/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "nir.h" #include /* * Implements SSA-based constant folding. */ struct constant_fold_state { void *mem_ctx; nir_function_impl *impl; bool progress; }; #define SRC_COMP(T, IDX, CMP) src[IDX]->value.T[instr->src[IDX].swizzle[CMP]] #define SRC(T, IDX) SRC_COMP(T, IDX, i) #define DEST_COMP(T, CMP) dest->value.T[CMP] #define DEST(T) DEST_COMP(T, i) #define FOLD_PER_COMP(EXPR) \ for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; i++) { \ EXPR; \ } \ static bool constant_fold_alu_instr(nir_alu_instr *instr, void *mem_ctx) { nir_load_const_instr *src[4], *dest; if (!instr->dest.dest.is_ssa) return false; for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { if (!instr->src[i].src.is_ssa) return false; if (instr->src[i].src.ssa->parent_instr->type != nir_instr_type_load_const) return false; /* We shouldn't have any source modifiers in the optimization loop. */ assert(!instr->src[i].abs && !instr->src[i].negate); src[i] = nir_instr_as_load_const(instr->src[i].src.ssa->parent_instr); } /* We shouldn't have any saturate modifiers in the optimization loop. */ assert(!instr->dest.saturate); dest = nir_load_const_instr_create(mem_ctx); dest->array_elems = 0; dest->num_components = instr->dest.dest.ssa.num_components; switch (instr->op) { case nir_op_ineg: FOLD_PER_COMP(DEST(i) = -SRC(i, 0)); break; case nir_op_fneg: FOLD_PER_COMP(DEST(f) = -SRC(f, 0)); break; case nir_op_inot: FOLD_PER_COMP(DEST(i) = ~SRC(i, 0)); break; case nir_op_fnot: FOLD_PER_COMP(DEST(f) = (SRC(f, 0) == 0.0f) ? 1.0f : 0.0f); break; case nir_op_frcp: FOLD_PER_COMP(DEST(f) = 1.0f / SRC(f, 0)); break; case nir_op_frsq: FOLD_PER_COMP(DEST(f) = 1.0f / sqrt(SRC(f, 0))); break; case nir_op_fsqrt: FOLD_PER_COMP(DEST(f) = sqrtf(SRC(f, 0))); break; case nir_op_fexp: FOLD_PER_COMP(DEST(f) = expf(SRC(f, 0))); break; case nir_op_flog: FOLD_PER_COMP(DEST(f) = logf(SRC(f, 0))); break; case nir_op_fexp2: FOLD_PER_COMP(DEST(f) = exp2f(SRC(f, 0))); break; case nir_op_flog2: FOLD_PER_COMP(DEST(f) = log2f(SRC(f, 0))); break; case nir_op_f2i: FOLD_PER_COMP(DEST(i) = SRC(f, 0)); break; case nir_op_f2u: FOLD_PER_COMP(DEST(u) = SRC(f, 0)); break; case nir_op_i2f: FOLD_PER_COMP(DEST(f) = SRC(i, 0)); break; case nir_op_f2b: FOLD_PER_COMP(DEST(u) = (SRC(i, 0) == 0.0f) ? NIR_FALSE : NIR_TRUE); break; case nir_op_b2f: FOLD_PER_COMP(DEST(f) = SRC(u, 0) ? 1.0f : 0.0f); break; case nir_op_i2b: FOLD_PER_COMP(DEST(u) = SRC(i, 0) ? NIR_TRUE : NIR_FALSE); break; case nir_op_u2f: FOLD_PER_COMP(DEST(f) = SRC(u, 0)); break; case nir_op_bany2: DEST_COMP(u, 0) = (SRC_COMP(u, 0, 0) || SRC_COMP(u, 0, 1)) ? NIR_TRUE : NIR_FALSE; break; case nir_op_fadd: FOLD_PER_COMP(DEST(f) = SRC(f, 0) + SRC(f, 1)); break; case nir_op_iadd: FOLD_PER_COMP(DEST(i) = SRC(i, 0) + SRC(i, 1)); break; case nir_op_fsub: FOLD_PER_COMP(DEST(f) = SRC(f, 0) - SRC(f, 1)); break; case nir_op_isub: FOLD_PER_COMP(DEST(i) = SRC(i, 0) - SRC(i, 1)); break; case nir_op_fmul: FOLD_PER_COMP(DEST(f) = SRC(f, 0) * SRC(f, 1)); break; case nir_op_imul: FOLD_PER_COMP(DEST(i) = SRC(i, 0) * SRC(i, 1)); break; case nir_op_fdiv: FOLD_PER_COMP(DEST(f) = SRC(f, 0) / SRC(f, 1)); break; case nir_op_idiv: FOLD_PER_COMP(DEST(i) = SRC(i, 0) / SRC(i, 1)); break; case nir_op_udiv: FOLD_PER_COMP(DEST(u) = SRC(u, 0) / SRC(u, 1)); break; case nir_op_flt: FOLD_PER_COMP(DEST(u) = (SRC(f, 0) < SRC(f, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_fge: FOLD_PER_COMP(DEST(u) = (SRC(f, 0) >= SRC(f, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_feq: FOLD_PER_COMP(DEST(u) = (SRC(f, 0) == SRC(f, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_fne: FOLD_PER_COMP(DEST(u) = (SRC(f, 0) != SRC(f, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_ilt: FOLD_PER_COMP(DEST(u) = (SRC(i, 0) < SRC(i, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_ige: FOLD_PER_COMP(DEST(u) = (SRC(i, 0) >= SRC(i, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_ieq: FOLD_PER_COMP(DEST(u) = (SRC(i, 0) == SRC(i, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_ine: FOLD_PER_COMP(DEST(u) = (SRC(i, 0) != SRC(i, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_ult: FOLD_PER_COMP(DEST(u) = (SRC(u, 0) < SRC(u, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_uge: FOLD_PER_COMP(DEST(u) = (SRC(u, 0) >= SRC(u, 1)) ? NIR_TRUE : NIR_FALSE); break; case nir_op_ishl: FOLD_PER_COMP(DEST(i) = SRC(i, 0) << SRC(i, 1)); break; case nir_op_ishr: FOLD_PER_COMP(DEST(i) = SRC(i, 0) >> SRC(i, 1)); break; case nir_op_ushr: FOLD_PER_COMP(DEST(u) = SRC(u, 0) >> SRC(u, 1)); break; case nir_op_iand: FOLD_PER_COMP(DEST(i) = SRC(i, 0) & SRC(i, 1)); break; case nir_op_ior: FOLD_PER_COMP(DEST(i) = SRC(i, 0) | SRC(i, 1)); break; case nir_op_ixor: FOLD_PER_COMP(DEST(i) = SRC(i, 0) ^ SRC(i, 1)); break; default: ralloc_free(dest); return false; } dest->dest.is_ssa = true; nir_ssa_def_init(&dest->instr, &dest->dest.ssa, instr->dest.dest.ssa.num_components, instr->dest.dest.ssa.name); nir_instr_insert_before(&instr->instr, &dest->instr); nir_src new_src = { .is_ssa = true, .ssa = &dest->dest.ssa, }; nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, new_src, mem_ctx); nir_instr_remove(&instr->instr); ralloc_free(instr); return true; } static bool constant_fold_deref(nir_instr *instr, nir_deref_var *deref) { bool progress = false; for (nir_deref *tail = deref->deref.child; tail; tail = tail->child) { if (tail->deref_type != nir_deref_type_array) continue; nir_deref_array *arr = nir_deref_as_array(tail); if (arr->deref_array_type == nir_deref_array_type_indirect && arr->indirect.is_ssa && arr->indirect.ssa->parent_instr->type == nir_instr_type_load_const) { nir_load_const_instr *indirect = nir_instr_as_load_const(arr->indirect.ssa->parent_instr); arr->base_offset += indirect->value.u[0]; nir_src empty = { .is_ssa = true, .ssa = NULL, }; nir_instr_rewrite_src(instr, &arr->indirect, empty); arr->deref_array_type = nir_deref_array_type_direct; progress = true; } } return progress; } static bool constant_fold_intrinsic_instr(nir_intrinsic_instr *instr) { bool progress = false; unsigned num_vars = nir_intrinsic_infos[instr->intrinsic].num_variables; for (unsigned i = 0; i < num_vars; i++) { progress |= constant_fold_deref(&instr->instr, instr->variables[i]); } return progress; } static bool constant_fold_tex_instr(nir_tex_instr *instr) { if (instr->sampler) return constant_fold_deref(&instr->instr, instr->sampler); else return false; } static bool constant_fold_block(nir_block *block, void *void_state) { struct constant_fold_state *state = void_state; nir_foreach_instr_safe(block, instr) { switch (instr->type) { case nir_instr_type_alu: state->progress |= constant_fold_alu_instr(nir_instr_as_alu(instr), state->mem_ctx); break; case nir_instr_type_intrinsic: state->progress |= constant_fold_intrinsic_instr(nir_instr_as_intrinsic(instr)); break; case nir_instr_type_tex: state->progress |= constant_fold_tex_instr(nir_instr_as_tex(instr)); break; default: /* Don't know how to constant fold */ break; } } return true; } static bool nir_opt_constant_folding_impl(nir_function_impl *impl) { struct constant_fold_state state; state.mem_ctx = ralloc_parent(impl); state.impl = impl; state.progress = false; nir_foreach_block(impl, constant_fold_block, &state); if (state.progress) nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); return state.progress; } bool nir_opt_constant_folding(nir_shader *shader) { bool progress = false; nir_foreach_overload(shader, overload) { if (overload->impl) progress |= nir_opt_constant_folding_impl(overload->impl); } return progress; }