/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "nir.h" /* * Implements a small peephole optimization that looks for a multiply that * is only ever used in an add and replaces both with an fma. */ struct peephole_ffma_state { void *mem_ctx; nir_function_impl *impl; bool progress; }; static inline nir_alu_instr * get_mul_for_src(nir_alu_instr *add, unsigned idx) { if (!add->src[idx].src.is_ssa) return NULL; /* We can't handle these in between the operations */ if (add->src[idx].negate || add->src[idx].abs) return NULL; nir_instr *instr = add->src[idx].src.ssa->parent_instr; if (instr->type != nir_instr_type_alu) return NULL; nir_alu_instr *mul = nir_instr_as_alu(instr); if (mul->op != nir_op_fmul) return NULL; /* Can't handle a saturate in between */ if (mul->dest.saturate) return NULL; /* We already know that the same source is not used twice in the add and * we will assume valid use-def information, so this check is sufficient */ if (mul->dest.dest.ssa.uses->entries > 1) return NULL; /* Not the only use */ return mul; } /* Copies (and maybe swizzles) the given ALU source */ static inline void copy_alu_src(void *mem_ctx, nir_alu_src *new_src, nir_alu_src old_src, uint8_t *swizzle) { new_src->src = nir_src_copy(old_src.src, mem_ctx); new_src->abs = old_src.abs; new_src->negate = old_src.negate; if (swizzle == NULL) { memcpy(new_src->swizzle, old_src.swizzle, sizeof old_src.swizzle); } else { for (int i = 0; i < 4; ++i) { if (swizzle[i] < 4) new_src->swizzle[i] = old_src.swizzle[swizzle[i]]; } } } static bool nir_opt_peephole_ffma_block(nir_block *block, void *void_state) { struct peephole_ffma_state *state = void_state; nir_foreach_instr_safe(block, instr) { if (instr->type != nir_instr_type_alu) continue; nir_alu_instr *add = nir_instr_as_alu(instr); if (add->op != nir_op_fadd) continue; /* TODO: Maybe bail if this expression is considered "precise"? */ /* This, is the case a + a. We would rather handle this with an * algebraic reduction than fuse it. Also, we want to only fuse * things where the multiply is used only once and, in this case, * it would be used twice by the same instruction. */ if (add->src[0].src.is_ssa && add->src[1].src.is_ssa && add->src[0].src.ssa == add->src[1].src.ssa) continue; nir_alu_instr *mul = get_mul_for_src(add, 0); unsigned mul_src = 0; if (mul == NULL) { mul = get_mul_for_src(add, 1); mul_src = 1; } if (mul == NULL) continue; nir_alu_instr *ffma = nir_alu_instr_create(state->mem_ctx, nir_op_ffma); ffma->dest.saturate = add->dest.saturate; ffma->dest.write_mask = add->dest.write_mask; copy_alu_src(state->mem_ctx, &ffma->src[0], mul->src[0], add->src[mul_src].swizzle); copy_alu_src(state->mem_ctx, &ffma->src[1], mul->src[1], add->src[mul_src].swizzle); copy_alu_src(state->mem_ctx, &ffma->src[2], add->src[1 - mul_src], NULL); if (add->dest.dest.is_ssa) { ffma->dest.dest.is_ssa = true; nir_ssa_def_init(state->impl, &ffma->instr, &ffma->dest.dest.ssa, add->dest.dest.ssa.num_components, add->dest.dest.ssa.name); nir_src ffma_dest_src = { .is_ssa = true, .ssa = &ffma->dest.dest.ssa, }; nir_ssa_def_rewrite_uses(&add->dest.dest.ssa, ffma_dest_src, state->mem_ctx); } else { ffma->dest.dest = nir_dest_copy(add->dest.dest, state->mem_ctx); } nir_instr_insert_before(&add->instr, &ffma->instr); nir_instr_remove(&add->instr); nir_instr_remove(&mul->instr); state->progress = true; } return true; } static bool nir_opt_peephole_ffma_impl(nir_function_impl *impl) { struct peephole_ffma_state state; state.mem_ctx = ralloc_parent(impl); state.impl = impl; state.progress = false; nir_foreach_block(impl, nir_opt_peephole_ffma_block, &state); if (state.progress) nir_metadata_dirty(impl, nir_metadata_block_index | nir_metadata_dominance); return state.progress; } bool nir_opt_peephole_ffma(nir_shader *shader) { bool progress = false; nir_foreach_overload(shader, overload) { if (overload->impl) progress |= nir_opt_peephole_ffma_impl(overload->impl); } return progress; }