_shadow = glsl_sampler_type_is_shadow(sampler_type); instr->sampler = nir_deref_as_var(nir_copy_deref(instr, &sampler->deref)); nir_ssa_dest_init(&instr->instr, &instr->dest, 4, NULL); val->ssa = vtn_create_ssa_value(b, glsl_vector_type(GLSL_TYPE_FLOAT, 4)); val->ssa->def = &instr->dest.ssa; nir_builder_instr_insert(&b->nb, &instr->instr); } static nir_alu_instr * create_vec(void *mem_ctx, unsigned num_components) { nir_op op; switch (num_components) { case 1: op = nir_op_fmov; break; case 2: op = nir_op_vec2; break; case 3: op = nir_op_vec3; break; case 4: op = nir_op_vec4; break; default: unreachable("bad vector size"); } nir_alu_instr *vec = nir_alu_instr_create(mem_ctx, op); nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components, NULL); vec->dest.write_mask = (1 << num_components) - 1; return vec; } static struct vtn_ssa_value * vtn_transpose(struct vtn_builder *b, struct vtn_ssa_value *src) { if (src->transposed) return src->transposed; struct vtn_ssa_value *dest = vtn_create_ssa_value(b, glsl_transposed_type(src->type)); for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) { nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type)); if (glsl_type_is_vector_or_scalar(src->type)) { vec->src[0].src = nir_src_for_ssa(src->def); vec->src[0].swizzle[0] = i; } else { for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) { vec->src[j].src = nir_src_for_ssa(src->elems[j]->def); vec->src[j].swizzle[0] = i; } } nir_builder_instr_insert(&b->nb, &vec->instr); dest->elems[i]->def = &vec->dest.dest.ssa; } dest->transposed = src; return dest; } /* * Normally, column vectors in SPIR-V correspond to a single NIR SSA * definition. But for matrix multiplies, we want to do one routine for * multiplying a matrix by a matrix and then pretend that vectors are matrices * with one column. So we "wrap" these things, and unwrap the result before we * send it off. */ static struct vtn_ssa_value * vtn_wrap_matrix(struct vtn_builder *b, struct vtn_ssa_value *val) { if (val == NULL) return NULL; if (glsl_type_is_matrix(val->type)) return val; struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value); dest->type = val->type; dest->elems = ralloc_array(b, struct vtn_ssa_value *, 1); dest->elems[0] = val; return dest; } static struct vtn_ssa_value * vtn_unwrap_matrix(struct vtn_ssa_value *val) { if (glsl_type_is_matrix(val->type)) return val; return val->elems[0]; } static struct vtn_ssa_value * vtn_matrix_multiply(struct vtn_builder *b, struct vtn_ssa_value *_src0, struct vtn_ssa_value *_src1) { struct vtn_ssa_value *src0 = vtn_wrap_matrix(b, _src0); struct vtn_ssa_value *src1 = vtn_wrap_matrix(b, _src1); struct vtn_ssa_value *src0_transpose = vtn_wrap_matrix(b, _src0->transposed); struct vtn_ssa_value *src1_transpose = vtn_wrap_matrix(b, _src1->transposed); unsigned src0_rows = glsl_get_vector_elements(src0->type); unsigned src0_columns = glsl_get_matrix_columns(src0->type); unsigned src1_columns = glsl_get_matrix_columns(src1->type); struct vtn_ssa_value *dest = vtn_create_ssa_value(b, glsl_matrix_type(glsl_get_base_type(src0->type), src0_rows, src1_columns)); dest = vtn_wrap_matrix(b, dest); bool transpose_result = false; if (src0_transpose && src1_transpose) { /* transpose(A) * transpose(B) = transpose(B * A) */ src1 = src0_transpose; src0 = src1_transpose; src0_transpose = NULL; src1_transpose = NULL; transpose_result = true; } if (src0_transpose && !src1_transpose && glsl_get_base_type(src0->type) == GLSL_TYPE_FLOAT) { /* We already have the rows of src0 and the columns of src1 available, * so we can just take the dot product of each row with each column to * get the result. */ for (unsigned i = 0; i < src1_columns; i++) { nir_alu_instr *vec = create_vec(b, src0_rows); for (unsigned j = 0; j < src0_rows; j++) { vec->src[j].src = nir_src_for_ssa(nir_fdot(&b->nb, src0_transpose->elems[j]->def, src1->elems[i]->def)); } nir_builder_instr_insert(&b->nb, &vec->instr); dest->elems[i]->def = &vec->dest.dest.ssa; } } else { /* We don't handle the case where src1 is transposed but not src0, since * the general case only uses individual components of src1 so the * optimizer should chew through the transpose we emitted for src1. */ for (unsigned i = 0; i < src1_columns; i++) { /* dest[i] = sum(src0[j] * src1[i][j] for all j) */ dest->elems[i]->def = nir_fmul(&b->nb, src0->elems[0]->def, vtn_vector_extract(b, src1->elems[i]->def, 0)); for (unsigned j = 1; j < src0_columns; j++) { dest->elems[i]->def = nir_fadd(&b->nb, dest->elems[i]->def, nir_fmul(&b->nb, src0->elems[j]->def, vtn_vector_extract(b, src1->elems[i]->def, j))); } } } dest = vtn_unwrap_matrix(dest); if (transpose_result) dest = vtn_transpose(b, dest); return dest; } static struct vtn_ssa_value * vtn_mat_times_scalar(struct vtn_builder *b, struct vtn_ssa_value *mat, nir_ssa_def *scalar) { struct vtn_ssa_value *dest = vtn_create_ssa_value(b, mat->type); for (unsigned i = 0; i < glsl_get_matrix_columns(mat->type); i++) { if (glsl_get_base_type(mat->type) == GLSL_TYPE_FLOAT) dest->elems[i]->def = nir_fmul(&b->nb, mat->elems[i]->def, scalar); else dest->elems[i]->def = nir_imul(&b->nb, mat->elems[i]->def, scalar); } return dest; } static void vtn_handle_matrix_alu(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); switch (opcode) { case SpvOpTranspose: { struct vtn_ssa_value *src = vtn_ssa_value(b, w[3]); val->ssa = vtn_transpose(b, src); break; } case SpvOpOuterProduct: { struct vtn_ssa_value *src0 = vtn_ssa_value(b, w[3]); struct vtn_ssa_value *src1 = vtn_ssa_value(b, w[4]); val->ssa = vtn_matrix_multiply(b, src0, vtn_transpose(b, src1)); break; } case SpvOpMatrixTimesScalar: { struct vtn_ssa_value *mat = vtn_ssa_value(b, w[3]); struct vtn_ssa_value *scalar = vtn_ssa_value(b, w[4]); if (mat->transposed) { val->ssa = vtn_transpose(b, vtn_mat_times_scalar(b, mat->transposed, scalar->def)); } else { val->ssa = vtn_mat_times_scalar(b, mat, scalar->def); } break; } case SpvOpVectorTimesMatrix: case SpvOpMatrixTimesVector: case SpvOpMatrixTimesMatrix: { struct vtn_ssa_value *src0 = vtn_ssa_value(b, w[3]); struct vtn_ssa_value *src1 = vtn_ssa_value(b, w[4]); val->ssa = vtn_matrix_multiply(b, src0, src1); break; } default: unreachable("unknown matrix opcode"); } } static void vtn_handle_alu(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa = vtn_create_ssa_value(b, type); /* Collect the various SSA sources */ unsigned num_inputs = count - 3; nir_ssa_def *src[4]; for (unsigned i = 0; i < num_inputs; i++) src[i] = vtn_ssa_value(b, w[i + 3])->def; /* Indicates that the first two arguments should be swapped. This is * used for implementing greater-than and less-than-or-equal. */ bool swap = false; nir_op op; switch (opcode) { /* Basic ALU operations */ case SpvOpSNegate: op = nir_op_ineg; break; case SpvOpFNegate: op = nir_op_fneg; break; case SpvOpNot: op = nir_op_inot; break; case SpvOpAny: switch (src[0]->num_components) { case 1: op = nir_op_imov; break; case 2: op = nir_op_bany2; break; case 3: op = nir_op_bany3; break; case 4: op = nir_op_bany4; break; } break; case SpvOpAll: switch (src[0]->num_components) { case 1: op = nir_op_imov; break; case 2: op = nir_op_ball2; break; case 3: op = nir_op_ball3; break; case 4: op = nir_op_ball4; break; } break; case SpvOpIAdd: op = nir_op_iadd; break; case SpvOpFAdd: op = nir_op_fadd; break; case SpvOpISub: op = nir_op_isub; break; case SpvOpFSub: op = nir_op_fsub; break; case SpvOpIMul: op = nir_op_imul; break; case SpvOpFMul: op = nir_op_fmul; break; case SpvOpUDiv: op = nir_op_udiv; break; case SpvOpSDiv: op = nir_op_idiv; break; case SpvOpFDiv: op = nir_op_fdiv; break; case SpvOpUMod: op = nir_op_umod; break; case SpvOpSMod: op = nir_op_umod; break; /* FIXME? */ case SpvOpFMod: op = nir_op_fmod; break; case SpvOpDot: assert(src[0]->num_components == src[1]->num_components); switch (src[0]->num_components) { case 1: op = nir_op_fmul; break; case 2: op = nir_op_fdot2; break; case 3: op = nir_op_fdot3; break; case 4: op = nir_op_fdot4; break; } break; case SpvOpShiftRightLogical: op = nir_op_ushr; break; case SpvOpShiftRightArithmetic: op = nir_op_ishr; break; case SpvOpShiftLeftLogical: op = nir_op_ishl; break; case SpvOpLogicalOr: op = nir_op_ior; break; case SpvOpLogicalEqual: op = nir_op_ieq; break; case SpvOpLogicalNotEqual: op = nir_op_ine; break; case SpvOpLogicalAnd: op = nir_op_iand; break; case SpvOpBitwiseOr: op = nir_op_ior; break; case SpvOpBitwiseXor: op = nir_op_ixor; break; case SpvOpBitwiseAnd: op = nir_op_iand; break; case SpvOpSelect: op = nir_op_bcsel; break; case SpvOpIEqual: op = nir_op_ieq; break; /* Comparisons: (TODO: How do we want to handled ordered/unordered?) */ case SpvOpFOrdEqual: op = nir_op_feq; break; case SpvOpFUnordEqual: op = nir_op_feq; break; case SpvOpINotEqual: op = nir_op_ine; break; case SpvOpFOrdNotEqual: op = nir_op_fne; break; case SpvOpFUnordNotEqual: op = nir_op_fne; break; case SpvOpULessThan: op = nir_op_ult; break; case SpvOpSLessThan: op = nir_op_ilt; break; case SpvOpFOrdLessThan: op = nir_op_flt; break; case SpvOpFUnordLessThan: op = nir_op_flt; break; case SpvOpUGreaterThan: op = nir_op_ult; swap = true; break; case SpvOpSGreaterThan: op = nir_op_ilt; swap = true; break; case SpvOpFOrdGreaterThan: op = nir_op_flt; swap = true; break; case SpvOpFUnordGreaterThan: op = nir_op_flt; swap = true; break; case SpvOpULessThanEqual: op = nir_op_uge; swap = true; break; case SpvOpSLessThanEqual: op = nir_op_ige; swap = true; break; case SpvOpFOrdLessThanEqual: op = nir_op_fge; swap = true; break; case SpvOpFUnordLessThanEqual: op = nir_op_fge; swap = true; break; case SpvOpUGreaterThanEqual: op = nir_op_uge; break; case SpvOpSGreaterThanEqual: op = nir_op_ige; break; case SpvOpFOrdGreaterThanEqual: op = nir_op_fge; break; case SpvOpFUnordGreaterThanEqual:op = nir_op_fge; break; /* Conversions: */ case SpvOpConvertFToU: op = nir_op_f2u; break; case SpvOpConvertFToS: op = nir_op_f2i; break; case SpvOpConvertSToF: op = nir_op_i2f; break; case SpvOpConvertUToF: op = nir_op_u2f; break; case SpvOpBitcast: op = nir_op_imov; break; case SpvOpUConvert: case SpvOpSConvert: op = nir_op_imov; /* TODO: NIR is 32-bit only; these are no-ops. */ break; case SpvOpFConvert: op = nir_op_fmov; break; /* Derivatives: */ case SpvOpDPdx: op = nir_op_fddx; break; case SpvOpDPdy: op = nir_op_fddy; break; case SpvOpDPdxFine: op = nir_op_fddx_fine; break; case SpvOpDPdyFine: op = nir_op_fddy_fine; break; case SpvOpDPdxCoarse: op = nir_op_fddx_coarse; break; case SpvOpDPdyCoarse: op = nir_op_fddy_coarse; break; case SpvOpFwidth: val->ssa->def = nir_fadd(&b->nb, nir_fabs(&b->nb, nir_fddx(&b->nb, src[0])), nir_fabs(&b->nb, nir_fddx(&b->nb, src[1]))); return; case SpvOpFwidthFine: val->ssa->def = nir_fadd(&b->nb, nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[0])), nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[1]))); return; case SpvOpFwidthCoarse: val->ssa->def = nir_fadd(&b->nb, nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[0])), nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[1]))); return; case SpvOpVectorTimesScalar: /* The builder will take care of splatting for us. */ val->ssa->def = nir_fmul(&b->nb, src[0], src[1]); return; case SpvOpSRem: case SpvOpFRem: unreachable("No NIR equivalent"); case SpvOpIsNan: case SpvOpIsInf: case SpvOpIsFinite: case SpvOpIsNormal: case SpvOpSignBitSet: case SpvOpLessOrGreater: case SpvOpOrdered: case SpvOpUnordered: default: unreachable("Unhandled opcode"); } if (swap) { nir_ssa_def *tmp = src[0]; src[0] = src[1]; src[1] = tmp; } nir_alu_instr *instr = nir_alu_instr_create(b->shader, op); nir_ssa_dest_init(&instr->instr, &instr->dest.dest, glsl_get_vector_elements(type), val->name); instr->dest.write_mask = (1 << glsl_get_vector_elements(type)) - 1; val->ssa->def = &instr->dest.dest.ssa; for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) instr->src[i].src = nir_src_for_ssa(src[i]); nir_builder_instr_insert(&b->nb, &instr->instr); } static nir_ssa_def * vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index) { unsigned swiz[4] = { index }; return nir_swizzle(&b->nb, src, swiz, 1, true); } static nir_ssa_def * vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, unsigned index) { nir_alu_instr *vec = create_vec(b->shader, src->num_components); for (unsigned i = 0; i < src->num_components; i++) { if (i == index) { vec->src[i].src = nir_src_for_ssa(insert); } else { vec->src[i].src = nir_src_for_ssa(src); vec->src[i].swizzle[0] = i; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } static nir_ssa_def * vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *index) { nir_ssa_def *dest = vtn_vector_extract(b, src, 0); for (unsigned i = 1; i < src->num_components; i++) dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)), vtn_vector_extract(b, src, i), dest); return dest; } static nir_ssa_def * vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, nir_ssa_def *index) { nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0); for (unsigned i = 1; i < src->num_components; i++) dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)), vtn_vector_insert(b, src, insert, i), dest); return dest; } static nir_ssa_def * vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components, nir_ssa_def *src0, nir_ssa_def *src1, const uint32_t *indices) { nir_alu_instr *vec = create_vec(b->shader, num_components); nir_ssa_undef_instr *undef = nir_ssa_undef_instr_create(b->shader, 1); nir_builder_instr_insert(&b->nb, &undef->instr); for (unsigned i = 0; i < num_components; i++) { uint32_t index = indices[i]; if (index == 0xffffffff) { vec->src[i].src = nir_src_for_ssa(&undef->def); } else if (index < src0->num_components) { vec->src[i].src = nir_src_for_ssa(src0); vec->src[i].swizzle[0] = index; } else { vec->src[i].src = nir_src_for_ssa(src1); vec->src[i].swizzle[0] = index - src0->num_components; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } /* * Concatentates a number of vectors/scalars together to produce a vector */ static nir_ssa_def * vtn_vector_construct(struct vtn_builder *b, unsigned num_components, unsigned num_srcs, nir_ssa_def **srcs) { nir_alu_instr *vec = create_vec(b->shader, num_components); unsigned dest_idx = 0; for (unsigned i = 0; i < num_srcs; i++) { nir_ssa_def *src = srcs[i]; for (unsigned j = 0; j < src->num_components; j++) { vec->src[dest_idx].src = nir_src_for_ssa(src); vec->src[dest_idx].swizzle[0] = j; dest_idx++; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } static struct vtn_ssa_value * vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src) { struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value); dest->type = src->type; if (glsl_type_is_vector_or_scalar(src->type)) { dest->def = src->def; } else { unsigned elems = glsl_get_length(src->type); dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]); } return dest; } static struct vtn_ssa_value * vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src, struct vtn_ssa_value *insert, const uint32_t *indices, unsigned num_indices) { struct vtn_ssa_value *dest = vtn_composite_copy(b, src); struct vtn_ssa_value *cur = dest; unsigned i; for (i = 0; i < num_indices - 1; i++) { cur = cur->elems[indices[i]]; } if (glsl_type_is_vector_or_scalar(cur->type)) { /* According to the SPIR-V spec, OpCompositeInsert may work down to * the component granularity. In that case, the last index will be * the index to insert the scalar into the vector. */ cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]); } else { cur->elems[indices[i]] = insert; } return dest; } static struct vtn_ssa_value * vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src, const uint32_t *indices, unsigned num_indices) { struct vtn_ssa_value *cur = src; for (unsigned i = 0; i < num_indices; i++) { if (glsl_type_is_vector_or_scalar(cur->type)) { assert(i == num_indices - 1); /* According to the SPIR-V spec, OpCompositeExtract may work down to * the component granularity. The last index will be the index of the * vector to extract. */ struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value); ret->type = glsl_scalar_type(glsl_get_base_type(cur->type)); ret->def = vtn_vector_extract(b, cur->def, indices[i]); return ret; } } return cur; } static void vtn_handle_composite(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa = vtn_create_ssa_value(b, type); switch (opcode) { case SpvOpVectorExtractDynamic: val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def); break; case SpvOpVectorInsertDynamic: val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, vtn_ssa_value(b, w[5])->def); break; case SpvOpVectorShuffle: val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type), vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, w + 5); break; case SpvOpCompositeConstruct: { unsigned elems = count - 3; if (glsl_type_is_vector_or_scalar(type)) { nir_ssa_def *srcs[4]; for (unsigned i = 0; i < elems; i++) srcs[i] = vtn_ssa_value(b, w[3 + i])->def; val->ssa->def = vtn_vector_construct(b, glsl_get_vector_elements(type), elems, srcs); } else { val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]); } break; } case SpvOpCompositeExtract: val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]), w + 4, count - 4); break; case SpvOpCompositeInsert: val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[3]), w + 5, count - 5); break; case SpvOpCopyObject: val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3])); break; default: unreachable("unknown composite operation"); } } static void vtn_phi_node_init(struct vtn_builder *b, struct vtn_ssa_value *val) { if (glsl_type_is_vector_or_scalar(val->type)) { nir_phi_instr *phi = nir_phi_instr_create(b->shader); nir_ssa_dest_init(&phi->instr, &phi->dest, glsl_get_vector_elements(val->type), NULL); exec_list_make_empty(&phi->srcs); nir_builder_instr_insert(&b->nb, &phi->instr); val->def = &phi->dest.ssa; } else { unsigned elems = glsl_get_length(val->type); for (unsigned i = 0; i < elems; i++) vtn_phi_node_init(b, val->elems[i]); } } static struct vtn_ssa_value * vtn_phi_node_create(struct vtn_builder *b, const struct glsl_type *type) { struct vtn_ssa_value *val = vtn_create_ssa_value(b, type); vtn_phi_node_init(b, val); return val; } static void vtn_handle_phi_first_pass(struct vtn_builder *b, const uint32_t *w) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa = vtn_phi_node_create(b, type); } static void vtn_phi_node_add_src(struct vtn_ssa_value *phi, const nir_block *pred, struct vtn_ssa_value *val) { assert(phi->type == val->type); if (glsl_type_is_vector_or_scalar(phi->type)) { nir_phi_instr *phi_instr = nir_instr_as_phi(phi->def->parent_instr); nir_phi_src *src = ralloc(phi_instr, nir_phi_src); src->pred = (nir_block *) pred; src->src = nir_src_for_ssa(val->def); exec_list_push_tail(&phi_instr->srcs, &src->node); } else { unsigned elems = glsl_get_length(phi->type); for (unsigned i = 0; i < elems; i++) vtn_phi_node_add_src(phi->elems[i], pred, val->elems[i]); } } static struct vtn_ssa_value * vtn_get_phi_node_src(struct vtn_builder *b, nir_block *block, const struct glsl_type *type, const uint32_t *w, unsigned count) { struct hash_entry *entry = _mesa_hash_table_search(b->block_table, block); if (entry) { struct vtn_block *spv_block = entry->data; for (unsigned off = 4; off < count; off += 2) { if (spv_block == vtn_value(b, w[off], vtn_value_type_block)->block) { return vtn_ssa_value(b, w[off - 1]); } } } b->nb.cursor = nir_before_block(block); struct vtn_ssa_value *phi = vtn_phi_node_create(b, type); struct set_entry *entry2; set_foreach(block->predecessors, entry2) { nir_block *pred = (nir_block *) entry2->key; struct vtn_ssa_value *val = vtn_get_phi_node_src(b, pred, type, w, count); vtn_phi_node_add_src(phi, pred, val); } return phi; } static bool vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { if (opcode == SpvOpLabel) { b->block = vtn_value(b, w[1], vtn_value_type_block)->block; return true; } if (opcode != SpvOpPhi) return true; struct vtn_ssa_value *phi = vtn_value(b, w[2], vtn_value_type_ssa)->ssa; struct set_entry *entry; set_foreach(b->block->block->predecessors, entry) { nir_block *pred = (nir_block *) entry->key; struct vtn_ssa_value *val = vtn_get_phi_node_src(b, pred, phi->type, w, count); vtn_phi_node_add_src(phi, pred, val); } return true; } static bool vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpSource: case SpvOpSourceExtension: case SpvOpExtension: /* Unhandled, but these are for debug so that's ok. */ break; case SpvOpCapability: /* * TODO properly handle these and give a real error if asking for too * much. */ assert(w[1] == SpvCapabilityMatrix || w[1] == SpvCapabilityShader); break; case SpvOpExtInstImport: vtn_handle_extension(b, opcode, w, count); break; case SpvOpMemoryModel: assert(w[1] == SpvAddressingModelLogical); assert(w[2] == SpvMemoryModelGLSL450); break; case SpvOpEntryPoint: assert(b->entry_point == NULL); b->entry_point = &b->values[w[2]]; b->execution_model = w[1]; break; case SpvOpExecutionMode: /* TODO */ break; case SpvOpString: vtn_push_value(b, w[1], vtn_value_type_string)->str = vtn_string_literal(b, &w[2], count - 2); break; case SpvOpName: b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2); break; case SpvOpMemberName: /* TODO */ break; case SpvOpLine: break; /* Ignored for now */ case SpvOpDecorationGroup: case SpvOpDecorate: case SpvOpMemberDecorate: case SpvOpGroupDecorate: case SpvOpGroupMemberDecorate: vtn_handle_decoration(b, opcode, w, count); break; case SpvOpTypeVoid: case SpvOpTypeBool: case SpvOpTypeInt: case SpvOpTypeFloat: case SpvOpTypeVector: case SpvOpTypeMatrix: case SpvOpTypeImage: case SpvOpTypeSampler: case SpvOpTypeSampledImage: case SpvOpTypeArray: case SpvOpTypeRuntimeArray: case SpvOpTypeStruct: case SpvOpTypeOpaque: case SpvOpTypePointer: case SpvOpTypeFunction: case SpvOpTypeEvent: case SpvOpTypeDeviceEvent: case SpvOpTypeReserveId: case SpvOpTypeQueue: case SpvOpTypePipe: vtn_handle_type(b, opcode, w, count); break; case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpConstant: case SpvOpConstantComposite: case SpvOpConstantSampler: case SpvOpSpecConstantTrue: case SpvOpSpecConstantFalse: case SpvOpSpecConstant: case SpvOpSpecConstantComposite: vtn_handle_constant(b, opcode, w, count); break; case SpvOpVariable: vtn_handle_variables(b, opcode, w, count); break; default: return false; /* End of preamble */ } return true; } static bool vtn_handle_first_cfg_pass_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpFunction: { assert(b->func == NULL); b->func = rzalloc(b, struct vtn_function); const struct glsl_type *result_type = vtn_value(b, w[1], vtn_value_type_type)->type->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function); const struct glsl_type *func_type = vtn_value(b, w[4], vtn_value_type_type)->type->type; assert(glsl_get_function_return_type(func_type) == result_type); nir_function *func = nir_function_create(b->shader, ralloc_strdup(b->shader, val->name)); nir_function_overload *overload = nir_function_overload_create(func); overload->num_params = glsl_get_length(func_type); overload->params = ralloc_array(overload, nir_parameter, overload->num_params); for (unsigned i = 0; i < overload->num_params; i++) { const struct glsl_function_param *param = glsl_get_function_param(func_type, i); overload->params[i].type = param->type; if (param->in) { if (param->out) { overload->params[i].param_type = nir_parameter_inout; } else { overload->params[i].param_type = nir_parameter_in; } } else { if (param->out) { overload->params[i].param_type = nir_parameter_out; } else { assert(!"Parameter is neither in nor out"); } } } b->func->overload = overload; break; } case SpvOpFunctionEnd: b->func->end = w; b->func = NULL; break; case SpvOpFunctionParameter: break; /* Does nothing */ case SpvOpLabel: { assert(b->block == NULL); b->block = rzalloc(b, struct vtn_block); b->block->label = w; vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block; if (b->func->start_block == NULL) { /* This is the first block encountered for this function. In this * case, we set the start block and add it to the list of * implemented functions that we'll walk later. */ b->func->start_block = b->block; exec_list_push_tail(&b->functions, &b->func->node); } break; } case SpvOpBranch: case SpvOpBranchConditional: case SpvOpSwitch: case SpvOpKill: case SpvOpReturn: case SpvOpReturnValue: case SpvOpUnreachable: assert(b->block); b->block->branch = w; b->block = NULL; break; case SpvOpSelectionMerge: case SpvOpLoopMerge: assert(b->block && b->block->merge_op == SpvOpNop); b->block->merge_op = opcode; b->block->merge_block_id = w[1]; break; default: /* Continue on as per normal */ return true; } return true; } static bool vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpLabel: { struct vtn_block *block = vtn_value(b, w[1], vtn_value_type_block)->block; assert(block->block == NULL); block->block = nir_cursor_current_block(b->nb.cursor); break; } case SpvOpLoopMerge: case SpvOpSelectionMerge: /* This is handled by cfg pre-pass and walk_blocks */ break; case SpvOpUndef: vtn_push_value(b, w[2], vtn_value_type_undef); break; case SpvOpExtInst: vtn_handle_extension(b, opcode, w, count); break; case SpvOpVariable: case SpvOpLoad: case SpvOpStore: case SpvOpCopyMemory: case SpvOpCopyMemorySized: case SpvOpAccessChain: case SpvOpInBoundsAccessChain: case SpvOpArrayLength: case SpvOpImageTexelPointer: vtn_handle_variables(b, opcode, w, count); break; case SpvOpFunctionCall: vtn_handle_function_call(b, opcode, w, count); break; case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageFetch: case SpvOpImageGather: case SpvOpImageDrefGather: case SpvOpImageQuerySizeLod: case SpvOpImageQuerySize: case SpvOpImageQueryLod: case SpvOpImageQueryLevels: case SpvOpImageQuerySamples: vtn_handle_texture(b, opcode, w, count); break; case SpvOpSNegate: case SpvOpFNegate: case SpvOpNot: case SpvOpAny: case SpvOpAll: case SpvOpConvertFToU: case SpvOpConvertFToS: case SpvOpConvertSToF: case SpvOpConvertUToF: case SpvOpUConvert: case SpvOpSConvert: case SpvOpFConvert: case SpvOpConvertPtrToU: case SpvOpConvertUToPtr: case SpvOpPtrCastToGeneric: case SpvOpGenericCastToPtr: case SpvOpBitcast: case SpvOpIsNan: case SpvOpIsInf: case SpvOpIsFinite: case SpvOpIsNormal: case SpvOpSignBitSet: case SpvOpLessOrGreater: case SpvOpOrdered: case SpvOpUnordered: case SpvOpIAdd: case SpvOpFAdd: case SpvOpISub: case SpvOpFSub: case SpvOpIMul: case SpvOpFMul: case SpvOpUDiv: case SpvOpSDiv: case SpvOpFDiv: case SpvOpUMod: case SpvOpSRem: case SpvOpSMod: case SpvOpFRem: case SpvOpFMod: case SpvOpVectorTimesScalar: case SpvOpDot: case SpvOpShiftRightLogical: case SpvOpShiftRightArithmetic: case SpvOpShiftLeftLogical: case SpvOpLogicalOr: case SpvOpLogicalEqual: case SpvOpLogicalNotEqual: case SpvOpLogicalAnd: case SpvOpBitwiseOr: case SpvOpBitwiseXor: case SpvOpBitwiseAnd: case SpvOpSelect: case SpvOpIEqual: case SpvOpFOrdEqual: case SpvOpFUnordEqual: case SpvOpINotEqual: case SpvOpFOrdNotEqual: case SpvOpFUnordNotEqual: case SpvOpULessThan: case SpvOpSLessThan: case SpvOpFOrdLessThan: case SpvOpFUnordLessThan: case SpvOpUGreaterThan: case SpvOpSGreaterThan: case SpvOpFOrdGreaterThan: case SpvOpFUnordGreaterThan: case SpvOpULessThanEqual: case SpvOpSLessThanEqual: case SpvOpFOrdLessThanEqual: case SpvOpFUnordLessThanEqual: case SpvOpUGreaterThanEqual: case SpvOpSGreaterThanEqual: case SpvOpFOrdGreaterThanEqual: case SpvOpFUnordGreaterThanEqual: case SpvOpDPdx: case SpvOpDPdy: case SpvOpFwidth: case SpvOpDPdxFine: case SpvOpDPdyFine: case SpvOpFwidthFine: case SpvOpDPdxCoarse: case SpvOpDPdyCoarse: case SpvOpFwidthCoarse: vtn_handle_alu(b, opcode, w, count); break; case SpvOpTranspose: case SpvOpOuterProduct: case SpvOpMatrixTimesScalar: case SpvOpVectorTimesMatrix: case SpvOpMatrixTimesVector: case SpvOpMatrixTimesMatrix: vtn_handle_matrix_alu(b, opcode, w, count); break; case SpvOpVectorExtractDynamic: case SpvOpVectorInsertDynamic: case SpvOpVectorShuffle: case SpvOpCompositeConstruct: case SpvOpCompositeExtract: case SpvOpCompositeInsert: case SpvOpCopyObject: vtn_handle_composite(b, opcode, w, count); break; case SpvOpPhi: vtn_handle_phi_first_pass(b, w); break; default: unreachable("Unhandled opcode"); } return true; } static void vtn_walk_blocks(struct vtn_builder *b, struct vtn_block *start, struct vtn_block *break_block, struct vtn_block *cont_block, struct vtn_block *end_block) { struct vtn_block *block = start; while (block != end_block) { if (block->merge_op == SpvOpLoopMerge) { /* This is the jump into a loop. */ struct vtn_block *new_cont_block = block; struct vtn_block *new_break_block = vtn_value(b, block->merge_block_id, vtn_value_type_block)->block; nir_loop *loop = nir_loop_create(b->shader); nir_cf_node_insert(b->nb.cursor, &loop->cf_node); /* Reset the merge_op to prerevent infinite recursion */ block->merge_op = SpvOpNop; b->nb.cursor = nir_after_cf_list(&loop->body); vtn_walk_blocks(b, block, new_break_block, new_cont_block, NULL); b->nb.cursor = nir_after_cf_node(&loop->cf_node); block = new_break_block; continue; } const uint32_t *w = block->branch; SpvOp branch_op = w[0] & SpvOpCodeMask; b->block = block; vtn_foreach_instruction(b, block->label, block->branch, vtn_handle_body_instruction); nir_block *cur_block = nir_cursor_current_block(b->nb.cursor); assert(cur_block == block->block); _mesa_hash_table_insert(b->block_table, cur_block, block); switch (branch_op) { case SpvOpBranch: { struct vtn_block *branch_block = vtn_value(b, w[1], vtn_value_type_block)->block; if (branch_block == break_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_break); nir_builder_instr_insert(&b->nb, &jump->instr); return; } else if (branch_block == cont_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_continue); nir_builder_instr_insert(&b->nb, &jump->instr); return; } else if (branch_block == end_block) { /* We're branching to the merge block of an if, since for loops * and functions end_block == NULL, so we're done here. */ return; } else { /* We're branching to another block, and according to the rules, * we can only branch to another block with one predecessor (so * we're the only one jumping to it) so we can just process it * next. */ block = branch_block; continue; } } case SpvOpBranchConditional: { /* Gather up the branch blocks */ struct vtn_block *then_block = vtn_value(b, w[2], vtn_value_type_block)->block; struct vtn_block *else_block = vtn_value(b, w[3], vtn_value_type_block)->block; nir_if *if_stmt = nir_if_create(b->shader); if_stmt->condition = nir_src_for_ssa(vtn_ssa_value(b, w[1])->def); nir_cf_node_insert(b->nb.cursor, &if_stmt->cf_node); if (then_block == break_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_break); nir_instr_insert_after_cf_list(&if_stmt->then_list, &jump->instr); block = else_block; } else if (else_block == break_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_break); nir_instr_insert_after_cf_list(&if_stmt->else_list, &jump->instr); block = then_block; } else if (then_block == cont_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_continue); nir_instr_insert_after_cf_list(&if_stmt->then_list, &jump->instr); block = else_block; } else if (else_block == cont_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_continue); nir_instr_insert_after_cf_list(&if_stmt->else_list, &jump->instr); block = then_block; } else { /* According to the rules we're branching to two blocks that don't * have any other predecessors, so we can handle this as a * conventional if. */ assert(block->merge_op == SpvOpSelectionMerge); struct vtn_block *merge_block = vtn_value(b, block->merge_block_id, vtn_value_type_block)->block; b->nb.cursor = nir_after_cf_list(&if_stmt->then_list); vtn_walk_blocks(b, then_block, break_block, cont_block, merge_block); b->nb.cursor = nir_after_cf_list(&if_stmt->else_list); vtn_walk_blocks(b, else_block, break_block, cont_block, merge_block); b->nb.cursor = nir_after_cf_node(&if_stmt->cf_node); block = merge_block; continue; } /* If we got here then we inserted a predicated break or continue * above and we need to handle the other case. We already set * `block` above to indicate what block to visit after the * predicated break. */ /* It's possible that the other branch is also a break/continue. * If it is, we handle that here. */ if (block == break_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_break); nir_builder_instr_insert(&b->nb, &jump->instr); return; } else if (block == cont_block) { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_continue); nir_builder_instr_insert(&b->nb, &jump->instr); return; } /* If we got here then there was a predicated break/continue but * the other half of the if has stuff in it. `block` was already * set above so there is nothing left for us to do. */ continue; } case SpvOpReturn: { nir_jump_instr *jump = nir_jump_instr_create(b->shader, nir_jump_return); nir_builder_instr_insert(&b->nb, &jump->instr); return; } case SpvOpKill: { nir_intrinsic_instr *discard = nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard); nir_builder_instr_insert(&b->nb, &discard->instr); return; } case SpvOpSwitch: case SpvOpReturnValue: case SpvOpUnreachable: default: unreachable("Unhandled opcode"); } } } nir_shader * spirv_to_nir(const uint32_t *words, size_t word_count, gl_shader_stage stage, const nir_shader_compiler_options *options) { const uint32_t *word_end = words + word_count; /* Handle the SPIR-V header (first 4 dwords) */ assert(word_count > 5); assert(words[0] == SpvMagicNumber); assert(words[1] == 99); /* words[2] == generator magic */ unsigned value_id_bound = words[3]; assert(words[4] == 0); words+= 5; nir_shader *shader = nir_shader_create(NULL, stage, options); /* Initialize the stn_builder object */ struct vtn_builder *b = rzalloc(NULL, struct vtn_builder); b->shader = shader; b->value_id_bound = value_id_bound; b->values = rzalloc_array(b, struct vtn_value, value_id_bound); exec_list_make_empty(&b->functions); /* Handle all the preamble instructions */ words = vtn_foreach_instruction(b, words, word_end, vtn_handle_preamble_instruction); /* Do a very quick CFG analysis pass */ vtn_foreach_instruction(b, words, word_end, vtn_handle_first_cfg_pass_instruction); foreach_list_typed(struct vtn_function, func, node, &b->functions) { b->impl = nir_function_impl_create(func->overload); b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer, _mesa_key_pointer_equal); b->block_table = _mesa_hash_table_create(b, _mesa_hash_pointer, _mesa_key_pointer_equal); nir_builder_init(&b->nb, b->impl); b->nb.cursor = nir_after_cf_list(&b->impl->body); vtn_walk_blocks(b, func->start_block, NULL, NULL, NULL); vtn_foreach_instruction(b, func->start_block->label, func->end, vtn_handle_phi_second_pass); } /* Because we can still have output reads in NIR, we need to lower * outputs to temporaries before we are truely finished. */ nir_lower_outputs_to_temporaries(shader); ralloc_free(b); return shader; }