/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "nir.h" /* * This file implements an out-of-SSA pass as described in "Revisiting * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by * Boissinot et. al. */ struct from_ssa_state { void *mem_ctx; void *dead_ctx; struct hash_table *ssa_table; struct hash_table *merge_node_table; nir_instr *instr; nir_function_impl *impl; }; /* Returns true if a dominates b */ static bool ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b) { if (a->live_index == 0) { /* SSA undefs always dominate */ return true; } else if (b->live_index < a->live_index) { return false; } else if (a->parent_instr->block == b->parent_instr->block) { return a->live_index <= b->live_index; } else { nir_block *block = b->parent_instr->block; while (block->imm_dom != NULL) { if (block->imm_dom == a->parent_instr->block) return true; block = block->imm_dom; } return false; } } /* The following data structure, which I have named merge_set is a way of * representing a set registers of non-interfering registers. This is * based on the concept of a "dominence forest" presented in "Fast Copy * Coalescing and Live-Range Identification" by Budimlic et. al. but the * implementation concept is taken from "Revisiting Out-of-SSA Translation * for Correctness, Code Quality, and Efficiency" by Boissinot et. al.. * * Each SSA definition is associated with a merge_node and the association * is represented by a combination of a hash table and the "def" parameter * in the merge_node structure. The merge_set stores a linked list of * merge_node's in dominence order of the ssa definitions. (Since the * liveness analysis pass indexes the SSA values in dominence order for us, * this is an easy thing to keep up.) It is assumed that no pair of the * nodes in a given set interfere. Merging two sets or checking for * interference can be done in a single linear-time merge-sort walk of the * two lists of nodes. */ struct merge_set; typedef struct { struct exec_node node; struct merge_set *set; nir_ssa_def *def; } merge_node; typedef struct merge_set { struct exec_list nodes; unsigned size; nir_register *reg; } merge_set; #if 0 static void merge_set_dump(merge_set *set, FILE *fp) { nir_ssa_def *dom[set->size]; int dom_idx = -1; foreach_list_typed(merge_node, node, node, &set->nodes) { while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) dom_idx--; for (int i = 0; i <= dom_idx; i++) fprintf(fp, " "); if (node->def->name) fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name); else fprintf(fp, "ssa_%d\n", node->def->index); dom[++dom_idx] = node->def; } } #endif static merge_node * get_merge_node(nir_ssa_def *def, struct from_ssa_state *state) { struct hash_entry *entry = _mesa_hash_table_search(state->merge_node_table, def); if (entry) return entry->data; merge_set *set = ralloc(state->dead_ctx, merge_set); exec_list_make_empty(&set->nodes); set->size = 1; set->reg = NULL; merge_node *node = ralloc(state->dead_ctx, merge_node); node->set = set; node->def = def; exec_list_push_head(&set->nodes, &node->node); _mesa_hash_table_insert(state->merge_node_table, def, node); return node; } static bool merge_nodes_interfere(merge_node *a, merge_node *b) { return nir_ssa_defs_interfere(a->def, b->def); } /* Merges b into a */ static merge_set * merge_merge_sets(merge_set *a, merge_set *b) { struct exec_node *an = exec_list_get_head(&a->nodes); struct exec_node *bn = exec_list_get_head(&b->nodes); while (!exec_node_is_tail_sentinel(bn)) { merge_node *a_node = exec_node_data(merge_node, an, node); merge_node *b_node = exec_node_data(merge_node, bn, node); if (exec_node_is_tail_sentinel(an) || a_node->def->live_index > b_node->def->live_index) { struct exec_node *next = bn->next; exec_node_remove(bn); exec_node_insert_node_before(an, bn); exec_node_data(merge_node, bn, node)->set = a; bn = next; } else { an = an->next; } } a->size += b->size; b->size = 0; return a; } /* Checks for any interference between two merge sets * * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA * Translation for Correctness, Code Quality, and Efficiency" by * Boissinot et. al. */ static bool merge_sets_interfere(merge_set *a, merge_set *b) { merge_node *dom[a->size + b->size]; int dom_idx = -1; struct exec_node *an = exec_list_get_head(&a->nodes); struct exec_node *bn = exec_list_get_head(&b->nodes); while (!exec_node_is_tail_sentinel(an) || !exec_node_is_tail_sentinel(bn)) { merge_node *current; if (exec_node_is_tail_sentinel(an)) { current = exec_node_data(merge_node, bn, node); bn = bn->next; } else if (exec_node_is_tail_sentinel(bn)) { current = exec_node_data(merge_node, an, node); an = an->next; } else { merge_node *a_node = exec_node_data(merge_node, an, node); merge_node *b_node = exec_node_data(merge_node, bn, node); if (a_node->def->live_index <= b_node->def->live_index) { current = a_node; an = an->next; } else { current = b_node; bn = bn->next; } } while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx]->def, current->def)) dom_idx--; if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) return true; dom[++dom_idx] = current; } return false; } static bool add_parallel_copy_to_end_of_block(nir_block *block, void *void_state) { struct from_ssa_state *state = void_state; bool need_end_copy = false; if (block->successors[0]) { nir_instr *instr = nir_block_first_instr(block->successors[0]); if (instr && instr->type == nir_instr_type_phi) need_end_copy = true; } if (block->successors[1]) { nir_instr *instr = nir_block_first_instr(block->successors[1]); if (instr && instr->type == nir_instr_type_phi) need_end_copy = true; } if (need_end_copy) { /* If one of our successors has at least one phi node, we need to * create a parallel copy at the end of the block but before the jump * (if there is one). */ nir_parallel_copy_instr *pcopy = nir_parallel_copy_instr_create(state->dead_ctx); nir_instr *last_instr = nir_block_last_instr(block); if (last_instr && last_instr->type == nir_instr_type_jump) { nir_instr_insert_before(last_instr, &pcopy->instr); } else { nir_instr_insert_after_block(block, &pcopy->instr); } } return true; } static nir_parallel_copy_instr * get_parallel_copy_at_end_of_block(nir_block *block) { nir_instr *last_instr = nir_block_last_instr(block); if (last_instr == NULL) return NULL; /* The last instruction may be a jump in which case the parallel copy is * right before it. */ if (last_instr->type == nir_instr_type_jump) last_instr = nir_instr_prev(last_instr); if (last_instr->type == nir_instr_type_parallel_copy) return nir_instr_as_parallel_copy(last_instr); else return NULL; } /** Isolate phi nodes with parallel copies * * In order to solve the dependency problems with the sources and * destinations of phi nodes, we first isolate them by adding parallel * copies to the beginnings and ends of basic blocks. For every block with * phi nodes, we add a parallel copy immediately following the last phi * node that copies the destinations of all of the phi nodes to new SSA * values. We also add a parallel copy to the end of every block that has * a successor with phi nodes that, for each phi node in each successor, * copies the corresponding sorce of the phi node and adjust the phi to * used the destination of the parallel copy. * * In SSA form, each value has exactly one definition. What this does is * ensure that each value used in a phi also has exactly one use. The * destinations of phis are only used by the parallel copy immediately * following the phi nodes and. Thanks to the parallel copy at the end of * the predecessor block, the sources of phi nodes are are the only use of * that value. This allows us to immediately assign all the sources and * destinations of any given phi node to the same register without worrying * about interference at all. We do coalescing to get rid of the parallel * copies where possible. * * Before this pass can be run, we have to iterate over the blocks with * add_parallel_copy_to_end_of_block to ensure that the parallel copies at * the ends of blocks exist. We can create the ones at the beginnings as * we go, but the ones at the ends of blocks need to be created ahead of * time because of potential back-edges in the CFG. */ static bool isolate_phi_nodes_block(nir_block *block, void *void_state) { struct from_ssa_state *state = void_state; nir_instr *last_phi_instr = NULL; nir_foreach_instr(block, instr) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) break; last_phi_instr = instr; } /* If we don't have any phi's, then there's nothing for us to do. */ if (last_phi_instr == NULL) return true; /* If we have phi nodes, we need to create a parallel copy at the * start of this block but after the phi nodes. */ nir_parallel_copy_instr *block_pcopy = nir_parallel_copy_instr_create(state->dead_ctx); nir_instr_insert_after(last_phi_instr, &block_pcopy->instr); nir_foreach_instr(block, instr) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) break; nir_phi_instr *phi = nir_instr_as_phi(instr); assert(phi->dest.is_ssa); foreach_list_typed(nir_phi_src, src, node, &phi->srcs) { nir_parallel_copy_instr *pcopy = get_parallel_copy_at_end_of_block(src->pred); assert(pcopy); nir_parallel_copy_entry *entry = ralloc(state->dead_ctx, nir_parallel_copy_entry); exec_list_push_tail(&pcopy->entries, &entry->node); entry->src = nir_src_copy(src->src, state->dead_ctx); _mesa_set_add(src->src.ssa->uses, _mesa_hash_pointer(&pcopy->instr), &pcopy->instr); entry->dest.is_ssa = true; nir_ssa_def_init(&pcopy->instr, &entry->dest.ssa, phi->dest.ssa.num_components, src->src.ssa->name); struct set_entry *use_entry = _mesa_set_search(src->src.ssa->uses, _mesa_hash_pointer(instr), instr); if (use_entry) /* It is possible that a phi node can use the same source twice * but for different basic blocks. If that happens, entry will * be NULL because we already deleted it. This is safe * because, by the time the loop is done, we will have deleted * all of the sources of the phi from their respective use sets * and moved them to the parallel copy definitions. */ _mesa_set_remove(src->src.ssa->uses, use_entry); src->src.ssa = &entry->dest.ssa; _mesa_set_add(entry->dest.ssa.uses, _mesa_hash_pointer(instr), instr); } nir_parallel_copy_entry *entry = ralloc(state->dead_ctx, nir_parallel_copy_entry); exec_list_push_tail(&block_pcopy->entries, &entry->node); entry->dest.is_ssa = true; nir_ssa_def_init(&block_pcopy->instr, &entry->dest.ssa, phi->dest.ssa.num_components, phi->dest.ssa.name); nir_src entry_dest_src = { .ssa = &entry->dest.ssa, .is_ssa = true, }; nir_ssa_def_rewrite_uses(&phi->dest.ssa, entry_dest_src, state->mem_ctx); entry->src.is_ssa = true; entry->src.ssa = &phi->dest.ssa; _mesa_set_add(phi->dest.ssa.uses, _mesa_hash_pointer(&block_pcopy->instr), &block_pcopy->instr); } return true; } static bool coalesce_phi_nodes_block(nir_block *block, void *void_state) { struct from_ssa_state *state = void_state; nir_foreach_instr(block, instr) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) break; nir_phi_instr *phi = nir_instr_as_phi(instr); assert(phi->dest.is_ssa); merge_node *dest_node = get_merge_node(&phi->dest.ssa, state); foreach_list_typed(nir_phi_src, src, node, &phi->srcs) { assert(src->src.is_ssa); merge_node *src_node = get_merge_node(src->src.ssa, state); if (src_node->set != dest_node->set) merge_merge_sets(dest_node->set, src_node->set); } } return true; } static void agressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, struct from_ssa_state *state) { nir_foreach_parallel_copy_entry(pcopy, entry) { if (!entry->src.is_ssa) continue; /* Since load_const instructions are SSA only, we can't replace their * destinations with registers and, therefore, can't coalesce them. */ if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const) continue; /* Don't try and coalesce these */ if (entry->dest.ssa.num_components != entry->src.ssa->num_components) continue; merge_node *src_node = get_merge_node(entry->src.ssa, state); merge_node *dest_node = get_merge_node(&entry->dest.ssa, state); if (src_node->set == dest_node->set) continue; if (!merge_sets_interfere(src_node->set, dest_node->set)) merge_merge_sets(src_node->set, dest_node->set); } } static bool agressive_coalesce_block(nir_block *block, void *void_state) { struct from_ssa_state *state = void_state; nir_parallel_copy_instr *start_pcopy = NULL; nir_foreach_instr(block, instr) { /* Phi nodes only ever come at the start of a block */ if (instr->type != nir_instr_type_phi) { if (instr->type != nir_instr_type_parallel_copy) break; /* The parallel copy must be right after the phis */ start_pcopy = nir_instr_as_parallel_copy(instr); agressive_coalesce_parallel_copy(start_pcopy, state); break; } } nir_parallel_copy_instr *end_pcopy = get_parallel_copy_at_end_of_block(block); if (end_pcopy && end_pcopy != start_pcopy) agressive_coalesce_parallel_copy(end_pcopy, state); return true; } static nir_register * get_register_for_ssa_def(nir_ssa_def *def, struct from_ssa_state *state) { struct hash_entry *entry = _mesa_hash_table_search(state->merge_node_table, def); if (entry) { merge_node *node = (merge_node *)entry->data; /* If it doesn't have a register yet, create one. Note that all of * the things in the merge set should be the same so it doesn't * matter which node's definition we use. */ if (node->set->reg == NULL) { node->set->reg = nir_local_reg_create(state->impl); node->set->reg->name = def->name; node->set->reg->num_components = def->num_components; node->set->reg->num_array_elems = 0; } return node->set->reg; } entry = _mesa_hash_table_search(state->ssa_table, def); if (entry) { return (nir_register *)entry->data; } else { /* We leave load_const SSA values alone. They act as immediates to * the backend. If it got coalesced into a phi, that's ok. */ if (def->parent_instr->type == nir_instr_type_load_const) return NULL; nir_register *reg = nir_local_reg_create(state->impl); reg->name = def->name; reg->num_components = def->num_components; reg->num_array_elems = 0; _mesa_hash_table_insert(state->ssa_table, def, reg); return reg; } } static bool rewrite_ssa_src(nir_src *src, void *void_state) { struct from_ssa_state *state = void_state; if (src->is_ssa) { nir_register *reg = get_register_for_ssa_def(src->ssa, state); if (reg == NULL) { assert(src->ssa->parent_instr->type == nir_instr_type_load_const); return true; } memset(src, 0, sizeof *src); src->reg.reg = reg; /* We don't need to remove it from the uses set because that is going * away. We just need to add it to the one for the register. */ _mesa_set_add(reg->uses, _mesa_hash_pointer(state->instr), state->instr); } return true; } static bool rewrite_ssa_dest(nir_dest *dest, void *void_state) { struct from_ssa_state *state = void_state; if (dest->is_ssa) { nir_register *reg = get_register_for_ssa_def(&dest->ssa, state); if (reg == NULL) { assert(dest->ssa.parent_instr->type == nir_instr_type_load_const); return true; } _mesa_set_destroy(dest->ssa.uses, NULL); _mesa_set_destroy(dest->ssa.if_uses, NULL); memset(dest, 0, sizeof *dest); dest->reg.reg = reg; _mesa_set_add(reg->defs, _mesa_hash_pointer(state->instr), state->instr); } return true; } /* Resolves ssa definitions to registers. While we're at it, we also * remove phi nodes and ssa_undef instructions */ static bool resolve_registers_block(nir_block *block, void *void_state) { struct from_ssa_state *state = void_state; nir_foreach_instr_safe(block, instr) { state->instr = instr; nir_foreach_src(instr, rewrite_ssa_src, state); nir_foreach_dest(instr, rewrite_ssa_dest, state); if (instr->type == nir_instr_type_ssa_undef || instr->type == nir_instr_type_phi) { nir_instr_remove(instr); ralloc_steal(state->dead_ctx, instr); } } state->instr = NULL; nir_if *following_if = nir_block_get_following_if(block); if (following_if && following_if->condition.is_ssa) { nir_register *reg = get_register_for_ssa_def(following_if->condition.ssa, state); if (reg) { memset(&following_if->condition, 0, sizeof following_if->condition); following_if->condition.reg.reg = reg; _mesa_set_add(reg->if_uses, _mesa_hash_pointer(following_if), following_if); } else { /* FIXME: We really shouldn't hit this. We should be doing * constant control flow propagation. */ assert(following_if->condition.ssa->parent_instr->type == nir_instr_type_load_const); } } return true; } static void emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src, void *mem_ctx) { assert(!dest_src.is_ssa && dest_src.reg.indirect == NULL && dest_src.reg.base_offset == 0); nir_dest dest = { .reg.reg = dest_src.reg.reg, .reg.indirect = NULL, .reg.base_offset = 0, .is_ssa = false, }; if (src.is_ssa) assert(src.ssa->num_components >= dest.reg.reg->num_components); else assert(src.reg.reg->num_components >= dest.reg.reg->num_components); nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov); mov->src[0].src = nir_src_copy(src, mem_ctx); mov->dest.dest = nir_dest_copy(dest, mem_ctx); mov->dest.write_mask = (1 << dest.reg.reg->num_components) - 1; nir_instr_insert_before(&pcopy->instr, &mov->instr); } /* Resolves a single parallel copy operation into a sequence of mov's * * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for * Correctness, Code Quality, and Efficiency" by Boissinot et. al.. * However, I never got the algorithm to work as written, so this version * is slightly modified. * * The algorithm works by playing this little shell game with the values. * We start by recording where every source value is and which source value * each destination value should recieve. We then grab any copy whose * destination is "empty", i.e. not used as a source, and do the following: * - Find where its source value currently lives * - Emit the move instruction * - Set the location of the source value to the destination * - Mark the location containing the source value * - Mark the destination as no longer needing to be copied * * When we run out of "empty" destinations, we have a cycle and so we * create a temporary register, copy to that register, and mark the value * we copied as living in that temporary. Now, the cycle is broken, so we * can continue with the above steps. */ static void resolve_parallel_copy(nir_parallel_copy_instr *pcopy, struct from_ssa_state *state) { unsigned num_copies = 0; nir_foreach_parallel_copy_entry(pcopy, entry) { /* Sources may be SSA */ if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) continue; num_copies++; } if (num_copies == 0) { /* Hooray, we don't need any copies! */ nir_instr_remove(&pcopy->instr); return; } /* The register/source corresponding to the given index */ nir_src values[num_copies * 2]; memset(values, 0, sizeof values); /* The current location of a given piece of data */ int loc[num_copies * 2]; /* The piece of data that the given piece of data is to be copied from */ int pred[num_copies * 2]; /* Initialize loc and pred. We will use -1 for "null" */ memset(loc, -1, sizeof loc); memset(pred, -1, sizeof pred); /* The destinations we have yet to properly fill */ int to_do[num_copies * 2]; int to_do_idx = -1; /* Now we set everything up: * - All values get assigned a temporary index * - Current locations are set from sources * - Predicessors are recorded from sources and destinations */ int num_vals = 0; nir_foreach_parallel_copy_entry(pcopy, entry) { /* Sources may be SSA */ if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) continue; int src_idx = -1; for (int i = 0; i < num_vals; ++i) { if (nir_srcs_equal(values[i], entry->src)) src_idx = i; } if (src_idx < 0) { src_idx = num_vals++; values[src_idx] = entry->src; } nir_src dest_src = { .reg.reg = entry->dest.reg.reg, .reg.indirect = NULL, .reg.base_offset = 0, .is_ssa = false, }; int dest_idx = -1; for (int i = 0; i < num_vals; ++i) { if (nir_srcs_equal(values[i], dest_src)) { /* Each destination of a parallel copy instruction should be * unique. A destination may get used as a source, so we still * have to walk the list. However, the predecessor should not, * at this point, be set yet, so we should have -1 here. */ assert(pred[i] == -1); dest_idx = i; } } if (dest_idx < 0) { dest_idx = num_vals++; values[dest_idx] = dest_src; } loc[src_idx] = src_idx; pred[dest_idx] = src_idx; to_do[++to_do_idx] = dest_idx; } /* Currently empty destinations we can go ahead and fill */ int ready[num_copies * 2]; int ready_idx = -1; /* Mark the ones that are ready for copying. We know an index is a * destination if it has a predecessor and it's ready for copying if * it's not marked as containing data. */ for (int i = 0; i < num_vals; i++) { if (pred[i] != -1 && loc[i] == -1) ready[++ready_idx] = i; } while (to_do_idx >= 0) { while (ready_idx >= 0) { int b = ready[ready_idx--]; int a = pred[b]; emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx); /* If any other copies want a they can find it at b */ loc[a] = b; /* b has been filled, mark it as not needing to be copied */ pred[b] = -1; /* If a needs to be filled, it's ready for copying now */ if (pred[a] != -1) ready[++ready_idx] = a; } int b = to_do[to_do_idx--]; if (pred[b] == -1) continue; /* If we got here, then we don't have any more trivial copies that we * can do. We have to break a cycle, so we create a new temporary * register for that purpose. Normally, if going out of SSA after * register allocation, you would want to avoid creating temporary * registers. However, we are going out of SSA before register * allocation, so we would rather not create extra register * dependencies for the backend to deal with. If it wants, the * backend can coalesce the (possibly multiple) temporaries. */ assert(num_vals < num_copies * 2); nir_register *reg = nir_local_reg_create(state->impl); reg->name = "copy_temp"; reg->num_array_elems = 0; if (values[b].is_ssa) reg->num_components = values[b].ssa->num_components; else reg->num_components = values[b].reg.reg->num_components; values[num_vals].is_ssa = false; values[num_vals].reg.reg = reg; emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx); loc[b] = num_vals; ready[++ready_idx] = b; num_vals++; } nir_instr_remove(&pcopy->instr); } /* Resolves the parallel copies in a block. Each block can have at most * two: One at the beginning, right after all the phi noces, and one at * the end (or right before the final jump if it exists). */ static bool resolve_parallel_copies_block(nir_block *block, void *void_state) { struct from_ssa_state *state = void_state; /* At this point, we have removed all of the phi nodes. If a parallel * copy existed right after the phi nodes in this block, it is now the * first instruction. */ nir_instr *first_instr = nir_block_first_instr(block); if (first_instr == NULL) return true; /* Empty, nothing to do. */ if (first_instr->type == nir_instr_type_parallel_copy) { nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr); resolve_parallel_copy(pcopy, state); } /* It's possible that the above code already cleaned up the end parallel * copy. However, doing so removed it form the instructions list so we * won't find it here. Therefore, it's safe to go ahead and just look * for one and clean it up if it exists. */ nir_parallel_copy_instr *end_pcopy = get_parallel_copy_at_end_of_block(block); if (end_pcopy) resolve_parallel_copy(end_pcopy, state); return true; } static void nir_convert_from_ssa_impl(nir_function_impl *impl) { struct from_ssa_state state; state.mem_ctx = ralloc_parent(impl); state.dead_ctx = ralloc_context(NULL); state.impl = impl; state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); nir_foreach_block(impl, add_parallel_copy_to_end_of_block, &state); nir_foreach_block(impl, isolate_phi_nodes_block, &state); /* Mark metadata as dirty before we ask for liveness analysis */ nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); nir_metadata_require(impl, nir_metadata_live_variables | nir_metadata_dominance); nir_foreach_block(impl, coalesce_phi_nodes_block, &state); nir_foreach_block(impl, agressive_coalesce_block, &state); state.ssa_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); nir_foreach_block(impl, resolve_registers_block, &state); nir_foreach_block(impl, resolve_parallel_copies_block, &state); nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); /* Clean up dead instructions and the hash tables */ _mesa_hash_table_destroy(state.ssa_table, NULL); _mesa_hash_table_destroy(state.merge_node_table, NULL); ralloc_free(state.dead_ctx); } void nir_convert_from_ssa(nir_shader *shader) { nir_foreach_overload(shader, overload) { if (overload->impl) nir_convert_from_ssa_impl(overload->impl); } }