/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "nir.h" /* * Implements a small peephole optimization that looks for a multiply that * is only ever used in an add and replaces both with an fma. */ struct peephole_ffma_state { void *mem_ctx; nir_function_impl *impl; bool progress; }; static inline bool are_all_uses_fadd(nir_ssa_def *def) { if (!list_empty(&def->if_uses)) return false; nir_foreach_use(def, use_src) { nir_instr *use_instr = use_src->parent_instr; if (use_instr->type != nir_instr_type_alu) return false; nir_alu_instr *use_alu = nir_instr_as_alu(use_instr); switch (use_alu->op) { case nir_op_fadd: break; /* This one's ok */ case nir_op_imov: case nir_op_fmov: case nir_op_fneg: case nir_op_fabs: assert(use_alu->dest.dest.is_ssa); if (!are_all_uses_fadd(&use_alu->dest.dest.ssa)) return false; break; default: return false; } } return true; } static nir_alu_instr * get_mul_for_src(nir_alu_src *src, int num_components, uint8_t swizzle[4], bool *negate, bool *abs) { uint8_t swizzle_tmp[4]; assert(src->src.is_ssa && !src->abs && !src->negate); nir_instr *instr = src->src.ssa->parent_instr; if (instr->type != nir_instr_type_alu) return NULL; nir_alu_instr *alu = nir_instr_as_alu(instr); switch (alu->op) { case nir_op_imov: case nir_op_fmov: alu = get_mul_for_src(&alu->src[0], num_components, swizzle, negate, abs); break; case nir_op_fneg: alu = get_mul_for_src(&alu->src[0], num_components, swizzle, negate, abs); *negate = !*negate; break; case nir_op_fabs: alu = get_mul_for_src(&alu->src[0], num_components, swizzle, negate, abs); *negate = false; *abs = true; break; case nir_op_fmul: /* Only absorb a fmul into a ffma if the fmul is is only used in fadd * operations. This prevents us from being too aggressive with our * fusing which can actually lead to more instructions. */ if (!are_all_uses_fadd(&alu->dest.dest.ssa)) return NULL; break; default: return NULL; } if (!alu) return NULL; /* Copy swizzle data before overwriting it to avoid setting a wrong swizzle. * * Example: * Former swizzle[] = xyzw * src->swizzle[] = zyxx * * Expected output swizzle = zyxx * If we reuse swizzle in the loop, then output swizzle would be zyzz. */ memcpy(swizzle_tmp, swizzle, 4*sizeof(uint8_t)); for (unsigned i = 0; i < num_components; i++) swizzle[i] = swizzle_tmp[src->swizzle[i]]; return alu; } static bool nir_opt_peephole_ffma_block(nir_block *block, void *void_state) { struct peephole_ffma_state *state = void_state; nir_foreach_instr_safe(block, instr) { if (instr->type != nir_instr_type_alu) continue; nir_alu_instr *add = nir_instr_as_alu(instr); if (add->op != nir_op_fadd) continue; /* TODO: Maybe bail if this expression is considered "precise"? */ assert(add->src[0].src.is_ssa && add->src[1].src.is_ssa); /* This, is the case a + a. We would rather handle this with an * algebraic reduction than fuse it. Also, we want to only fuse * things where the multiply is used only once and, in this case, * it would be used twice by the same instruction. */ if (add->src[0].src.ssa == add->src[1].src.ssa) continue; nir_alu_instr *mul; uint8_t add_mul_src, swizzle[4]; bool negate, abs; for (add_mul_src = 0; add_mul_src < 2; add_mul_src++) { for (unsigned i = 0; i < 4; i++) swizzle[i] = i; negate = false; abs = false; mul = get_mul_for_src(&add->src[add_mul_src], add->dest.dest.ssa.num_components, swizzle, &negate, &abs); if (mul != NULL) break; } if (mul == NULL) continue; nir_ssa_def *mul_src[2]; mul_src[0] = mul->src[0].src.ssa; mul_src[1] = mul->src[1].src.ssa; if (abs) { for (unsigned i = 0; i < 2; i++) { nir_alu_instr *abs = nir_alu_instr_create(state->mem_ctx, nir_op_fabs); abs->src[0].src = nir_src_for_ssa(mul_src[i]); nir_ssa_dest_init(&abs->instr, &abs->dest.dest, mul_src[i]->num_components, NULL); abs->dest.write_mask = (1 << mul_src[i]->num_components) - 1; nir_instr_insert_before(&add->instr, &abs->instr); mul_src[i] = &abs->dest.dest.ssa; } } if (negate) { nir_alu_instr *neg = nir_alu_instr_create(state->mem_ctx, nir_op_fneg); neg->src[0].src = nir_src_for_ssa(mul_src[0]); nir_ssa_dest_init(&neg->instr, &neg->dest.dest, mul_src[0]->num_components, NULL); neg->dest.write_mask = (1 << mul_src[0]->num_components) - 1; nir_instr_insert_before(&add->instr, &neg->instr); mul_src[0] = &neg->dest.dest.ssa; } nir_alu_instr *ffma = nir_alu_instr_create(state->mem_ctx, nir_op_ffma); ffma->dest.saturate = add->dest.saturate; ffma->dest.write_mask = add->dest.write_mask; for (unsigned i = 0; i < 2; i++) { ffma->src[i].src = nir_src_for_ssa(mul_src[i]); for (unsigned j = 0; j < add->dest.dest.ssa.num_components; j++) ffma->src[i].swizzle[j] = mul->src[i].swizzle[swizzle[j]]; } nir_alu_src_copy(&ffma->src[2], &add->src[1 - add_mul_src], state->mem_ctx); assert(add->dest.dest.is_ssa); nir_ssa_dest_init(&ffma->instr, &ffma->dest.dest, add->dest.dest.ssa.num_components, add->dest.dest.ssa.name); nir_ssa_def_rewrite_uses(&add->dest.dest.ssa, nir_src_for_ssa(&ffma->dest.dest.ssa), state->mem_ctx); nir_instr_insert_before(&add->instr, &ffma->instr); assert(list_empty(&add->dest.dest.ssa.uses)); nir_instr_remove(&add->instr); state->progress = true; } return true; } static bool nir_opt_peephole_ffma_impl(nir_function_impl *impl) { struct peephole_ffma_state state; state.mem_ctx = ralloc_parent(impl); state.impl = impl; state.progress = false; nir_foreach_block(impl, nir_opt_peephole_ffma_block, &state); if (state.progress) nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); return state.progress; } bool nir_opt_peephole_ffma(nir_shader *shader) { bool progress = false; nir_foreach_overload(shader, overload) { if (overload->impl) progress |= nir_opt_peephole_ffma_impl(overload->impl); } return progress; }