/* * Copyright © 2014 Connor Abbott * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #pragma once #include "util/hash_table.h" #include "../list.h" #include "GL/gl.h" /* GLenum */ #include "util/list.h" #include "util/ralloc.h" #include "util/set.h" #include "util/bitset.h" #include "nir_types.h" #include "shader_enums.h" #include #include "nir_opcodes.h" #ifdef __cplusplus extern "C" { #endif struct gl_program; struct gl_shader_program; #define NIR_FALSE 0u #define NIR_TRUE (~0u) /** Defines a cast function * * This macro defines a cast function from in_type to out_type where * out_type is some structure type that contains a field of type out_type. * * Note that you have to be a bit careful as the generated cast function * destroys constness. */ #define NIR_DEFINE_CAST(name, in_type, out_type, field) \ static inline out_type * \ name(const in_type *parent) \ { \ return exec_node_data(out_type, parent, field); \ } struct nir_function_overload; struct nir_function; struct nir_shader; struct nir_instr; /** * Description of built-in state associated with a uniform * * \sa nir_variable::state_slots */ typedef struct { int tokens[5]; int swizzle; } nir_state_slot; typedef enum { nir_var_all = -1, nir_var_shader_in, nir_var_shader_out, nir_var_global, nir_var_local, nir_var_uniform, nir_var_shader_storage, nir_var_system_value } nir_variable_mode; /** * Data stored in an nir_constant */ union nir_constant_data { unsigned u[16]; int i[16]; float f[16]; bool b[16]; }; typedef struct nir_constant { /** * Value of the constant. * * The field used to back the values supplied by the constant is determined * by the type associated with the \c nir_variable. Constants may be * scalars, vectors, or matrices. */ union nir_constant_data value; /* we could get this from the var->type but makes clone *much* easier to * not have to care about the type. */ unsigned num_elements; /* Array elements / Structure Fields */ struct nir_constant **elements; } nir_constant; /** * \brief Layout qualifiers for gl_FragDepth. * * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared * with a layout qualifier. */ typedef enum { nir_depth_layout_none, /**< No depth layout is specified. */ nir_depth_layout_any, nir_depth_layout_greater, nir_depth_layout_less, nir_depth_layout_unchanged } nir_depth_layout; /** * Either a uniform, global variable, shader input, or shader output. Based on * ir_variable - it should be easy to translate between the two. */ typedef struct { struct exec_node node; /** * Declared type of the variable */ const struct glsl_type *type; /** * Declared name of the variable */ char *name; struct nir_variable_data { /** * Is the variable read-only? * * This is set for variables declared as \c const, shader inputs, * and uniforms. */ unsigned read_only:1; unsigned centroid:1; unsigned sample:1; unsigned patch:1; unsigned invariant:1; /** * Storage class of the variable. * * \sa nir_variable_mode */ nir_variable_mode mode:4; /** * Interpolation mode for shader inputs / outputs * * \sa glsl_interp_qualifier */ unsigned interpolation:2; /** * \name ARB_fragment_coord_conventions * @{ */ unsigned origin_upper_left:1; unsigned pixel_center_integer:1; /*@}*/ /** * Was the location explicitly set in the shader? * * If the location is explicitly set in the shader, it \b cannot be changed * by the linker or by the API (e.g., calls to \c glBindAttribLocation have * no effect). */ unsigned explicit_location:1; unsigned explicit_index:1; /** * Was an initial binding explicitly set in the shader? * * If so, constant_initializer contains an integer nir_constant * representing the initial binding point. */ unsigned explicit_binding:1; /** * Does this variable have an initializer? * * This is used by the linker to cross-validiate initializers of global * variables. */ unsigned has_initializer:1; /** * Is this variable a generic output or input that has not yet been matched * up to a variable in another stage of the pipeline? * * This is used by the linker as scratch storage while assigning locations * to generic inputs and outputs. */ unsigned is_unmatched_generic_inout:1; /** * If non-zero, then this variable may be packed along with other variables * into a single varying slot, so this offset should be applied when * accessing components. For example, an offset of 1 means that the x * component of this variable is actually stored in component y of the * location specified by \c location. */ unsigned location_frac:2; /** * Non-zero if this variable was created by lowering a named interface * block which was not an array. * * Note that this variable and \c from_named_ifc_block_array will never * both be non-zero. */ unsigned from_named_ifc_block_nonarray:1; /** * Non-zero if this variable was created by lowering a named interface * block which was an array. * * Note that this variable and \c from_named_ifc_block_nonarray will never * both be non-zero. */ unsigned from_named_ifc_block_array:1; /** * \brief Layout qualifier for gl_FragDepth. * * This is not equal to \c ir_depth_layout_none if and only if this * variable is \c gl_FragDepth and a layout qualifier is specified. */ nir_depth_layout depth_layout; /** * Storage location of the base of this variable * * The precise meaning of this field depends on the nature of the variable. * * - Vertex shader input: one of the values from \c gl_vert_attrib. * - Vertex shader output: one of the values from \c gl_varying_slot. * - Geometry shader input: one of the values from \c gl_varying_slot. * - Geometry shader output: one of the values from \c gl_varying_slot. * - Fragment shader input: one of the values from \c gl_varying_slot. * - Fragment shader output: one of the values from \c gl_frag_result. * - Uniforms: Per-stage uniform slot number for default uniform block. * - Uniforms: Index within the uniform block definition for UBO members. * - Non-UBO Uniforms: uniform slot number. * - Other: This field is not currently used. * * If the variable is a uniform, shader input, or shader output, and the * slot has not been assigned, the value will be -1. */ int location; /** * The actual location of the variable in the IR. Only valid for inputs * and outputs. */ unsigned int driver_location; /** * output index for dual source blending. */ int index; /** * Initial binding point for a sampler or UBO. * * For array types, this represents the binding point for the first element. */ int binding; /** * Location an atomic counter is stored at. */ struct { unsigned offset; } atomic; /** * ARB_shader_image_load_store qualifiers. */ struct { bool read_only; /**< "readonly" qualifier. */ bool write_only; /**< "writeonly" qualifier. */ bool coherent; bool _volatile; bool restrict_flag; /** Image internal format if specified explicitly, otherwise GL_NONE. */ GLenum format; } image; /** * Highest element accessed with a constant expression array index * * Not used for non-array variables. */ unsigned max_array_access; } data; /** * Built-in state that backs this uniform * * Once set at variable creation, \c state_slots must remain invariant. * This is because, ideally, this array would be shared by all clones of * this variable in the IR tree. In other words, we'd really like for it * to be a fly-weight. * * If the variable is not a uniform, \c num_state_slots will be zero and * \c state_slots will be \c NULL. */ /*@{*/ unsigned num_state_slots; /**< Number of state slots used */ nir_state_slot *state_slots; /**< State descriptors. */ /*@}*/ /** * Constant expression assigned in the initializer of the variable */ nir_constant *constant_initializer; /** * For variables that are in an interface block or are an instance of an * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block. * * \sa ir_variable::location */ const struct glsl_type *interface_type; } nir_variable; #define nir_foreach_variable(var, var_list) \ foreach_list_typed(nir_variable, var, node, var_list) typedef struct { struct exec_node node; unsigned num_components; /** < number of vector components */ unsigned num_array_elems; /** < size of array (0 for no array) */ /** generic register index. */ unsigned index; /** only for debug purposes, can be NULL */ const char *name; /** whether this register is local (per-function) or global (per-shader) */ bool is_global; /** * If this flag is set to true, then accessing channels >= num_components * is well-defined, and simply spills over to the next array element. This * is useful for backends that can do per-component accessing, in * particular scalar backends. By setting this flag and making * num_components equal to 1, structures can be packed tightly into * registers and then registers can be accessed per-component to get to * each structure member, even if it crosses vec4 boundaries. */ bool is_packed; /** set of nir_src's where this register is used (read from) */ struct list_head uses; /** set of nir_dest's where this register is defined (written to) */ struct list_head defs; /** set of nir_if's where this register is used as a condition */ struct list_head if_uses; } nir_register; typedef enum { nir_instr_type_alu, nir_instr_type_call, nir_instr_type_tex, nir_instr_type_intrinsic, nir_instr_type_load_const, nir_instr_type_jump, nir_instr_type_ssa_undef, nir_instr_type_phi, nir_instr_type_parallel_copy, } nir_instr_type; typedef struct nir_instr { struct exec_node node; nir_instr_type type; struct nir_block *block; /** generic instruction index. */ unsigned index; /* A temporary for optimization and analysis passes to use for storing * flags. For instance, DCE uses this to store the "dead/live" info. */ uint8_t pass_flags; } nir_instr; static inline nir_instr * nir_instr_next(nir_instr *instr) { struct exec_node *next = exec_node_get_next(&instr->node); if (exec_node_is_tail_sentinel(next)) return NULL; else return exec_node_data(nir_instr, next, node); } static inline nir_instr * nir_instr_prev(nir_instr *instr) { struct exec_node *prev = exec_node_get_prev(&instr->node); if (exec_node_is_head_sentinel(prev)) return NULL; else return exec_node_data(nir_instr, prev, node); } static inline bool nir_instr_is_first(nir_instr *instr) { return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node)); } static inline bool nir_instr_is_last(nir_instr *instr) { return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node)); } typedef struct { /** for debugging only, can be NULL */ const char* name; /** generic SSA definition index. */ unsigned index; /** Index into the live_in and live_out bitfields */ unsigned live_index; nir_instr *parent_instr; /** set of nir_instr's where this register is used (read from) */ struct list_head uses; /** set of nir_if's where this register is used as a condition */ struct list_head if_uses; uint8_t num_components; } nir_ssa_def; struct nir_src; typedef struct { nir_register *reg; struct nir_src *indirect; /** < NULL for no indirect offset */ unsigned base_offset; /* TODO use-def chain goes here */ } nir_reg_src; typedef struct { nir_instr *parent_instr; struct list_head def_link; nir_register *reg; struct nir_src *indirect; /** < NULL for no indirect offset */ unsigned base_offset; /* TODO def-use chain goes here */ } nir_reg_dest; struct nir_if; typedef struct nir_src { union { nir_instr *parent_instr; struct nir_if *parent_if; }; struct list_head use_link; union { nir_reg_src reg; nir_ssa_def *ssa; }; bool is_ssa; } nir_src; #define NIR_SRC_INIT (nir_src) { { NULL } } #define nir_foreach_use(reg_or_ssa_def, src) \ list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link) #define nir_foreach_use_safe(reg_or_ssa_def, src) \ list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link) #define nir_foreach_if_use(reg_or_ssa_def, src) \ list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link) #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \ list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link) typedef struct { union { nir_reg_dest reg; nir_ssa_def ssa; }; bool is_ssa; } nir_dest; #define NIR_DEST_INIT (nir_dest) { { { NULL } } } #define nir_foreach_def(reg, dest) \ list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link) #define nir_foreach_def_safe(reg, dest) \ list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link) static inline nir_src nir_src_for_ssa(nir_ssa_def *def) { nir_src src = NIR_SRC_INIT; src.is_ssa = true; src.ssa = def; return src; } static inline nir_src nir_src_for_reg(nir_register *reg) { nir_src src = NIR_SRC_INIT; src.is_ssa = false; src.reg.reg = reg; src.reg.indirect = NULL; src.reg.base_offset = 0; return src; } static inline nir_dest nir_dest_for_reg(nir_register *reg) { nir_dest dest = NIR_DEST_INIT; dest.reg.reg = reg; return dest; } void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if); void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr); typedef struct { nir_src src; /** * \name input modifiers */ /*@{*/ /** * For inputs interpreted as floating point, flips the sign bit. For * inputs interpreted as integers, performs the two's complement negation. */ bool negate; /** * Clears the sign bit for floating point values, and computes the integer * absolute value for integers. Note that the negate modifier acts after * the absolute value modifier, therefore if both are set then all inputs * will become negative. */ bool abs; /*@}*/ /** * For each input component, says which component of the register it is * chosen from. Note that which elements of the swizzle are used and which * are ignored are based on the write mask for most opcodes - for example, * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and * a swizzle of {2, x, 1, 0} where x means "don't care." */ uint8_t swizzle[4]; } nir_alu_src; typedef struct { nir_dest dest; /** * \name saturate output modifier * * Only valid for opcodes that output floating-point numbers. Clamps the * output to between 0.0 and 1.0 inclusive. */ bool saturate; unsigned write_mask : 4; /* ignored if dest.is_ssa is true */ } nir_alu_dest; typedef enum { nir_type_invalid = 0, /* Not a valid type */ nir_type_float, nir_type_int, nir_type_uint, nir_type_bool } nir_alu_type; typedef enum { NIR_OP_IS_COMMUTATIVE = (1 << 0), NIR_OP_IS_ASSOCIATIVE = (1 << 1), } nir_op_algebraic_property; typedef struct { const char *name; unsigned num_inputs; /** * The number of components in the output * * If non-zero, this is the size of the output and input sizes are * explicitly given; swizzle and writemask are still in effect, but if * the output component is masked out, then the input component may * still be in use. * * If zero, the opcode acts in the standard, per-component manner; the * operation is performed on each component (except the ones that are * masked out) with the input being taken from the input swizzle for * that component. * * The size of some of the inputs may be given (i.e. non-zero) even * though output_size is zero; in that case, the inputs with a zero * size act per-component, while the inputs with non-zero size don't. */ unsigned output_size; /** * The type of vector that the instruction outputs. Note that the * staurate modifier is only allowed on outputs with the float type. */ nir_alu_type output_type; /** * The number of components in each input */ unsigned input_sizes[4]; /** * The type of vector that each input takes. Note that negate and * absolute value are only allowed on inputs with int or float type and * behave differently on the two. */ nir_alu_type input_types[4]; nir_op_algebraic_property algebraic_properties; } nir_op_info; extern const nir_op_info nir_op_infos[nir_num_opcodes]; typedef struct nir_alu_instr { nir_instr instr; nir_op op; nir_alu_dest dest; nir_alu_src src[]; } nir_alu_instr; void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, nir_alu_instr *instr); void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src, nir_alu_instr *instr); /* is this source channel used? */ static inline bool nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel) { if (nir_op_infos[instr->op].input_sizes[src] > 0) return channel < nir_op_infos[instr->op].input_sizes[src]; return (instr->dest.write_mask >> channel) & 1; } /* * For instructions whose destinations are SSA, get the number of channels * used for a source */ static inline unsigned nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src) { assert(instr->dest.dest.is_ssa); if (nir_op_infos[instr->op].input_sizes[src] > 0) return nir_op_infos[instr->op].input_sizes[src]; return instr->dest.dest.ssa.num_components; } typedef enum { nir_deref_type_var, nir_deref_type_array, nir_deref_type_struct } nir_deref_type; typedef struct nir_deref { nir_deref_type deref_type; struct nir_deref *child; const struct glsl_type *type; } nir_deref; typedef struct { nir_deref deref; nir_variable *var; } nir_deref_var; /* This enum describes how the array is referenced. If the deref is * direct then the base_offset is used. If the deref is indirect then then * offset is given by base_offset + indirect. If the deref is a wildcard * then the deref refers to all of the elements of the array at the same * time. Wildcard dereferences are only ever allowed in copy_var * intrinsics and the source and destination derefs must have matching * wildcards. */ typedef enum { nir_deref_array_type_direct, nir_deref_array_type_indirect, nir_deref_array_type_wildcard, } nir_deref_array_type; typedef struct { nir_deref deref; nir_deref_array_type deref_array_type; unsigned base_offset; nir_src indirect; } nir_deref_array; typedef struct { nir_deref deref; unsigned index; } nir_deref_struct; NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref) NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref) NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref) /* Returns the last deref in the chain. */ static inline nir_deref * nir_deref_tail(nir_deref *deref) { while (deref->child) deref = deref->child; return deref; } typedef struct { nir_instr instr; unsigned num_params; nir_deref_var **params; nir_deref_var *return_deref; struct nir_function_overload *callee; } nir_call_instr; #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \ num_variables, num_indices, flags) \ nir_intrinsic_##name, #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name, typedef enum { #include "nir_intrinsics.h" nir_num_intrinsics = nir_last_intrinsic + 1 } nir_intrinsic_op; #undef INTRINSIC #undef LAST_INTRINSIC /** Represents an intrinsic * * An intrinsic is an instruction type for handling things that are * more-or-less regular operations but don't just consume and produce SSA * values like ALU operations do. Intrinsics are not for things that have * special semantic meaning such as phi nodes and parallel copies. * Examples of intrinsics include variable load/store operations, system * value loads, and the like. Even though texturing more-or-less falls * under this category, texturing is its own instruction type because * trying to represent texturing with intrinsics would lead to a * combinatorial explosion of intrinsic opcodes. * * By having a single instruction type for handling a lot of different * cases, optimization passes can look for intrinsics and, for the most * part, completely ignore them. Each intrinsic type also has a few * possible flags that govern whether or not they can be reordered or * eliminated. That way passes like dead code elimination can still work * on intrisics without understanding the meaning of each. * * Each intrinsic has some number of constant indices, some number of * variables, and some number of sources. What these sources, variables, * and indices mean depends on the intrinsic and is documented with the * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture * instructions are the only types of instruction that can operate on * variables. */ typedef struct { nir_instr instr; nir_intrinsic_op intrinsic; nir_dest dest; /** number of components if this is a vectorized intrinsic * * Similarly to ALU operations, some intrinsics are vectorized. * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0. * For vectorized intrinsics, the num_components field specifies the * number of destination components and the number of source components * for all sources with nir_intrinsic_infos.src_components[i] == 0. */ uint8_t num_components; int const_index[3]; nir_deref_var *variables[2]; nir_src src[]; } nir_intrinsic_instr; /** * \name NIR intrinsics semantic flags * * information about what the compiler can do with the intrinsics. * * \sa nir_intrinsic_info::flags */ typedef enum { /** * whether the intrinsic can be safely eliminated if none of its output * value is not being used. */ NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0), /** * Whether the intrinsic can be reordered with respect to any other * intrinsic, i.e. whether the only reordering dependencies of the * intrinsic are due to the register reads/writes. */ NIR_INTRINSIC_CAN_REORDER = (1 << 1), } nir_intrinsic_semantic_flag; #define NIR_INTRINSIC_MAX_INPUTS 4 typedef struct { const char *name; unsigned num_srcs; /** < number of register/SSA inputs */ /** number of components of each input register * * If this value is 0, the number of components is given by the * num_components field of nir_intrinsic_instr. */ unsigned src_components[NIR_INTRINSIC_MAX_INPUTS]; bool has_dest; /** number of components of the output register * * If this value is 0, the number of components is given by the * num_components field of nir_intrinsic_instr. */ unsigned dest_components; /** the number of inputs/outputs that are variables */ unsigned num_variables; /** the number of constant indices used by the intrinsic */ unsigned num_indices; /** semantic flags for calls to this intrinsic */ nir_intrinsic_semantic_flag flags; } nir_intrinsic_info; extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics]; /** * \group texture information * * This gives semantic information about textures which is useful to the * frontend, the backend, and lowering passes, but not the optimizer. */ typedef enum { nir_tex_src_coord, nir_tex_src_projector, nir_tex_src_comparitor, /* shadow comparitor */ nir_tex_src_offset, nir_tex_src_bias, nir_tex_src_lod, nir_tex_src_ms_index, /* MSAA sample index */ nir_tex_src_ddx, nir_tex_src_ddy, nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */ nir_num_tex_src_types } nir_tex_src_type; typedef struct { nir_src src; nir_tex_src_type src_type; } nir_tex_src; typedef enum { nir_texop_tex, /**< Regular texture look-up */ nir_texop_txb, /**< Texture look-up with LOD bias */ nir_texop_txl, /**< Texture look-up with explicit LOD */ nir_texop_txd, /**< Texture look-up with partial derivatvies */ nir_texop_txf, /**< Texel fetch with explicit LOD */ nir_texop_txf_ms, /**< Multisample texture fetch */ nir_texop_txs, /**< Texture size */ nir_texop_lod, /**< Texture lod query */ nir_texop_tg4, /**< Texture gather */ nir_texop_query_levels, /**< Texture levels query */ nir_texop_texture_samples, /**< Texture samples query */ nir_texop_samples_identical, /**< Query whether all samples are definitely * identical. */ } nir_texop; typedef struct { nir_instr instr; enum glsl_sampler_dim sampler_dim; nir_alu_type dest_type; nir_texop op; nir_dest dest; nir_tex_src *src; unsigned num_srcs, coord_components; bool is_array, is_shadow; /** * If is_shadow is true, whether this is the old-style shadow that outputs 4 * components or the new-style shadow that outputs 1 component. */ bool is_new_style_shadow; /* constant offset - must be 0 if the offset source is used */ int const_offset[4]; /* gather component selector */ unsigned component : 2; /** The sampler index * * If this texture instruction has a nir_tex_src_sampler_offset source, * then the sampler index is given by sampler_index + sampler_offset. */ unsigned sampler_index; /** The size of the sampler array or 0 if it's not an array */ unsigned sampler_array_size; nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */ } nir_tex_instr; static inline unsigned nir_tex_instr_dest_size(nir_tex_instr *instr) { switch (instr->op) { case nir_texop_txs: { unsigned ret; switch (instr->sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_BUF: ret = 1; break; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_CUBE: case GLSL_SAMPLER_DIM_MS: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_EXTERNAL: ret = 2; break; case GLSL_SAMPLER_DIM_3D: ret = 3; break; default: unreachable("not reached"); } if (instr->is_array) ret++; return ret; } case nir_texop_lod: return 2; case nir_texop_texture_samples: case nir_texop_query_levels: case nir_texop_samples_identical: return 1; default: if (instr->is_shadow && instr->is_new_style_shadow) return 1; return 4; } } /* Returns true if this texture operation queries something about the texture * rather than actually sampling it. */ static inline bool nir_tex_instr_is_query(nir_tex_instr *instr) { switch (instr->op) { case nir_texop_txs: case nir_texop_lod: case nir_texop_texture_samples: case nir_texop_query_levels: return true; case nir_texop_tex: case nir_texop_txb: case nir_texop_txl: case nir_texop_txd: case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_tg4: return false; default: unreachable("Invalid texture opcode"); } } static inline unsigned nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src) { if (instr->src[src].src_type == nir_tex_src_coord) return instr->coord_components; if (instr->src[src].src_type == nir_tex_src_offset || instr->src[src].src_type == nir_tex_src_ddx || instr->src[src].src_type == nir_tex_src_ddy) { if (instr->is_array) return instr->coord_components - 1; else return instr->coord_components; } return 1; } static inline int nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type) { for (unsigned i = 0; i < instr->num_srcs; i++) if (instr->src[i].src_type == type) return (int) i; return -1; } typedef struct { union { float f[4]; int32_t i[4]; uint32_t u[4]; }; } nir_const_value; typedef struct { nir_instr instr; nir_const_value value; nir_ssa_def def; } nir_load_const_instr; typedef enum { nir_jump_return, nir_jump_break, nir_jump_continue, } nir_jump_type; typedef struct { nir_instr instr; nir_jump_type type; } nir_jump_instr; /* creates a new SSA variable in an undefined state */ typedef struct { nir_instr instr; nir_ssa_def def; } nir_ssa_undef_instr; typedef struct { struct exec_node node; /* The predecessor block corresponding to this source */ struct nir_block *pred; nir_src src; } nir_phi_src; #define nir_foreach_phi_src(phi, entry) \ foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs) #define nir_foreach_phi_src_safe(phi, entry) \ foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs) typedef struct { nir_instr instr; struct exec_list srcs; /** < list of nir_phi_src */ nir_dest dest; } nir_phi_instr; typedef struct { struct exec_node node; nir_src src; nir_dest dest; } nir_parallel_copy_entry; #define nir_foreach_parallel_copy_entry(pcopy, entry) \ foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries) typedef struct { nir_instr instr; /* A list of nir_parallel_copy_entry's. The sources of all of the * entries are copied to the corresponding destinations "in parallel". * In other words, if we have two entries: a -> b and b -> a, the values * get swapped. */ struct exec_list entries; } nir_parallel_copy_instr; NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr) NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr) NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr) NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr) NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr) NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr) NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr) NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr) NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr, nir_parallel_copy_instr, instr) /* * Control flow * * Control flow consists of a tree of control flow nodes, which include * if-statements and loops. The leaves of the tree are basic blocks, lists of * instructions that always run start-to-finish. Each basic block also keeps * track of its successors (blocks which may run immediately after the current * block) and predecessors (blocks which could have run immediately before the * current block). Each function also has a start block and an end block which * all return statements point to (which is always empty). Together, all the * blocks with their predecessors and successors make up the control flow * graph (CFG) of the function. There are helpers that modify the tree of * control flow nodes while modifying the CFG appropriately; these should be * used instead of modifying the tree directly. */ typedef enum { nir_cf_node_block, nir_cf_node_if, nir_cf_node_loop, nir_cf_node_function } nir_cf_node_type; typedef struct nir_cf_node { struct exec_node node; nir_cf_node_type type; struct nir_cf_node *parent; } nir_cf_node; typedef struct nir_block { nir_cf_node cf_node; struct exec_list instr_list; /** < list of nir_instr */ /** generic block index; generated by nir_index_blocks */ unsigned index; /* * Each block can only have up to 2 successors, so we put them in a simple * array - no need for anything more complicated. */ struct nir_block *successors[2]; /* Set of nir_block predecessors in the CFG */ struct set *predecessors; /* * this node's immediate dominator in the dominance tree - set to NULL for * the start block. */ struct nir_block *imm_dom; /* This node's children in the dominance tree */ unsigned num_dom_children; struct nir_block **dom_children; /* Set of nir_block's on the dominance frontier of this block */ struct set *dom_frontier; /* * These two indices have the property that dom_{pre,post}_index for each * child of this block in the dominance tree will always be between * dom_pre_index and dom_post_index for this block, which makes testing if * a given block is dominated by another block an O(1) operation. */ unsigned dom_pre_index, dom_post_index; /* live in and out for this block; used for liveness analysis */ BITSET_WORD *live_in; BITSET_WORD *live_out; } nir_block; static inline nir_instr * nir_block_first_instr(nir_block *block) { struct exec_node *head = exec_list_get_head(&block->instr_list); return exec_node_data(nir_instr, head, node); } static inline nir_instr * nir_block_last_instr(nir_block *block) { struct exec_node *tail = exec_list_get_tail(&block->instr_list); return exec_node_data(nir_instr, tail, node); } #define nir_foreach_instr(block, instr) \ foreach_list_typed(nir_instr, instr, node, &(block)->instr_list) #define nir_foreach_instr_reverse(block, instr) \ foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list) #define nir_foreach_instr_safe(block, instr) \ foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list) #define nir_foreach_instr_reverse_safe(block, instr) \ foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list) typedef struct nir_if { nir_cf_node cf_node; nir_src condition; struct exec_list then_list; /** < list of nir_cf_node */ struct exec_list else_list; /** < list of nir_cf_node */ } nir_if; static inline nir_cf_node * nir_if_first_then_node(nir_if *if_stmt) { struct exec_node *head = exec_list_get_head(&if_stmt->then_list); return exec_node_data(nir_cf_node, head, node); } static inline nir_cf_node * nir_if_last_then_node(nir_if *if_stmt) { struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list); return exec_node_data(nir_cf_node, tail, node); } static inline nir_cf_node * nir_if_first_else_node(nir_if *if_stmt) { struct exec_node *head = exec_list_get_head(&if_stmt->else_list); return exec_node_data(nir_cf_node, head, node); } static inline nir_cf_node * nir_if_last_else_node(nir_if *if_stmt) { struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list); return exec_node_data(nir_cf_node, tail, node); } typedef struct { nir_cf_node cf_node; struct exec_list body; /** < list of nir_cf_node */ } nir_loop; static inline nir_cf_node * nir_loop_first_cf_node(nir_loop *loop) { return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node); } static inline nir_cf_node * nir_loop_last_cf_node(nir_loop *loop) { return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node); } /** * Various bits of metadata that can may be created or required by * optimization and analysis passes */ typedef enum { nir_metadata_none = 0x0, nir_metadata_block_index = 0x1, nir_metadata_dominance = 0x2, nir_metadata_live_ssa_defs = 0x4, nir_metadata_not_properly_reset = 0x8, } nir_metadata; typedef struct { nir_cf_node cf_node; /** pointer to the overload of which this is an implementation */ struct nir_function_overload *overload; struct exec_list body; /** < list of nir_cf_node */ nir_block *end_block; /** list for all local variables in the function */ struct exec_list locals; /** array of variables used as parameters */ unsigned num_params; nir_variable **params; /** variable used to hold the result of the function */ nir_variable *return_var; /** list of local registers in the function */ struct exec_list registers; /** next available local register index */ unsigned reg_alloc; /** next available SSA value index */ unsigned ssa_alloc; /* total number of basic blocks, only valid when block_index_dirty = false */ unsigned num_blocks; nir_metadata valid_metadata; } nir_function_impl; static inline nir_block * nir_start_block(nir_function_impl *impl) { return (nir_block *) exec_list_get_head(&impl->body); } static inline nir_cf_node * nir_cf_node_next(nir_cf_node *node) { struct exec_node *next = exec_node_get_next(&node->node); if (exec_node_is_tail_sentinel(next)) return NULL; else return exec_node_data(nir_cf_node, next, node); } static inline nir_cf_node * nir_cf_node_prev(nir_cf_node *node) { struct exec_node *prev = exec_node_get_prev(&node->node); if (exec_node_is_head_sentinel(prev)) return NULL; else return exec_node_data(nir_cf_node, prev, node); } static inline bool nir_cf_node_is_first(const nir_cf_node *node) { return exec_node_is_head_sentinel(node->node.prev); } static inline bool nir_cf_node_is_last(const nir_cf_node *node) { return exec_node_is_tail_sentinel(node->node.next); } NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node) NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node) NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node) NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node) typedef enum { nir_parameter_in, nir_parameter_out, nir_parameter_inout, } nir_parameter_type; typedef struct { nir_parameter_type param_type; const struct glsl_type *type; } nir_parameter; typedef struct nir_function_overload { struct exec_node node; unsigned num_params; nir_parameter *params; const struct glsl_type *return_type; nir_function_impl *impl; /** < NULL if the overload is only declared yet */ /** pointer to the function of which this is an overload */ struct nir_function *function; } nir_function_overload; typedef struct nir_function { struct exec_node node; struct exec_list overload_list; /** < list of nir_function_overload */ const char *name; struct nir_shader *shader; } nir_function; #define nir_function_first_overload(func) \ exec_node_data(nir_function_overload, \ exec_list_get_head(&(func)->overload_list), node) typedef struct nir_shader_compiler_options { bool lower_ffma; bool lower_flrp; bool lower_fpow; bool lower_fsat; bool lower_fsqrt; /** lowers fneg and ineg to fsub and isub. */ bool lower_negate; /** lowers fsub and isub to fadd+fneg and iadd+ineg. */ bool lower_sub; /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */ bool lower_scmp; /* Does the native fdot instruction replicate its result for four * components? If so, then opt_algebraic_late will turn all fdotN * instructions into fdot_replicatedN instructions. */ bool fdot_replicates; /** lowers ffract to fsub+ffloor: */ bool lower_ffract; /** * Does the driver support real 32-bit integers? (Otherwise, integers * are simulated by floats.) */ bool native_integers; } nir_shader_compiler_options; typedef struct nir_shader_info { const char *name; /* Descriptive name provided by the client; may be NULL */ const char *label; /* Number of textures used by this shader */ unsigned num_textures; /* Number of uniform buffers used by this shader */ unsigned num_ubos; /* Number of atomic buffers used by this shader */ unsigned num_abos; /* Number of shader storage buffers used by this shader */ unsigned num_ssbos; /* Number of images used by this shader */ unsigned num_images; /* Which inputs are actually read */ uint64_t inputs_read; /* Which outputs are actually written */ uint64_t outputs_written; /* Which system values are actually read */ uint64_t system_values_read; /* Which patch inputs are actually read */ uint32_t patch_inputs_read; /* Which patch outputs are actually written */ uint32_t patch_outputs_written; /* Whether or not this shader ever uses textureGather() */ bool uses_texture_gather; /* Whether or not this shader uses the gl_ClipDistance output */ bool uses_clip_distance_out; /* Whether or not separate shader objects were used */ bool separate_shader; /** Was this shader linked with any transform feedback varyings? */ bool has_transform_feedback_varyings; union { struct { /** The number of vertices recieves per input primitive */ unsigned vertices_in; /** The output primitive type (GL enum value) */ unsigned output_primitive; /** The maximum number of vertices the geometry shader might write. */ unsigned vertices_out; /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */ unsigned invocations; /** Whether or not this shader uses EndPrimitive */ bool uses_end_primitive; /** Whether or not this shader uses non-zero streams */ bool uses_streams; } gs; struct { bool uses_discard; /** * Whether early fragment tests are enabled as defined by * ARB_shader_image_load_store. */ bool early_fragment_tests; /** gl_FragDepth layout for ARB_conservative_depth. */ enum gl_frag_depth_layout depth_layout; } fs; struct { unsigned local_size[3]; } cs; struct { /** The number of vertices in the TCS output patch. */ unsigned vertices_out; } tcs; }; } nir_shader_info; typedef struct nir_shader { /** list of uniforms (nir_variable) */ struct exec_list uniforms; /** list of inputs (nir_variable) */ struct exec_list inputs; /** list of outputs (nir_variable) */ struct exec_list outputs; /** Set of driver-specific options for the shader. * * The memory for the options is expected to be kept in a single static * copy by the driver. */ const struct nir_shader_compiler_options *options; /** Various bits of compile-time information about a given shader */ struct nir_shader_info info; /** list of global variables in the shader (nir_variable) */ struct exec_list globals; /** list of system value variables in the shader (nir_variable) */ struct exec_list system_values; struct exec_list functions; /** < list of nir_function */ /** list of global register in the shader */ struct exec_list registers; /** next available global register index */ unsigned reg_alloc; /** * the highest index a load_input_*, load_uniform_*, etc. intrinsic can * access plus one */ unsigned num_inputs, num_uniforms, num_outputs; /** The shader stage, such as MESA_SHADER_VERTEX. */ gl_shader_stage stage; } nir_shader; #define nir_foreach_overload(shader, overload) \ foreach_list_typed(nir_function, func, node, &(shader)->functions) \ foreach_list_typed(nir_function_overload, overload, node, \ &(func)->overload_list) nir_shader *nir_shader_create(void *mem_ctx, gl_shader_stage stage, const nir_shader_compiler_options *options); /** creates a register, including assigning it an index and adding it to the list */ nir_register *nir_global_reg_create(nir_shader *shader); nir_register *nir_local_reg_create(nir_function_impl *impl); void nir_reg_remove(nir_register *reg); /** Adds a variable to the appropreate list in nir_shader */ void nir_shader_add_variable(nir_shader *shader, nir_variable *var); static inline void nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var) { assert(var->data.mode == nir_var_local); exec_list_push_tail(&impl->locals, &var->node); } /** creates a variable, sets a few defaults, and adds it to the list */ nir_variable *nir_variable_create(nir_shader *shader, nir_variable_mode mode, const struct glsl_type *type, const char *name); /** creates a local variable and adds it to the list */ nir_variable *nir_local_variable_create(nir_function_impl *impl, const struct glsl_type *type, const char *name); /** creates a function and adds it to the shader's list of functions */ nir_function *nir_function_create(nir_shader *shader, const char *name); /** creates a null function returning null */ nir_function_overload *nir_function_overload_create(nir_function *func); nir_function_impl *nir_function_impl_create(nir_function_overload *func); nir_block *nir_block_create(nir_shader *shader); nir_if *nir_if_create(nir_shader *shader); nir_loop *nir_loop_create(nir_shader *shader); nir_function_impl *nir_cf_node_get_function(nir_cf_node *node); /** requests that the given pieces of metadata be generated */ void nir_metadata_require(nir_function_impl *impl, nir_metadata required); /** dirties all but the preserved metadata */ void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved); /** creates an instruction with default swizzle/writemask/etc. with NULL registers */ nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op); nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type); nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader, unsigned num_components); nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op); nir_call_instr *nir_call_instr_create(nir_shader *shader, nir_function_overload *callee); nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs); nir_phi_instr *nir_phi_instr_create(nir_shader *shader); nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader); nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader, unsigned num_components); nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var); nir_deref_array *nir_deref_array_create(void *mem_ctx); nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index); nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref); nir_load_const_instr * nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref); /** * NIR Cursors and Instruction Insertion API * @{ * * A tiny struct representing a point to insert/extract instructions or * control flow nodes. Helps reduce the combinatorial explosion of possible * points to insert/extract. * * \sa nir_control_flow.h */ typedef enum { nir_cursor_before_block, nir_cursor_after_block, nir_cursor_before_instr, nir_cursor_after_instr, } nir_cursor_option; typedef struct { nir_cursor_option option; union { nir_block *block; nir_instr *instr; }; } nir_cursor; static inline nir_cursor nir_before_block(nir_block *block) { nir_cursor cursor; cursor.option = nir_cursor_before_block; cursor.block = block; return cursor; } static inline nir_cursor nir_after_block(nir_block *block) { nir_cursor cursor; cursor.option = nir_cursor_after_block; cursor.block = block; return cursor; } static inline nir_cursor nir_before_instr(nir_instr *instr) { nir_cursor cursor; cursor.option = nir_cursor_before_instr; cursor.instr = instr; return cursor; } static inline nir_cursor nir_after_instr(nir_instr *instr) { nir_cursor cursor; cursor.option = nir_cursor_after_instr; cursor.instr = instr; return cursor; } static inline nir_cursor nir_after_block_before_jump(nir_block *block) { nir_instr *last_instr = nir_block_last_instr(block); if (last_instr && last_instr->type == nir_instr_type_jump) { return nir_before_instr(last_instr); } else { return nir_after_block(block); } } static inline nir_cursor nir_before_cf_node(nir_cf_node *node) { if (node->type == nir_cf_node_block) return nir_before_block(nir_cf_node_as_block(node)); return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node))); } static inline nir_cursor nir_after_cf_node(nir_cf_node *node) { if (node->type == nir_cf_node_block) return nir_after_block(nir_cf_node_as_block(node)); return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node))); } static inline nir_cursor nir_before_cf_list(struct exec_list *cf_list) { nir_cf_node *first_node = exec_node_data(nir_cf_node, exec_list_get_head(cf_list), node); return nir_before_cf_node(first_node); } static inline nir_cursor nir_after_cf_list(struct exec_list *cf_list) { nir_cf_node *last_node = exec_node_data(nir_cf_node, exec_list_get_tail(cf_list), node); return nir_after_cf_node(last_node); } /** * Insert a NIR instruction at the given cursor. * * Note: This does not update the cursor. */ void nir_instr_insert(nir_cursor cursor, nir_instr *instr); static inline void nir_instr_insert_before(nir_instr *instr, nir_instr *before) { nir_instr_insert(nir_before_instr(instr), before); } static inline void nir_instr_insert_after(nir_instr *instr, nir_instr *after) { nir_instr_insert(nir_after_instr(instr), after); } static inline void nir_instr_insert_before_block(nir_block *block, nir_instr *before) { nir_instr_insert(nir_before_block(block), before); } static inline void nir_instr_insert_after_block(nir_block *block, nir_instr *after) { nir_instr_insert(nir_after_block(block), after); } static inline void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before) { nir_instr_insert(nir_before_cf_node(node), before); } static inline void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after) { nir_instr_insert(nir_after_cf_node(node), after); } static inline void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before) { nir_instr_insert(nir_before_cf_list(list), before); } static inline void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after) { nir_instr_insert(nir_after_cf_list(list), after); } void nir_instr_remove(nir_instr *instr); /** @} */ typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state); typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state); typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state); bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state); bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state); bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state); nir_const_value *nir_src_as_const_value(nir_src src); bool nir_src_is_dynamically_uniform(nir_src src); bool nir_srcs_equal(nir_src src1, nir_src src2); void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src); void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src); void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src); void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest); void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest, unsigned num_components, const char *name); void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def, unsigned num_components, const char *name); void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src); void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src, nir_instr *after_me); /* visits basic blocks in source-code order */ typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state); bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb, void *state); bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb, void *state); bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb, void *state); /* If the following CF node is an if, this function returns that if. * Otherwise, it returns NULL. */ nir_if *nir_block_get_following_if(nir_block *block); nir_loop *nir_block_get_following_loop(nir_block *block); void nir_index_local_regs(nir_function_impl *impl); void nir_index_global_regs(nir_shader *shader); void nir_index_ssa_defs(nir_function_impl *impl); unsigned nir_index_instrs(nir_function_impl *impl); void nir_index_blocks(nir_function_impl *impl); void nir_print_shader(nir_shader *shader, FILE *fp); void nir_print_instr(const nir_instr *instr, FILE *fp); nir_shader * nir_shader_clone(void *mem_ctx, const nir_shader *s); #ifdef DEBUG void nir_validate_shader(nir_shader *shader); void nir_metadata_set_validation_flag(nir_shader *shader); void nir_metadata_check_validation_flag(nir_shader *shader); #else static inline void nir_validate_shader(nir_shader *shader) { (void) shader; } static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; } static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; } #endif /* DEBUG */ void nir_calc_dominance_impl(nir_function_impl *impl); void nir_calc_dominance(nir_shader *shader); nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2); bool nir_block_dominates(nir_block *parent, nir_block *child); void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp); void nir_dump_dom_tree(nir_shader *shader, FILE *fp); void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp); void nir_dump_dom_frontier(nir_shader *shader, FILE *fp); void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp); void nir_dump_cfg(nir_shader *shader, FILE *fp); int nir_gs_count_vertices(const nir_shader *shader); bool nir_split_var_copies(nir_shader *shader); void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx); void nir_lower_var_copies(nir_shader *shader); bool nir_lower_global_vars_to_local(nir_shader *shader); bool nir_lower_locals_to_regs(nir_shader *shader); void nir_lower_outputs_to_temporaries(nir_shader *shader); void nir_assign_var_locations(struct exec_list *var_list, unsigned *size, int (*type_size)(const struct glsl_type *)); void nir_lower_io(nir_shader *shader, nir_variable_mode mode, int (*type_size)(const struct glsl_type *)); nir_src *nir_get_io_indirect_src(nir_intrinsic_instr *instr); nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr); void nir_lower_vars_to_ssa(nir_shader *shader); bool nir_remove_dead_variables(nir_shader *shader); void nir_move_vec_src_uses_to_dest(nir_shader *shader); bool nir_lower_vec_to_movs(nir_shader *shader); void nir_lower_alu_to_scalar(nir_shader *shader); void nir_lower_load_const_to_scalar(nir_shader *shader); void nir_lower_phis_to_scalar(nir_shader *shader); void nir_lower_samplers(nir_shader *shader, const struct gl_shader_program *shader_program); bool nir_lower_system_values(nir_shader *shader); typedef struct nir_lower_tex_options { /** * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which * sampler types a texture projector is lowered. */ unsigned lower_txp; /** * If true, lower rect textures to 2D, using txs to fetch the * texture dimensions and dividing the texture coords by the * texture dims to normalize. */ bool lower_rect; /** * To emulate certain texture wrap modes, this can be used * to saturate the specified tex coord to [0.0, 1.0]. The * bits are according to sampler #, ie. if, for example: * * (conf->saturate_s & (1 << n)) * * is true, then the s coord for sampler n is saturated. * * Note that clamping must happen *after* projector lowering * so any projected texture sample instruction with a clamped * coordinate gets automatically lowered, regardless of the * 'lower_txp' setting. */ unsigned saturate_s; unsigned saturate_t; unsigned saturate_r; /* Bitmask of samplers that need swizzling. * * If (swizzle_result & (1 << sampler_index)), then the swizzle in * swizzles[sampler_index] is applied to the result of the texturing * operation. */ unsigned swizzle_result; /* A swizzle for each sampler. Values 0-3 represent x, y, z, or w swizzles * while 4 and 5 represent 0 and 1 respectively. */ uint8_t swizzles[32][4]; } nir_lower_tex_options; bool nir_lower_tex(nir_shader *shader, const nir_lower_tex_options *options); void nir_lower_idiv(nir_shader *shader); void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables); void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables); void nir_lower_two_sided_color(nir_shader *shader); void nir_lower_atomics(nir_shader *shader, const struct gl_shader_program *shader_program); void nir_lower_to_source_mods(nir_shader *shader); bool nir_lower_gs_intrinsics(nir_shader *shader); bool nir_normalize_cubemap_coords(nir_shader *shader); void nir_live_ssa_defs_impl(nir_function_impl *impl); bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b); void nir_convert_to_ssa_impl(nir_function_impl *impl); void nir_convert_to_ssa(nir_shader *shader); /* If phi_webs_only is true, only convert SSA values involved in phi nodes to * registers. If false, convert all values (even those not involved in a phi * node) to registers. */ void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only); bool nir_opt_algebraic(nir_shader *shader); bool nir_opt_algebraic_late(nir_shader *shader); bool nir_opt_constant_folding(nir_shader *shader); bool nir_opt_global_to_local(nir_shader *shader); bool nir_copy_prop(nir_shader *shader); bool nir_opt_cse(nir_shader *shader); bool nir_opt_dce(nir_shader *shader); bool nir_opt_dead_cf(nir_shader *shader); void nir_opt_gcm(nir_shader *shader); bool nir_opt_peephole_select(nir_shader *shader); bool nir_opt_remove_phis(nir_shader *shader); bool nir_opt_undef(nir_shader *shader); void nir_sweep(nir_shader *shader); nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val); gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin); #ifdef __cplusplus } /* extern "C" */ #endif