/* * Copyright © 2014 Connor Abbott * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #pragma once #include "util/hash_table.h" #include "main/set.h" #include "../list.h" #include "GL/gl.h" /* GLenum */ #include "util/ralloc.h" #include "main/mtypes.h" #include "nir_types.h" #include #ifdef __cplusplus extern "C" { #endif struct nir_function_overload; struct nir_function; /** * Description of built-in state associated with a uniform * * \sa nir_variable::state_slots */ typedef struct { int tokens[5]; int swizzle; } nir_state_slot; typedef enum { nir_var_shader_in, nir_var_shader_out, nir_var_global, nir_var_local, nir_var_uniform, nir_var_system_value } nir_variable_mode; /** * Data stored in an nir_constant */ union nir_constant_data { unsigned u[16]; int i[16]; float f[16]; bool b[16]; }; typedef struct nir_constant { /** * Value of the constant. * * The field used to back the values supplied by the constant is determined * by the type associated with the \c ir_instruction. Constants may be * scalars, vectors, or matrices. */ union nir_constant_data value; /* Array elements / Structure Fields */ struct nir_constant **elements; } nir_constant; /** * \brief Layout qualifiers for gl_FragDepth. * * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared * with a layout qualifier. */ typedef enum { nir_depth_layout_none, /**< No depth layout is specified. */ nir_depth_layout_any, nir_depth_layout_greater, nir_depth_layout_less, nir_depth_layout_unchanged } nir_depth_layout; /** * Either a uniform, global variable, shader input, or shader output. Based on * ir_variable - it should be easy to translate between the two. */ typedef struct { struct exec_node node; /** * Declared type of the variable */ const struct glsl_type *type; /** * Declared name of the variable */ char *name; /** * For variables which satisfy the is_interface_instance() predicate, this * points to an array of integers such that if the ith member of the * interface block is an array, max_ifc_array_access[i] is the maximum * array element of that member that has been accessed. If the ith member * of the interface block is not an array, max_ifc_array_access[i] is * unused. * * For variables whose type is not an interface block, this pointer is * NULL. */ unsigned *max_ifc_array_access; struct nir_variable_data { /** * Is the variable read-only? * * This is set for variables declared as \c const, shader inputs, * and uniforms. */ unsigned read_only:1; unsigned centroid:1; unsigned sample:1; unsigned invariant:1; /** * Storage class of the variable. * * \sa nir_variable_mode */ nir_variable_mode mode:4; /** * Interpolation mode for shader inputs / outputs * * \sa ir_variable_interpolation */ unsigned interpolation:2; /** * \name ARB_fragment_coord_conventions * @{ */ unsigned origin_upper_left:1; unsigned pixel_center_integer:1; /*@}*/ /** * Was the location explicitly set in the shader? * * If the location is explicitly set in the shader, it \b cannot be changed * by the linker or by the API (e.g., calls to \c glBindAttribLocation have * no effect). */ unsigned explicit_location:1; unsigned explicit_index:1; /** * Was an initial binding explicitly set in the shader? * * If so, constant_value contains an integer ir_constant representing the * initial binding point. */ unsigned explicit_binding:1; /** * Does this variable have an initializer? * * This is used by the linker to cross-validiate initializers of global * variables. */ unsigned has_initializer:1; /** * Is this variable a generic output or input that has not yet been matched * up to a variable in another stage of the pipeline? * * This is used by the linker as scratch storage while assigning locations * to generic inputs and outputs. */ unsigned is_unmatched_generic_inout:1; /** * If non-zero, then this variable may be packed along with other variables * into a single varying slot, so this offset should be applied when * accessing components. For example, an offset of 1 means that the x * component of this variable is actually stored in component y of the * location specified by \c location. */ unsigned location_frac:2; /** * Non-zero if this variable was created by lowering a named interface * block which was not an array. * * Note that this variable and \c from_named_ifc_block_array will never * both be non-zero. */ unsigned from_named_ifc_block_nonarray:1; /** * Non-zero if this variable was created by lowering a named interface * block which was an array. * * Note that this variable and \c from_named_ifc_block_nonarray will never * both be non-zero. */ unsigned from_named_ifc_block_array:1; /** * \brief Layout qualifier for gl_FragDepth. * * This is not equal to \c ir_depth_layout_none if and only if this * variable is \c gl_FragDepth and a layout qualifier is specified. */ nir_depth_layout depth_layout; /** * Storage location of the base of this variable * * The precise meaning of this field depends on the nature of the variable. * * - Vertex shader input: one of the values from \c gl_vert_attrib. * - Vertex shader output: one of the values from \c gl_varying_slot. * - Geometry shader input: one of the values from \c gl_varying_slot. * - Geometry shader output: one of the values from \c gl_varying_slot. * - Fragment shader input: one of the values from \c gl_varying_slot. * - Fragment shader output: one of the values from \c gl_frag_result. * - Uniforms: Per-stage uniform slot number for default uniform block. * - Uniforms: Index within the uniform block definition for UBO members. * - Other: This field is not currently used. * * If the variable is a uniform, shader input, or shader output, and the * slot has not been assigned, the value will be -1. */ int location; /** * The actual location of the variable in the IR. Only valid for inputs * and outputs. */ unsigned int driver_location; /** * output index for dual source blending. */ int index; /** * Initial binding point for a sampler or UBO. * * For array types, this represents the binding point for the first element. */ int binding; /** * Location an atomic counter is stored at. */ struct { unsigned buffer_index; unsigned offset; } atomic; /** * ARB_shader_image_load_store qualifiers. */ struct { bool read_only; /**< "readonly" qualifier. */ bool write_only; /**< "writeonly" qualifier. */ bool coherent; bool _volatile; bool restrict_flag; /** Image internal format if specified explicitly, otherwise GL_NONE. */ GLenum format; } image; /** * Highest element accessed with a constant expression array index * * Not used for non-array variables. */ unsigned max_array_access; } data; /** * Built-in state that backs this uniform * * Once set at variable creation, \c state_slots must remain invariant. * This is because, ideally, this array would be shared by all clones of * this variable in the IR tree. In other words, we'd really like for it * to be a fly-weight. * * If the variable is not a uniform, \c num_state_slots will be zero and * \c state_slots will be \c NULL. */ /*@{*/ unsigned num_state_slots; /**< Number of state slots used */ nir_state_slot *state_slots; /**< State descriptors. */ /*@}*/ /** * Value assigned in the initializer of a variable declared "const" */ nir_constant *constant_value; /** * Constant expression assigned in the initializer of the variable * * \warning * This field and \c ::constant_value are distinct. Even if the two fields * refer to constants with the same value, they must point to separate * objects. */ nir_constant *constant_initializer; /** * For variables that are in an interface block or are an instance of an * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block. * * \sa ir_variable::location */ const struct glsl_type *interface_type; } nir_variable; typedef struct { struct exec_node node; unsigned num_components; /** < number of vector components */ unsigned num_array_elems; /** < size of array (0 for no array) */ /** for liveness analysis, the index in the bit-array of live variables */ unsigned index; /** only for debug purposes, can be NULL */ const char *name; /** whether this register is local (per-function) or global (per-shader) */ bool is_global; /** * If this flag is set to true, then accessing channels >= num_components * is well-defined, and simply spills over to the next array element. This * is useful for backends that can do per-component accessing, in * particular scalar backends. By setting this flag and making * num_components equal to 1, structures can be packed tightly into * registers and then registers can be accessed per-component to get to * each structure member, even if it crosses vec4 boundaries. */ bool is_packed; /** set of nir_instr's where this register is used (read from) */ struct set *uses; /** set of nir_instr's where this register is defined (written to) */ struct set *defs; /** set of ifs where this register is used as a condition */ struct set *if_uses; } nir_register; typedef enum { nir_instr_type_alu, nir_instr_type_call, nir_instr_type_texture, nir_instr_type_intrinsic, nir_instr_type_load_const, nir_instr_type_jump, nir_instr_type_ssa_undef, nir_instr_type_phi, } nir_instr_type; typedef struct { struct exec_node node; nir_instr_type type; struct nir_block *block; } nir_instr; #define nir_instr_next(instr) \ exec_node_data(nir_instr, (instr)->node.next, node) #define nir_instr_prev(instr) \ exec_node_data(nir_instr, (instr)->node.prev, node) typedef struct { /** for debugging only, can be NULL */ const char* name; /** index into the bit-array for liveness analysis */ unsigned index; nir_instr *parent_instr; struct set *uses; struct set *if_uses; uint8_t num_components; } nir_ssa_def; struct nir_src; typedef struct { nir_register *reg; struct nir_src *indirect; /** < NULL for no indirect offset */ unsigned base_offset; /* TODO use-def chain goes here */ } nir_reg_src; typedef struct { nir_register *reg; struct nir_src *indirect; /** < NULL for no indirect offset */ unsigned base_offset; /* TODO def-use chain goes here */ } nir_reg_dest; typedef struct nir_src { union { nir_reg_src reg; nir_ssa_def *ssa; }; bool is_ssa; } nir_src; typedef struct { union { nir_reg_dest reg; nir_ssa_def ssa; }; bool is_ssa; } nir_dest; nir_src nir_src_copy(nir_src src, void *mem_ctx); nir_dest nir_dest_copy(nir_dest dest, void *mem_ctx); typedef struct { nir_src src; /** * \name input modifiers */ /*@{*/ /** * For inputs interpreted as a floating point, flips the sign bit. For inputs * interpreted as an integer, performs the two's complement negation. */ bool negate; /** * Clears the sign bit for floating point values, and computes the integer * absolute value for integers. Note that the negate modifier acts after * the absolute value modifier, therefore if both are set then all inputs * will become negative. */ bool abs; /*@}*/ /** * For each input component, says which component of the register it is * chosen from. Note that which elements of the swizzle are used and which * are ignored are based on the write mask for most opcodes - for example, * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and * a swizzle of {2, x, 1, 0} where x means "don't care." */ uint8_t swizzle[4]; } nir_alu_src; typedef struct { nir_dest dest; /** * \name saturate output modifier * * Only valid for opcodes that output floating-point numbers. Clamps the * output to between 0.0 and 1.0 inclusive. */ bool saturate; unsigned write_mask : 4; /* ignored if dest.is_ssa is true */ } nir_alu_dest; #define OPCODE(name, num_inputs, per_component, output_size, output_type, \ input_sizes, input_types) \ nir_op_##name, #define LAST_OPCODE(name) nir_last_opcode = nir_op_##name, typedef enum { #include "nir_opcodes.h" nir_num_opcodes = nir_last_opcode + 1 } nir_op; #undef OPCODE #undef LAST_OPCODE typedef enum { nir_type_float, nir_type_int, nir_type_unsigned, nir_type_bool } nir_alu_type; typedef struct { const char *name; unsigned num_inputs; /** * If true, the opcode acts in the standard, per-component manner; the * operation is performed on each component (except the ones that are masked * out) with the input being taken from the input swizzle for that component. * * If false, the size of the output and inputs are explicitly given; swizzle * and writemask are still in effect, but if the output component is masked * out, then the input component may still be in use. * * The size of some of the inputs may be given (i.e. non-zero) even though * per_component is false; in that case, each component of the input acts * per-component, while the rest of the inputs and the output are normal. * For example, for conditional select the condition is per-component but * everything else is normal. */ bool per_component; /** * If per_component is false, the number of components in the output. */ unsigned output_size; /** * The type of vector that the instruction outputs. Note that this * determines whether the saturate modifier is allowed. */ nir_alu_type output_type; /** * If per_component is false, the number of components in each input. */ unsigned input_sizes[4]; /** * The type of vector that each input takes. Note that negate is only * allowed on inputs with int or float type, and behaves differently on the * two, and absolute value is only allowed on float type inputs. */ nir_alu_type input_types[4]; } nir_op_info; extern const nir_op_info nir_op_infos[nir_num_opcodes]; typedef struct nir_alu_instr { nir_instr instr; nir_op op; bool has_predicate; nir_src predicate; nir_alu_dest dest; nir_alu_src src[]; } nir_alu_instr; /* is this source channel used? */ static inline bool nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel) { if (nir_op_infos[instr->op].input_sizes[src] > 0) return channel < nir_op_infos[instr->op].input_sizes[src]; return (instr->dest.write_mask >> channel) & 1; } typedef enum { nir_deref_type_var, nir_deref_type_array, nir_deref_type_struct } nir_deref_type; typedef struct nir_deref { nir_deref_type deref_type; struct nir_deref *child; const struct glsl_type *type; } nir_deref; typedef struct { nir_deref deref; nir_variable *var; } nir_deref_var; typedef struct { nir_deref deref; unsigned base_offset; bool has_indirect; nir_src indirect; } nir_deref_array; typedef struct { nir_deref deref; const char *elem; } nir_deref_struct; #define nir_deref_as_var(_deref) exec_node_data(nir_deref_var, _deref, deref) #define nir_deref_as_array(_deref) \ exec_node_data(nir_deref_array, _deref, deref) #define nir_deref_as_struct(_deref) \ exec_node_data(nir_deref_struct, _deref, deref) typedef struct { nir_instr instr; unsigned num_params; nir_deref_var **params; nir_deref_var *return_deref; bool has_predicate; nir_src predicate; struct nir_function_overload *callee; } nir_call_instr; #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \ num_variables, num_indices, flags) \ nir_intrinsic_##name, #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name, typedef enum { #include "nir_intrinsics.h" nir_num_intrinsics = nir_last_intrinsic + 1 } nir_intrinsic_op; #undef INTRINSIC #undef LAST_INTRINSIC typedef struct { nir_instr instr; nir_intrinsic_op intrinsic; nir_dest dest; int const_index[3]; nir_deref_var *variables[2]; bool has_predicate; nir_src predicate; nir_src src[]; } nir_intrinsic_instr; /** * \name NIR intrinsics semantic flags * * information about what the compiler can do with the intrinsics. * * \sa nir_intrinsic_info::flags */ /*@{*/ /** * whether the intrinsic can be safely eliminated if none of its register * outputs are being used. */ #define NIR_INTRINSIC_CAN_ELIMINATE (1 << 0) /** * Whether the intrinsic can be reordered with respect to any other intrinsic, * i.e. whether the only reodering dependencies of the intrinsic are due to the * register reads/writes. */ #define NIR_INTRINSIC_CAN_REORDER (1 << 1) /*@}*/ #define NIR_INTRINSIC_MAX_INPUTS 4 typedef struct { const char *name; unsigned num_srcs; /** < number of register/SSA inputs */ /** number of components of each input register */ unsigned src_components[NIR_INTRINSIC_MAX_INPUTS]; bool has_dest; /** number of components of each output register */ unsigned dest_components; /** the number of inputs/outputs that are variables */ unsigned num_variables; /** the number of constant indices used by the intrinsic */ unsigned num_indices; /** semantic flags for calls to this intrinsic */ unsigned flags; } nir_intrinsic_info; extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics]; /** * \group texture information * * This gives semantic information about textures which is useful to the * frontend, the backend, and lowering passes, but not the optimizer. */ typedef enum { nir_tex_src_coord, nir_tex_src_projector, nir_tex_src_comparitor, /* shadow comparitor */ nir_tex_src_offset, nir_tex_src_bias, nir_tex_src_lod, nir_tex_src_ms_index, /* MSAA sample index */ nir_tex_src_ddx, nir_tex_src_ddy, nir_tex_src_sampler_index, /* < dynamically uniform indirect index */ nir_num_texinput_types } nir_texinput_type; typedef enum { nir_texop_tex, /**< Regular texture look-up */ nir_texop_txb, /**< Texture look-up with LOD bias */ nir_texop_txl, /**< Texture look-up with explicit LOD */ nir_texop_txd, /**< Texture look-up with partial derivatvies */ nir_texop_txf, /**< Texel fetch with explicit LOD */ nir_texop_txf_ms, /**< Multisample texture fetch */ nir_texop_txs, /**< Texture size */ nir_texop_lod, /**< Texture lod query */ nir_texop_tg4, /**< Texture gather */ nir_texop_query_levels /**< Texture levels query */ } nir_texop; typedef struct { nir_instr instr; bool has_predicate; nir_src predicate; enum glsl_sampler_dim sampler_dim; nir_alu_type dest_type; nir_texop op; nir_dest dest; nir_src src[4]; nir_texinput_type src_type[4]; unsigned num_srcs, coord_components; bool is_array, is_shadow; /** * If is_shadow is true, whether this is the old-style shadow that outputs 4 * components or the new-style shadow that outputs 1 component. */ bool is_new_style_shadow; /* constant offset - must be 0 if the offset source is used */ int const_offset[4]; /* gather component selector */ unsigned component : 2; unsigned sampler_index; nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */ } nir_tex_instr; static inline unsigned nir_tex_instr_dest_size(nir_tex_instr *instr) { if (instr->op == nir_texop_txs) { unsigned ret; switch (instr->sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_BUF: ret = 1; break; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_CUBE: case GLSL_SAMPLER_DIM_MS: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_EXTERNAL: ret = 2; break; case GLSL_SAMPLER_DIM_3D: ret = 3; break; default: assert(0); break; } if (instr->is_array) ret++; return ret; } if (instr->op == nir_texop_query_levels) return 2; if (instr->is_shadow && instr->is_new_style_shadow) return 1; return 4; } static inline unsigned nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src) { if (instr->src_type[src] == nir_tex_src_coord) return instr->coord_components; if (instr->src_type[src] == nir_tex_src_offset || instr->src_type[src] == nir_tex_src_ddx || instr->src_type[src] == nir_tex_src_ddy) { if (instr->is_array) return instr->coord_components - 1; else return instr->coord_components; } return 1; } static inline int nir_tex_instr_src_index(nir_tex_instr *instr, nir_texinput_type type) { for (unsigned i = 0; i < instr->num_srcs; i++) if (instr->src_type[i] == type) return (int) i; return -1; } typedef struct { union { float f[4]; int32_t i[4]; uint32_t u[4]; }; } nir_const_value; typedef struct { nir_instr instr; union { nir_const_value value; nir_const_value *array; }; unsigned num_components; /** * The number of constant array elements to be copied into the variable. If * this != 0, then value.array holds the array of size array_elems; * otherwise, value.value holds the single vector constant (the more common * case, and the only case for SSA destinations). */ unsigned array_elems; bool has_predicate; nir_src predicate; nir_dest dest; } nir_load_const_instr; typedef enum { nir_jump_return, nir_jump_break, nir_jump_continue, } nir_jump_type; typedef struct { nir_instr instr; nir_jump_type type; } nir_jump_instr; /* creates a new SSA variable in an undefined state */ typedef struct { nir_instr instr; nir_ssa_def def; } nir_ssa_undef_instr; typedef struct { struct exec_node node; struct nir_block *pred; nir_src src; } nir_phi_src; typedef struct { nir_instr instr; struct exec_list srcs; nir_dest dest; } nir_phi_instr; #define nir_instr_as_alu(_instr) exec_node_data(nir_alu_instr, _instr, instr) #define nir_instr_as_call(_instr) exec_node_data(nir_call_instr, _instr, instr) #define nir_instr_as_jump(_instr) exec_node_data(nir_jump_instr, _instr, instr) #define nir_instr_as_texture(_instr) \ exec_node_data(nir_tex_instr, _instr, instr) #define nir_instr_as_intrinsic(_instr) \ exec_node_data(nir_intrinsic_instr, _instr, instr) #define nir_instr_as_load_const(_instr) \ exec_node_data(nir_load_const_instr, _instr, instr) #define nir_instr_as_ssa_undef(_instr) \ exec_node_data(nir_ssa_undef_instr, _instr, instr) #define nir_instr_as_phi(_instr) \ exec_node_data(nir_phi_instr, _instr, instr) /* * Control flow * * Control flow consists of a tree of control flow nodes, which include * if-statements and loops. The leaves of the tree are basic blocks, lists of * instructions that always run start-to-finish. Each basic block also keeps * track of its successors (blocks which may run immediately after the current * block) and predecessors (blocks which could have run immediately before the * current block). Each function also has a start block and an end block which * all return statements point to (which is always empty). Together, all the * blocks with their predecessors and successors make up the control flow * graph (CFG) of the function. There are helpers that modify the tree of * control flow nodes while modifying the CFG appropriately; these should be * used instead of modifying the tree directly. */ typedef enum { nir_cf_node_block, nir_cf_node_if, nir_cf_node_loop, nir_cf_node_function } nir_cf_node_type; typedef struct nir_cf_node { struct exec_node node; nir_cf_node_type type; struct nir_cf_node *parent; } nir_cf_node; typedef struct nir_block { nir_cf_node cf_node; struct exec_list instr_list; unsigned index; /* * Each block can only have up to 2 successors, so we put them in a simple * array - no need for anything more complicated. */ struct nir_block *successors[2]; struct set *predecessors; } nir_block; #define nir_block_first_instr(block) \ exec_node_data(nir_instr, exec_list_get_head(&(block)->instr_list), node) #define nir_block_last_instr(block) \ exec_node_data(nir_instr, exec_list_get_tail(&(block)->instr_list), node) #define nir_foreach_instr(block, instr) \ foreach_list_typed(nir_instr, instr, node, &(block)->instr_list) #define nir_foreach_instr_reverse(block, instr) \ foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list) #define nir_foreach_instr_safe(block, instr) \ foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list) typedef struct { nir_cf_node cf_node; nir_src condition; struct exec_list then_list; struct exec_list else_list; } nir_if; #define nir_if_first_then_node(if) \ exec_node_data(nir_cf_node, exec_list_get_head(&(if)->then_list), node) #define nir_if_last_then_node(if) \ exec_node_data(nir_cf_node, exec_list_get_tail(&(if)->then_list), node) #define nir_if_first_else_node(if) \ exec_node_data(nir_cf_node, exec_list_get_head(&(if)->else_list), node) #define nir_if_last_else_node(if) \ exec_node_data(nir_cf_node, exec_list_get_tail(&(if)->else_list), node) typedef struct { nir_cf_node cf_node; struct exec_list body; } nir_loop; #define nir_loop_first_cf_node(loop) \ exec_node_data(nir_cf_node, exec_list_get_head(&(loop)->body), node) #define nir_loop_last_cf_node(loop) \ exec_node_data(nir_cf_node, exec_list_get_tail(&(loop)->body), node) typedef struct { nir_cf_node cf_node; /** pointer to the overload of which this is an implementation */ struct nir_function_overload *overload; struct exec_list body; /** < list of nir_cf_node */ nir_block *start_block, *end_block; /** list for all local variables in the function */ struct exec_list locals; /** array of variables used as parameters */ unsigned num_params; nir_variable **params; /** variable used to hold the result of the function */ nir_variable *return_var; /** list of local registers in the function */ struct exec_list registers; /** next available local register index */ unsigned reg_alloc; /** next available SSA value index */ unsigned ssa_alloc; /* total number of basic blocks, only valid when block_index_dirty = false */ unsigned num_blocks; bool block_index_dirty; } nir_function_impl; #define nir_cf_node_next(_node) \ exec_node_data(nir_cf_node, exec_node_get_next(&(_node)->node), node) #define nir_cf_node_prev(_node) \ exec_node_data(nir_cf_node, exec_node_get_prev(&(_node)->node), node) #define nir_cf_node_is_first(_node) \ exec_node_is_head_sentinel((_node)->node.prev) #define nir_cf_node_is_last(_node) \ exec_node_is_tail_sentinel((_node)->node.next) #define nir_cf_node_as_block(node) \ exec_node_data(nir_block, node, cf_node) #define nir_cf_node_as_if(node) \ exec_node_data(nir_if, node, cf_node) #define nir_cf_node_as_loop(node) \ exec_node_data(nir_loop, node, cf_node) #define nir_cf_node_as_function(node) \ exec_node_data(nir_function_impl, node, cf_node) typedef enum { nir_parameter_in, nir_parameter_out, nir_parameter_inout, } nir_parameter_type; typedef struct { nir_parameter_type param_type; const struct glsl_type *type; } nir_parameter; typedef struct nir_function_overload { struct exec_node node; unsigned num_params; nir_parameter *params; const struct glsl_type *return_type; nir_function_impl *impl; /** < NULL if the overload is only declared yet */ /** pointer to the function of which this is an overload */ struct nir_function *function; } nir_function_overload; typedef struct nir_function { struct exec_node node; struct exec_list overload_list; const char *name; } nir_function; #define nir_function_first_overload(func) \ exec_node_data(nir_function_overload, \ exec_list_get_head(&(func)->overload_list), node) typedef struct nir_shader { /** hash table of name -> uniform */ struct hash_table *uniforms; /** hash table of name -> input */ struct hash_table *inputs; /** hash table of name -> output */ struct hash_table *outputs; /** list of global variables in the shader */ struct exec_list globals; struct exec_list system_values; struct exec_list functions; /** list of global registers in the shader */ struct exec_list registers; /** structures used in this shader */ unsigned num_user_structures; struct glsl_type **user_structures; /** next available global register index */ unsigned reg_alloc; /** * the highest index a load_input_*, load_uniform_*, etc. intrinsic can * access plus one */ unsigned num_inputs, num_uniforms, num_outputs; } nir_shader; #define nir_foreach_overload(shader, overload) \ foreach_list_typed(nir_function, func, node, &(shader)->functions) \ foreach_list_typed(nir_function_overload, overload, node, \ &(func)->overload_list) nir_shader *nir_shader_create(void *mem_ctx); /** creates a register, including assigning it an index and adding it to the list */ nir_register *nir_global_reg_create(nir_shader *shader); nir_register *nir_local_reg_create(nir_function_impl *impl); void nir_reg_remove(nir_register *reg); /** creates a function and adds it to the shader's list of functions */ nir_function *nir_function_create(nir_shader *shader, const char *name); /** creates a null function returning null */ nir_function_overload *nir_function_overload_create(nir_function *func); nir_function_impl *nir_function_impl_create(nir_function_overload *func); nir_block *nir_block_create(void *mem_ctx); nir_if *nir_if_create(void *mem_ctx); nir_loop *nir_loop_create(void *mem_ctx); nir_function_impl *nir_cf_node_get_function(nir_cf_node *node); /** puts a control flow node immediately after another control flow node */ void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after); /** puts a control flow node immediately before another control flow node */ void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before); /** puts a control flow node at the beginning of a list from an if, loop, or function */ void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node); /** puts a control flow node at the end of a list from an if, loop, or function */ void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node); /** removes a control flow node, doing any cleanup necessary */ void nir_cf_node_remove(nir_cf_node *node); /** creates an instruction with default swizzle/writemask/etc. with NULL registers */ nir_alu_instr *nir_alu_instr_create(void *mem_ctx, nir_op op); nir_jump_instr *nir_jump_instr_create(void *mem_ctx, nir_jump_type type); nir_load_const_instr *nir_load_const_instr_create(void *mem_ctx); nir_intrinsic_instr *nir_intrinsic_instr_create(void *mem_ctx, nir_intrinsic_op op); nir_call_instr *nir_call_instr_create(void *mem_ctx, nir_function_overload *callee); nir_tex_instr *nir_tex_instr_create(void *mem_ctx, unsigned num_srcs); nir_phi_instr *nir_phi_instr_create(void *mem_ctx); nir_ssa_undef_instr *nir_ssa_undef_instr_create(void *mem_ctx); nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var); nir_deref_array *nir_deref_array_create(void *mem_ctx); nir_deref_struct *nir_deref_struct_create(void *mem_ctx, const char *field); nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref); void nir_instr_insert_before(nir_instr *instr, nir_instr *before); void nir_instr_insert_after(nir_instr *instr, nir_instr *after); void nir_instr_insert_before_block(nir_block *block, nir_instr *before); void nir_instr_insert_after_block(nir_block *block, nir_instr *after); void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before); void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after); void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before); void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after); void nir_instr_remove(nir_instr *instr); typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state); typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state); bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state); bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state); /* visits basic blocks in source-code order */ typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state); bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb, void *state); void nir_index_local_regs(nir_function_impl *impl); void nir_index_global_regs(nir_shader *shader); void nir_index_ssa_defs(nir_function_impl *impl); void nir_index_blocks(nir_function_impl *impl); void nir_print_shader(nir_shader *shader, FILE *fp); void nir_validate_shader(nir_shader *shader); void nir_lower_variables_scalar(nir_shader *shader, bool lower_globals, bool lower_io, bool add_names, bool native_integers); void nir_remove_dead_variables(nir_shader *shader); void nir_lower_samplers(nir_shader *shader, struct gl_shader_program *shader_program, struct gl_program *prog); #ifdef __cplusplus } /* extern "C" */ #endif