/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #include "nir.h" #include nir_shader * nir_shader_create(void *mem_ctx) { nir_shader *shader = ralloc(mem_ctx, nir_shader); shader->uniforms = _mesa_hash_table_create(shader, _mesa_key_hash_string, _mesa_key_string_equal); shader->inputs = _mesa_hash_table_create(shader, _mesa_key_hash_string, _mesa_key_string_equal); shader->outputs = _mesa_hash_table_create(shader, _mesa_key_hash_string, _mesa_key_string_equal); shader->num_user_structures = 0; shader->user_structures = NULL; exec_list_make_empty(&shader->functions); exec_list_make_empty(&shader->registers); exec_list_make_empty(&shader->globals); exec_list_make_empty(&shader->system_values); shader->reg_alloc = 0; shader->num_inputs = 0; shader->num_outputs = 0; shader->num_uniforms = 0; return shader; } static nir_register * reg_create(void *mem_ctx, struct exec_list *list) { nir_register *reg = ralloc(mem_ctx, nir_register); reg->uses = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal); reg->defs = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal); reg->if_uses = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal); reg->num_components = 0; reg->num_array_elems = 0; reg->is_packed = false; reg->name = NULL; exec_list_push_tail(list, ®->node); return reg; } nir_register * nir_global_reg_create(nir_shader *shader) { nir_register *reg = reg_create(shader, &shader->registers); reg->index = shader->reg_alloc++; reg->is_global = true; return reg; } nir_register * nir_local_reg_create(nir_function_impl *impl) { nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers); reg->index = impl->reg_alloc++; reg->is_global = false; return reg; } void nir_reg_remove(nir_register *reg) { exec_node_remove(®->node); } nir_function * nir_function_create(nir_shader *shader, const char *name) { nir_function *func = ralloc(shader, nir_function); exec_list_push_tail(&shader->functions, &func->node); exec_list_make_empty(&func->overload_list); func->name = name; func->shader = shader; return func; } nir_function_overload * nir_function_overload_create(nir_function *func) { void *mem_ctx = ralloc_parent(func); nir_function_overload *overload = ralloc(mem_ctx, nir_function_overload); overload->num_params = 0; overload->params = NULL; overload->return_type = glsl_void_type(); overload->impl = NULL; exec_list_push_tail(&func->overload_list, &overload->node); overload->function = func; return overload; } nir_src nir_src_copy(nir_src src, void *mem_ctx) { nir_src ret; ret.is_ssa = src.is_ssa; if (ret.is_ssa) { ret.ssa = src.ssa; } else { ret.reg.base_offset = src.reg.base_offset; ret.reg.reg = src.reg.reg; if (src.reg.indirect) { ret.reg.indirect = ralloc(mem_ctx, nir_src); *ret.reg.indirect = *src.reg.indirect; } else { ret.reg.indirect = NULL; } } return ret; } nir_dest nir_dest_copy(nir_dest dest, void *mem_ctx) { nir_dest ret; ret.is_ssa = dest.is_ssa; if (ret.is_ssa) { ret.ssa = dest.ssa; } else { ret.reg.base_offset = dest.reg.base_offset; ret.reg.reg = dest.reg.reg; if (dest.reg.indirect) { ret.reg.indirect = ralloc(mem_ctx, nir_src); *ret.reg.indirect = *dest.reg.indirect; } else { ret.reg.indirect = NULL; } } return ret; } static inline void block_add_pred(nir_block *block, nir_block *pred) { _mesa_set_add(block->predecessors, _mesa_hash_pointer(pred), pred); } static void cf_init(nir_cf_node *node, nir_cf_node_type type) { exec_node_init(&node->node); node->parent = NULL; node->type = type; } static void link_blocks(nir_block *pred, nir_block *succ1, nir_block *succ2) { pred->successors[0] = succ1; block_add_pred(succ1, pred); pred->successors[1] = succ2; if (succ2 != NULL) block_add_pred(succ2, pred); } static void unlink_blocks(nir_block *pred, nir_block *succ) { if (pred->successors[0] == succ) { pred->successors[0] = pred->successors[1]; pred->successors[1] = NULL; } else { assert(pred->successors[1] == succ); pred->successors[1] = NULL; } struct set_entry *entry = _mesa_set_search(succ->predecessors, _mesa_hash_pointer(pred), pred); assert(entry); _mesa_set_remove(succ->predecessors, entry); } static void unlink_block_successors(nir_block *block) { if (block->successors[0] != NULL) unlink_blocks(block, block->successors[0]); if (block->successors[1] != NULL) unlink_blocks(block, block->successors[1]); } nir_function_impl * nir_function_impl_create(nir_function_overload *overload) { assert(overload->impl == NULL); void *mem_ctx = ralloc_parent(overload); nir_function_impl *impl = ralloc(mem_ctx, nir_function_impl); overload->impl = impl; impl->overload = overload; cf_init(&impl->cf_node, nir_cf_node_function); exec_list_make_empty(&impl->body); exec_list_make_empty(&impl->registers); exec_list_make_empty(&impl->locals); impl->num_params = 0; impl->params = NULL; impl->return_var = NULL; impl->reg_alloc = 0; impl->ssa_alloc = 0; impl->valid_metadata = nir_metadata_none; /* create start & end blocks */ nir_block *start_block = nir_block_create(mem_ctx); nir_block *end_block = nir_block_create(mem_ctx); start_block->cf_node.parent = &impl->cf_node; end_block->cf_node.parent = &impl->cf_node; impl->start_block = start_block; impl->end_block = end_block; exec_list_push_tail(&impl->body, &start_block->cf_node.node); start_block->successors[0] = end_block; block_add_pred(end_block, start_block); return impl; } nir_block * nir_block_create(void *mem_ctx) { nir_block *block = ralloc(mem_ctx, nir_block); cf_init(&block->cf_node, nir_cf_node_block); block->successors[0] = block->successors[1] = NULL; block->predecessors = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal); block->imm_dom = NULL; block->dom_frontier = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal); exec_list_make_empty(&block->instr_list); return block; } static inline void src_init(nir_src *src) { src->is_ssa = false; src->reg.reg = NULL; src->reg.indirect = NULL; src->reg.base_offset = 0; } nir_if * nir_if_create(void *mem_ctx) { nir_if *if_stmt = ralloc(mem_ctx, nir_if); cf_init(&if_stmt->cf_node, nir_cf_node_if); src_init(&if_stmt->condition); nir_block *then = nir_block_create(mem_ctx); exec_list_make_empty(&if_stmt->then_list); exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node); then->cf_node.parent = &if_stmt->cf_node; nir_block *else_stmt = nir_block_create(mem_ctx); exec_list_make_empty(&if_stmt->else_list); exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node); else_stmt->cf_node.parent = &if_stmt->cf_node; return if_stmt; } nir_loop * nir_loop_create(void *mem_ctx) { nir_loop *loop = ralloc(mem_ctx, nir_loop); cf_init(&loop->cf_node, nir_cf_node_loop); nir_block *body = nir_block_create(mem_ctx); exec_list_make_empty(&loop->body); exec_list_push_tail(&loop->body, &body->cf_node.node); body->cf_node.parent = &loop->cf_node; body->successors[0] = body; block_add_pred(body, body); return loop; } static void instr_init(nir_instr *instr, nir_instr_type type) { instr->type = type; instr->block = NULL; exec_node_init(&instr->node); } static void dest_init(nir_dest *dest) { dest->is_ssa = false; dest->reg.reg = NULL; dest->reg.indirect = NULL; dest->reg.base_offset = 0; } static void alu_dest_init(nir_alu_dest *dest) { dest_init(&dest->dest); dest->saturate = false; dest->write_mask = 0xf; } static void alu_src_init(nir_alu_src *src) { src_init(&src->src); src->abs = src->negate = false; src->swizzle[0] = 0; src->swizzle[1] = 1; src->swizzle[2] = 2; src->swizzle[3] = 3; } nir_alu_instr * nir_alu_instr_create(void *mem_ctx, nir_op op) { unsigned num_srcs = nir_op_infos[op].num_inputs; nir_alu_instr *instr = ralloc_size(mem_ctx, sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src)); instr_init(&instr->instr, nir_instr_type_alu); instr->op = op; alu_dest_init(&instr->dest); for (unsigned i = 0; i < num_srcs; i++) alu_src_init(&instr->src[i]); return instr; } nir_jump_instr * nir_jump_instr_create(void *mem_ctx, nir_jump_type type) { nir_jump_instr *instr = ralloc(mem_ctx, nir_jump_instr); instr_init(&instr->instr, nir_instr_type_jump); instr->type = type; return instr; } nir_load_const_instr * nir_load_const_instr_create(void *mem_ctx, unsigned num_components) { nir_load_const_instr *instr = ralloc(mem_ctx, nir_load_const_instr); instr_init(&instr->instr, nir_instr_type_load_const); nir_ssa_def_init(&instr->instr, &instr->def, num_components, NULL); return instr; } nir_intrinsic_instr * nir_intrinsic_instr_create(void *mem_ctx, nir_intrinsic_op op) { unsigned num_srcs = nir_intrinsic_infos[op].num_srcs; nir_intrinsic_instr *instr = ralloc_size(mem_ctx, sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src)); instr_init(&instr->instr, nir_instr_type_intrinsic); instr->intrinsic = op; if (nir_intrinsic_infos[op].has_dest) dest_init(&instr->dest); for (unsigned i = 0; i < num_srcs; i++) src_init(&instr->src[i]); return instr; } nir_call_instr * nir_call_instr_create(void *mem_ctx, nir_function_overload *callee) { nir_call_instr *instr = ralloc(mem_ctx, nir_call_instr); instr_init(&instr->instr, nir_instr_type_call); instr->callee = callee; instr->num_params = callee->num_params; instr->params = ralloc_array(mem_ctx, nir_deref_var *, instr->num_params); instr->return_deref = NULL; return instr; } nir_tex_instr * nir_tex_instr_create(void *mem_ctx, unsigned num_srcs) { nir_tex_instr *instr = ralloc(mem_ctx, nir_tex_instr); instr_init(&instr->instr, nir_instr_type_tex); dest_init(&instr->dest); instr->num_srcs = num_srcs; for (unsigned i = 0; i < 4; i++) src_init(&instr->src[i]); instr->sampler_index = 0; instr->sampler_array_size = 0; instr->sampler = NULL; return instr; } nir_phi_instr * nir_phi_instr_create(void *mem_ctx) { nir_phi_instr *instr = ralloc(mem_ctx, nir_phi_instr); instr_init(&instr->instr, nir_instr_type_phi); dest_init(&instr->dest); exec_list_make_empty(&instr->srcs); return instr; } nir_parallel_copy_instr * nir_parallel_copy_instr_create(void *mem_ctx) { nir_parallel_copy_instr *instr = ralloc(mem_ctx, nir_parallel_copy_instr); instr_init(&instr->instr, nir_instr_type_parallel_copy); exec_list_make_empty(&instr->copies); return instr; } nir_ssa_undef_instr * nir_ssa_undef_instr_create(void *mem_ctx, unsigned num_components) { nir_ssa_undef_instr *instr = ralloc(mem_ctx, nir_ssa_undef_instr); instr_init(&instr->instr, nir_instr_type_ssa_undef); nir_ssa_def_init(&instr->instr, &instr->def, num_components, NULL); return instr; } nir_deref_var * nir_deref_var_create(void *mem_ctx, nir_variable *var) { nir_deref_var *deref = ralloc(mem_ctx, nir_deref_var); deref->deref.deref_type = nir_deref_type_var; deref->deref.child = NULL; deref->deref.type = var->type; deref->var = var; return deref; } nir_deref_array * nir_deref_array_create(void *mem_ctx) { nir_deref_array *deref = ralloc(mem_ctx, nir_deref_array); deref->deref.deref_type = nir_deref_type_array; deref->deref.child = NULL; deref->deref_array_type = nir_deref_array_type_direct; src_init(&deref->indirect); deref->base_offset = 0; return deref; } nir_deref_struct * nir_deref_struct_create(void *mem_ctx, unsigned field_index) { nir_deref_struct *deref = ralloc(mem_ctx, nir_deref_struct); deref->deref.deref_type = nir_deref_type_struct; deref->deref.child = NULL; deref->index = field_index; return deref; } static nir_deref_var * copy_deref_var(void *mem_ctx, nir_deref_var *deref) { nir_deref_var *ret = nir_deref_var_create(mem_ctx, deref->var); ret->deref.type = deref->deref.type; if (deref->deref.child) ret->deref.child = nir_copy_deref(mem_ctx, deref->deref.child); return ret; } static nir_deref_array * copy_deref_array(void *mem_ctx, nir_deref_array *deref) { nir_deref_array *ret = nir_deref_array_create(mem_ctx); ret->base_offset = deref->base_offset; ret->deref_array_type = deref->deref_array_type; if (deref->deref_array_type == nir_deref_array_type_indirect) { ret->indirect = nir_src_copy(deref->indirect, mem_ctx); } ret->deref.type = deref->deref.type; if (deref->deref.child) ret->deref.child = nir_copy_deref(mem_ctx, deref->deref.child); return ret; } static nir_deref_struct * copy_deref_struct(void *mem_ctx, nir_deref_struct *deref) { nir_deref_struct *ret = nir_deref_struct_create(mem_ctx, deref->index); ret->deref.type = deref->deref.type; if (deref->deref.child) ret->deref.child = nir_copy_deref(mem_ctx, deref->deref.child); return ret; } nir_deref * nir_copy_deref(void *mem_ctx, nir_deref *deref) { switch (deref->deref_type) { case nir_deref_type_var: return ©_deref_var(mem_ctx, nir_deref_as_var(deref))->deref; case nir_deref_type_array: return ©_deref_array(mem_ctx, nir_deref_as_array(deref))->deref; case nir_deref_type_struct: return ©_deref_struct(mem_ctx, nir_deref_as_struct(deref))->deref; default: unreachable("Invalid dereference type"); } return NULL; } /** * \name Control flow modification * * These functions modify the control flow tree while keeping the control flow * graph up-to-date. The invariants respected are: * 1. Each then statement, else statement, or loop body must have at least one * control flow node. * 2. Each if-statement and loop must have one basic block before it and one * after. * 3. Two basic blocks cannot be directly next to each other. * 4. If a basic block has a jump instruction, there must be only one and it * must be at the end of the block. * 5. The CFG must always be connected - this means that we must insert a fake * CFG edge for loops with no break statement. * * The purpose of the second one is so that we have places to insert code during * GCM, as well as eliminating the possibility of critical edges. */ /*@{*/ static void link_non_block_to_block(nir_cf_node *node, nir_block *block) { if (node->type == nir_cf_node_if) { /* * We're trying to link an if to a block after it; this just means linking * the last block of the then and else branches. */ nir_if *if_stmt = nir_cf_node_as_if(node); nir_cf_node *last_then = nir_if_last_then_node(if_stmt); assert(last_then->type == nir_cf_node_block); nir_block *last_then_block = nir_cf_node_as_block(last_then); nir_cf_node *last_else = nir_if_last_else_node(if_stmt); assert(last_else->type == nir_cf_node_block); nir_block *last_else_block = nir_cf_node_as_block(last_else); if (exec_list_is_empty(&last_then_block->instr_list) || nir_block_last_instr(last_then_block)->type != nir_instr_type_jump) { unlink_block_successors(last_then_block); link_blocks(last_then_block, block, NULL); } if (exec_list_is_empty(&last_else_block->instr_list) || nir_block_last_instr(last_else_block)->type != nir_instr_type_jump) { unlink_block_successors(last_else_block); link_blocks(last_else_block, block, NULL); } } else { assert(node->type == nir_cf_node_loop); /* * We can only get to this codepath if we're inserting a new loop, or * at least a loop with no break statements; we can't insert break * statements into a loop when we haven't inserted it into the CFG * because we wouldn't know which block comes after the loop * and therefore, which block should be the successor of the block with * the break). Therefore, we need to insert a fake edge (see invariant * #5). */ nir_loop *loop = nir_cf_node_as_loop(node); nir_cf_node *last = nir_loop_last_cf_node(loop); assert(last->type == nir_cf_node_block); nir_block *last_block = nir_cf_node_as_block(last); last_block->successors[1] = block; block_add_pred(block, last_block); } } static void link_block_to_non_block(nir_block *block, nir_cf_node *node) { if (node->type == nir_cf_node_if) { /* * We're trying to link a block to an if after it; this just means linking * the block to the first block of the then and else branches. */ nir_if *if_stmt = nir_cf_node_as_if(node); nir_cf_node *first_then = nir_if_first_then_node(if_stmt); assert(first_then->type == nir_cf_node_block); nir_block *first_then_block = nir_cf_node_as_block(first_then); nir_cf_node *first_else = nir_if_first_else_node(if_stmt); assert(first_else->type == nir_cf_node_block); nir_block *first_else_block = nir_cf_node_as_block(first_else); unlink_block_successors(block); link_blocks(block, first_then_block, first_else_block); } else { /* * For similar reasons as the corresponding case in * link_non_block_to_block(), don't worry about if the loop header has * any predecessors that need to be unlinked. */ assert(node->type == nir_cf_node_loop); nir_loop *loop = nir_cf_node_as_loop(node); nir_cf_node *loop_header = nir_loop_first_cf_node(loop); assert(loop_header->type == nir_cf_node_block); nir_block *loop_header_block = nir_cf_node_as_block(loop_header); unlink_block_successors(block); link_blocks(block, loop_header_block, NULL); } } /** * Takes a basic block and inserts a new empty basic block before it, making its * predecessors point to the new block. This essentially splits the block into * an empty header and a body so that another non-block CF node can be inserted * between the two. Note that this does *not* link the two basic blocks, so * some kind of cleanup *must* be performed after this call. */ static nir_block * split_block_beginning(nir_block *block) { nir_block *new_block = nir_block_create(ralloc_parent(block)); new_block->cf_node.parent = block->cf_node.parent; exec_node_insert_node_before(&block->cf_node.node, &new_block->cf_node.node); struct set_entry *entry; set_foreach(block->predecessors, entry) { nir_block *pred = (nir_block *) entry->key; unlink_blocks(pred, block); link_blocks(pred, new_block, NULL); } return new_block; } static void rewrite_phi_preds(nir_block *block, nir_block *old_pred, nir_block *new_pred) { nir_foreach_instr_safe(block, instr) { if (instr->type != nir_instr_type_phi) break; nir_phi_instr *phi = nir_instr_as_phi(instr); foreach_list_typed_safe(nir_phi_src, src, node, &phi->srcs) { if (src->pred == old_pred) { src->pred = new_pred; break; } } } } /** * Moves the successors of source to the successors of dest, leaving both * successors of source NULL. */ static void move_successors(nir_block *source, nir_block *dest) { nir_block *succ1 = source->successors[0]; nir_block *succ2 = source->successors[1]; if (succ1) { unlink_blocks(source, succ1); rewrite_phi_preds(succ1, source, dest); } if (succ2) { unlink_blocks(source, succ2); rewrite_phi_preds(succ2, source, dest); } unlink_block_successors(dest); link_blocks(dest, succ1, succ2); } static nir_block * split_block_end(nir_block *block) { nir_block *new_block = nir_block_create(ralloc_parent(block)); new_block->cf_node.parent = block->cf_node.parent; exec_node_insert_after(&block->cf_node.node, &new_block->cf_node.node); move_successors(block, new_block); return new_block; } /** * Inserts a non-basic block between two basic blocks and links them together. */ static void insert_non_block(nir_block *before, nir_cf_node *node, nir_block *after) { node->parent = before->cf_node.parent; exec_node_insert_after(&before->cf_node.node, &node->node); link_block_to_non_block(before, node); link_non_block_to_block(node, after); } /** * Inserts a non-basic block before a basic block. */ static void insert_non_block_before_block(nir_cf_node *node, nir_block *block) { /* split off the beginning of block into new_block */ nir_block *new_block = split_block_beginning(block); /* insert our node in between new_block and block */ insert_non_block(new_block, node, block); } static void insert_non_block_after_block(nir_block *block, nir_cf_node *node) { /* split off the end of block into new_block */ nir_block *new_block = split_block_end(block); /* insert our node in between block and new_block */ insert_non_block(block, node, new_block); } /* walk up the control flow tree to find the innermost enclosed loop */ static nir_loop * nearest_loop(nir_cf_node *node) { while (node->type != nir_cf_node_loop) { node = node->parent; } return nir_cf_node_as_loop(node); } nir_function_impl * nir_cf_node_get_function(nir_cf_node *node) { while (node->type != nir_cf_node_function) { node = node->parent; } return nir_cf_node_as_function(node); } /* * update the CFG after a jump instruction has been added to the end of a block */ static void handle_jump(nir_block *block) { nir_instr *instr = nir_block_last_instr(block); nir_jump_instr *jump_instr = nir_instr_as_jump(instr); unlink_block_successors(block); nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); nir_metadata_preserve(impl, nir_metadata_none); if (jump_instr->type == nir_jump_break || jump_instr->type == nir_jump_continue) { nir_loop *loop = nearest_loop(&block->cf_node); if (jump_instr->type == nir_jump_continue) { nir_cf_node *first_node = nir_loop_first_cf_node(loop); assert(first_node->type == nir_cf_node_block); nir_block *first_block = nir_cf_node_as_block(first_node); link_blocks(block, first_block, NULL); } else { nir_cf_node *after = nir_cf_node_next(&loop->cf_node); assert(after->type == nir_cf_node_block); nir_block *after_block = nir_cf_node_as_block(after); link_blocks(block, after_block, NULL); /* If we inserted a fake link, remove it */ nir_cf_node *last = nir_loop_last_cf_node(loop); assert(last->type == nir_cf_node_block); nir_block *last_block = nir_cf_node_as_block(last); if (last_block->successors[1] != NULL) unlink_blocks(last_block, after_block); } } else { assert(jump_instr->type == nir_jump_return); link_blocks(block, impl->end_block, NULL); } } static void handle_remove_jump(nir_block *block, nir_jump_type type) { unlink_block_successors(block); if (exec_node_is_tail_sentinel(block->cf_node.node.next)) { nir_cf_node *parent = block->cf_node.parent; if (parent->type == nir_cf_node_if) { nir_cf_node *next = nir_cf_node_next(parent); assert(next->type == nir_cf_node_block); nir_block *next_block = nir_cf_node_as_block(next); link_blocks(block, next_block, NULL); } else { assert(parent->type == nir_cf_node_loop); nir_loop *loop = nir_cf_node_as_loop(parent); nir_cf_node *head = nir_loop_first_cf_node(loop); assert(head->type == nir_cf_node_block); nir_block *head_block = nir_cf_node_as_block(head); link_blocks(block, head_block, NULL); } } else { nir_cf_node *next = nir_cf_node_next(&block->cf_node); if (next->type == nir_cf_node_if) { nir_if *next_if = nir_cf_node_as_if(next); nir_cf_node *first_then = nir_if_first_then_node(next_if); assert(first_then->type == nir_cf_node_block); nir_block *first_then_block = nir_cf_node_as_block(first_then); nir_cf_node *first_else = nir_if_first_else_node(next_if); assert(first_else->type == nir_cf_node_block); nir_block *first_else_block = nir_cf_node_as_block(first_else); link_blocks(block, first_then_block, first_else_block); } else { assert(next->type == nir_cf_node_loop); nir_loop *next_loop = nir_cf_node_as_loop(next); nir_cf_node *first = nir_loop_first_cf_node(next_loop); assert(first->type == nir_cf_node_block); nir_block *first_block = nir_cf_node_as_block(first); link_blocks(block, first_block, NULL); } } if (type == nir_jump_break) { nir_loop *loop = nearest_loop(&block->cf_node); nir_cf_node *next = nir_cf_node_next(&loop->cf_node); assert(next->type == nir_cf_node_block); nir_block *next_block = nir_cf_node_as_block(next); if (next_block->predecessors->entries == 0) { /* insert fake link */ nir_cf_node *last = nir_loop_last_cf_node(loop); assert(last->type == nir_cf_node_block); nir_block *last_block = nir_cf_node_as_block(last); last_block->successors[1] = next_block; block_add_pred(next_block, last_block); } } nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); nir_metadata_preserve(impl, nir_metadata_none); } /** * Inserts a basic block before another by merging the instructions. * * @param block the target of the insertion * @param before the block to be inserted - must not have been inserted before * @param has_jump whether \before has a jump instruction at the end */ static void insert_block_before_block(nir_block *block, nir_block *before, bool has_jump) { assert(!has_jump || exec_list_is_empty(&block->instr_list)); foreach_list_typed(nir_instr, instr, node, &before->instr_list) { instr->block = block; } exec_list_prepend(&block->instr_list, &before->instr_list); if (has_jump) handle_jump(block); } /** * Inserts a basic block after another by merging the instructions. * * @param block the target of the insertion * @param after the block to be inserted - must not have been inserted before * @param has_jump whether \after has a jump instruction at the end */ static void insert_block_after_block(nir_block *block, nir_block *after, bool has_jump) { foreach_list_typed(nir_instr, instr, node, &after->instr_list) { instr->block = block; } exec_list_append(&block->instr_list, &after->instr_list); if (has_jump) handle_jump(block); } static void update_if_uses(nir_cf_node *node) { if (node->type != nir_cf_node_if) return; nir_if *if_stmt = nir_cf_node_as_if(node); struct set *if_uses_set = if_stmt->condition.is_ssa ? if_stmt->condition.ssa->if_uses : if_stmt->condition.reg.reg->uses; _mesa_set_add(if_uses_set, _mesa_hash_pointer(if_stmt), if_stmt); } void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after) { update_if_uses(after); if (after->type == nir_cf_node_block) { /* * either node or the one after it must be a basic block, by invariant #2; * in either case, just merge the blocks together. */ nir_block *after_block = nir_cf_node_as_block(after); bool has_jump = !exec_list_is_empty(&after_block->instr_list) && nir_block_last_instr(after_block)->type == nir_instr_type_jump; if (node->type == nir_cf_node_block) { insert_block_after_block(nir_cf_node_as_block(node), after_block, has_jump); } else { nir_cf_node *next = nir_cf_node_next(node); assert(next->type == nir_cf_node_block); nir_block *next_block = nir_cf_node_as_block(next); insert_block_before_block(next_block, after_block, has_jump); } } else { if (node->type == nir_cf_node_block) { insert_non_block_after_block(nir_cf_node_as_block(node), after); } else { /* * We have to insert a non-basic block after a non-basic block. Since * every non-basic block has a basic block after it, this is equivalent * to inserting a non-basic block before a basic block. */ nir_cf_node *next = nir_cf_node_next(node); assert(next->type == nir_cf_node_block); nir_block *next_block = nir_cf_node_as_block(next); insert_non_block_before_block(after, next_block); } } nir_function_impl *impl = nir_cf_node_get_function(node); nir_metadata_preserve(impl, nir_metadata_none); } void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before) { update_if_uses(before); if (before->type == nir_cf_node_block) { nir_block *before_block = nir_cf_node_as_block(before); bool has_jump = !exec_list_is_empty(&before_block->instr_list) && nir_block_last_instr(before_block)->type == nir_instr_type_jump; if (node->type == nir_cf_node_block) { insert_block_before_block(nir_cf_node_as_block(node), before_block, has_jump); } else { nir_cf_node *prev = nir_cf_node_prev(node); assert(prev->type == nir_cf_node_block); nir_block *prev_block = nir_cf_node_as_block(prev); insert_block_after_block(prev_block, before_block, has_jump); } } else { if (node->type == nir_cf_node_block) { insert_non_block_before_block(before, nir_cf_node_as_block(node)); } else { /* * We have to insert a non-basic block before a non-basic block. This * is equivalent to inserting a non-basic block after a basic block. */ nir_cf_node *prev_node = nir_cf_node_prev(node); assert(prev_node->type == nir_cf_node_block); nir_block *prev_block = nir_cf_node_as_block(prev_node); insert_non_block_after_block(prev_block, before); } } nir_function_impl *impl = nir_cf_node_get_function(node); nir_metadata_preserve(impl, nir_metadata_none); } void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node) { nir_cf_node *begin = exec_node_data(nir_cf_node, list->head, node); nir_cf_node_insert_before(begin, node); } void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node) { nir_cf_node *end = exec_node_data(nir_cf_node, list->tail_pred, node); nir_cf_node_insert_after(end, node); } /** * Stitch two basic blocks together into one. The aggregate must have the same * predecessors as the first and the same successors as the second. */ static void stitch_blocks(nir_block *before, nir_block *after) { /* * We move after into before, so we have to deal with up to 2 successors vs. * possibly a large number of predecessors. * * TODO: special case when before is empty and after isn't? */ move_successors(after, before); foreach_list_typed(nir_instr, instr, node, &after->instr_list) { instr->block = before; } exec_list_append(&before->instr_list, &after->instr_list); exec_node_remove(&after->cf_node.node); } void nir_cf_node_remove(nir_cf_node *node) { nir_function_impl *impl = nir_cf_node_get_function(node); nir_metadata_preserve(impl, nir_metadata_none); if (node->type == nir_cf_node_block) { /* * Basic blocks can't really be removed by themselves, since they act as * padding between the non-basic blocks. So all we do here is empty the * block of instructions. * * TODO: could we assert here? */ exec_list_make_empty(&nir_cf_node_as_block(node)->instr_list); } else { nir_cf_node *before = nir_cf_node_prev(node); assert(before->type == nir_cf_node_block); nir_block *before_block = nir_cf_node_as_block(before); nir_cf_node *after = nir_cf_node_next(node); assert(after->type == nir_cf_node_block); nir_block *after_block = nir_cf_node_as_block(after); exec_node_remove(&node->node); stitch_blocks(before_block, after_block); } } static bool add_use_cb(nir_src *src, void *state) { nir_instr *instr = (nir_instr *) state; struct set *uses_set = src->is_ssa ? src->ssa->uses : src->reg.reg->uses; _mesa_set_add(uses_set, _mesa_hash_pointer(instr), instr); return true; } static bool add_ssa_def_cb(nir_ssa_def *def, void *state) { nir_instr *instr = (nir_instr *) state; if (instr->block && def->index == UINT_MAX) { nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); def->index = impl->ssa_alloc++; } return true; } static bool add_reg_def_cb(nir_dest *dest, void *state) { nir_instr *instr = (nir_instr *) state; if (!dest->is_ssa) _mesa_set_add(dest->reg.reg->defs, _mesa_hash_pointer(instr), instr); return true; } static void add_defs_uses(nir_instr *instr) { nir_foreach_src(instr, add_use_cb, instr); nir_foreach_dest(instr, add_reg_def_cb, instr); nir_foreach_ssa_def(instr, add_ssa_def_cb, instr); } void nir_instr_insert_before(nir_instr *instr, nir_instr *before) { assert(before->type != nir_instr_type_jump); before->block = instr->block; add_defs_uses(before); exec_node_insert_node_before(&instr->node, &before->node); } void nir_instr_insert_after(nir_instr *instr, nir_instr *after) { if (after->type == nir_instr_type_jump) { assert(instr == nir_block_last_instr(instr->block)); assert(instr->type != nir_instr_type_jump); } after->block = instr->block; add_defs_uses(after); exec_node_insert_after(&instr->node, &after->node); if (after->type == nir_instr_type_jump) handle_jump(after->block); } void nir_instr_insert_before_block(nir_block *block, nir_instr *before) { if (before->type == nir_instr_type_jump) assert(exec_list_is_empty(&block->instr_list)); before->block = block; add_defs_uses(before); exec_list_push_head(&block->instr_list, &before->node); if (before->type == nir_instr_type_jump) handle_jump(block); } void nir_instr_insert_after_block(nir_block *block, nir_instr *after) { if (after->type == nir_instr_type_jump) { assert(exec_list_is_empty(&block->instr_list) || nir_block_last_instr(block)->type != nir_instr_type_jump); } after->block = block; add_defs_uses(after); exec_list_push_tail(&block->instr_list, &after->node); if (after->type == nir_instr_type_jump) handle_jump(block); } void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before) { if (node->type == nir_cf_node_block) { nir_instr_insert_before_block(nir_cf_node_as_block(node), before); } else { nir_cf_node *prev = nir_cf_node_prev(node); assert(prev->type == nir_cf_node_block); nir_block *prev_block = nir_cf_node_as_block(prev); nir_instr_insert_before_block(prev_block, before); } } void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after) { if (node->type == nir_cf_node_block) { nir_instr_insert_after_block(nir_cf_node_as_block(node), after); } else { nir_cf_node *next = nir_cf_node_next(node); assert(next->type == nir_cf_node_block); nir_block *next_block = nir_cf_node_as_block(next); nir_instr_insert_before_block(next_block, after); } } void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before) { nir_cf_node *first_node = exec_node_data(nir_cf_node, exec_list_get_head(list), node); nir_instr_insert_before_cf(first_node, before); } void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after) { nir_cf_node *last_node = exec_node_data(nir_cf_node, exec_list_get_tail(list), node); nir_instr_insert_after_cf(last_node, after); } static bool remove_use_cb(nir_src *src, void *state) { nir_instr *instr = (nir_instr *) state; struct set *uses_set = src->is_ssa ? src->ssa->uses : src->reg.reg->uses; struct set_entry *entry = _mesa_set_search(uses_set, _mesa_hash_pointer(instr), instr); if (entry) _mesa_set_remove(uses_set, entry); return true; } static bool remove_def_cb(nir_dest *dest, void *state) { nir_instr *instr = (nir_instr *) state; if (dest->is_ssa) return true; nir_register *reg = dest->reg.reg; struct set_entry *entry = _mesa_set_search(reg->defs, _mesa_hash_pointer(instr), instr); if (entry) _mesa_set_remove(reg->defs, entry); return true; } static void remove_defs_uses(nir_instr *instr) { nir_foreach_dest(instr, remove_def_cb, instr); nir_foreach_src(instr, remove_use_cb, instr); } void nir_instr_remove(nir_instr *instr) { remove_defs_uses(instr); exec_node_remove(&instr->node); if (instr->type == nir_instr_type_jump) { nir_jump_instr *jump_instr = nir_instr_as_jump(instr); handle_remove_jump(instr->block, jump_instr->type); } } /*@}*/ void nir_index_local_regs(nir_function_impl *impl) { unsigned index = 0; foreach_list_typed(nir_register, reg, node, &impl->registers) { reg->index = index++; } impl->reg_alloc = index; } void nir_index_global_regs(nir_shader *shader) { unsigned index = 0; foreach_list_typed(nir_register, reg, node, &shader->registers) { reg->index = index++; } shader->reg_alloc = index; } static bool visit_alu_dest(nir_alu_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest.dest, state); } static bool visit_intrinsic_dest(nir_intrinsic_instr *instr, nir_foreach_dest_cb cb, void *state) { if (nir_intrinsic_infos[instr->intrinsic].has_dest) return cb(&instr->dest, state); return true; } static bool visit_texture_dest(nir_tex_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest, state); } static bool visit_phi_dest(nir_phi_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest, state); } static bool visit_parallel_copy_dest(nir_parallel_copy_instr *instr, nir_foreach_dest_cb cb, void *state) { foreach_list_typed(nir_parallel_copy_copy, copy, node, &instr->copies) { if (!cb(©->dest, state)) return false; } return true; } bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: return visit_alu_dest(nir_instr_as_alu(instr), cb, state); case nir_instr_type_intrinsic: return visit_intrinsic_dest(nir_instr_as_intrinsic(instr), cb, state); case nir_instr_type_tex: return visit_texture_dest(nir_instr_as_tex(instr), cb, state); case nir_instr_type_phi: return visit_phi_dest(nir_instr_as_phi(instr), cb, state); case nir_instr_type_parallel_copy: return visit_parallel_copy_dest(nir_instr_as_parallel_copy(instr), cb, state); case nir_instr_type_load_const: case nir_instr_type_ssa_undef: case nir_instr_type_call: case nir_instr_type_jump: break; default: unreachable("Invalid instruction type"); break; } return true; } struct foreach_ssa_def_state { nir_foreach_ssa_def_cb cb; void *client_state; }; static inline bool nir_ssa_def_visitor(nir_dest *dest, void *void_state) { struct foreach_ssa_def_state *state = void_state; if (dest->is_ssa) return state->cb(&dest->ssa, state->client_state); else return true; } bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: case nir_instr_type_tex: case nir_instr_type_intrinsic: case nir_instr_type_phi: case nir_instr_type_parallel_copy: { struct foreach_ssa_def_state foreach_state = {cb, state}; return nir_foreach_dest(instr, nir_ssa_def_visitor, &foreach_state); } case nir_instr_type_load_const: return cb(&nir_instr_as_load_const(instr)->def, state); case nir_instr_type_ssa_undef: return cb(&nir_instr_as_ssa_undef(instr)->def, state); case nir_instr_type_call: case nir_instr_type_jump: return true; default: unreachable("Invalid instruction type"); } } static bool visit_src(nir_src *src, nir_foreach_src_cb cb, void *state) { if (!cb(src, state)) return false; if (!src->is_ssa && src->reg.indirect) return cb(src->reg.indirect, state); return true; } static bool visit_deref_array_src(nir_deref_array *deref, nir_foreach_src_cb cb, void *state) { if (deref->deref_array_type == nir_deref_array_type_indirect) return visit_src(&deref->indirect, cb, state); return true; } static bool visit_deref_src(nir_deref_var *deref, nir_foreach_src_cb cb, void *state) { nir_deref *cur = &deref->deref; while (cur != NULL) { if (cur->deref_type == nir_deref_type_array) if (!visit_deref_array_src(nir_deref_as_array(cur), cb, state)) return false; cur = cur->child; } return true; } static bool visit_alu_src(nir_alu_instr *instr, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) if (!visit_src(&instr->src[i].src, cb, state)) return false; return true; } static bool visit_tex_src(nir_tex_instr *instr, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < instr->num_srcs; i++) if (!visit_src(&instr->src[i], cb, state)) return false; if (instr->sampler != NULL) if (!visit_deref_src(instr->sampler, cb, state)) return false; return true; } static bool visit_intrinsic_src(nir_intrinsic_instr *instr, nir_foreach_src_cb cb, void *state) { unsigned num_srcs = nir_intrinsic_infos[instr->intrinsic].num_srcs; for (unsigned i = 0; i < num_srcs; i++) if (!visit_src(&instr->src[i], cb, state)) return false; unsigned num_vars = nir_intrinsic_infos[instr->intrinsic].num_variables; for (unsigned i = 0; i < num_vars; i++) if (!visit_deref_src(instr->variables[i], cb, state)) return false; return true; } static bool visit_call_src(nir_call_instr *instr, nir_foreach_src_cb cb, void *state) { return true; } static bool visit_load_const_src(nir_load_const_instr *instr, nir_foreach_src_cb cb, void *state) { return true; } static bool visit_phi_src(nir_phi_instr *instr, nir_foreach_src_cb cb, void *state) { foreach_list_typed(nir_phi_src, src, node, &instr->srcs) { if (!visit_src(&src->src, cb, state)) return false; } return true; } static bool visit_parallel_copy_src(nir_parallel_copy_instr *instr, nir_foreach_src_cb cb, void *state) { foreach_list_typed(nir_parallel_copy_copy, copy, node, &instr->copies) { if (!visit_src(©->src, cb, state)) return false; } return true; } typedef struct { void *state; nir_foreach_src_cb cb; } visit_dest_indirect_state; static bool visit_dest_indirect(nir_dest *dest, void *_state) { visit_dest_indirect_state *state = (visit_dest_indirect_state *) _state; if (!dest->is_ssa && dest->reg.indirect) return state->cb(dest->reg.indirect, state->state); return true; } bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: if (!visit_alu_src(nir_instr_as_alu(instr), cb, state)) return false; break; case nir_instr_type_intrinsic: if (!visit_intrinsic_src(nir_instr_as_intrinsic(instr), cb, state)) return false; break; case nir_instr_type_tex: if (!visit_tex_src(nir_instr_as_tex(instr), cb, state)) return false; break; case nir_instr_type_call: if (!visit_call_src(nir_instr_as_call(instr), cb, state)) return false; break; case nir_instr_type_load_const: if (!visit_load_const_src(nir_instr_as_load_const(instr), cb, state)) return false; break; case nir_instr_type_phi: if (!visit_phi_src(nir_instr_as_phi(instr), cb, state)) return false; break; case nir_instr_type_parallel_copy: if (!visit_parallel_copy_src(nir_instr_as_parallel_copy(instr), cb, state)) return false; break; case nir_instr_type_jump: case nir_instr_type_ssa_undef: return true; default: unreachable("Invalid instruction type"); break; } visit_dest_indirect_state dest_state; dest_state.state = state; dest_state.cb = cb; return nir_foreach_dest(instr, visit_dest_indirect, &dest_state); } nir_const_value * nir_src_as_const_value(nir_src src) { if (!src.is_ssa) return NULL; if (src.ssa->parent_instr->type != nir_instr_type_load_const) return NULL; nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr); return &load->value; } bool nir_srcs_equal(nir_src src1, nir_src src2) { if (src1.is_ssa) { if (src2.is_ssa) { return src1.ssa == src2.ssa; } else { return false; } } else { if (src2.is_ssa) { return false; } else { if ((src1.reg.indirect == NULL) != (src2.reg.indirect == NULL)) return false; if (src1.reg.indirect) { if (!nir_srcs_equal(*src1.reg.indirect, *src2.reg.indirect)) return false; } return src1.reg.reg == src2.reg.reg && src1.reg.base_offset == src2.reg.base_offset; } } } static bool src_does_not_use_def(nir_src *src, void *void_def) { nir_ssa_def *def = void_def; if (src->is_ssa) { return src->ssa != def; } else { return true; } } static bool src_does_not_use_reg(nir_src *src, void *void_reg) { nir_register *reg = void_reg; if (src->is_ssa) { return true; } else { return src->reg.reg != reg; } } void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src) { if (src->is_ssa) { nir_ssa_def *old_ssa = src->ssa; *src = new_src; if (old_ssa && nir_foreach_src(instr, src_does_not_use_def, old_ssa)) { struct set_entry *entry = _mesa_set_search(old_ssa->uses, _mesa_hash_pointer(instr), instr); assert(entry); _mesa_set_remove(old_ssa->uses, entry); } } else { if (src->reg.indirect) nir_instr_rewrite_src(instr, src->reg.indirect, new_src); nir_register *old_reg = src->reg.reg; *src = new_src; if (old_reg && nir_foreach_src(instr, src_does_not_use_reg, old_reg)) { struct set_entry *entry = _mesa_set_search(old_reg->uses, _mesa_hash_pointer(instr), instr); assert(entry); _mesa_set_remove(old_reg->uses, entry); } } if (new_src.is_ssa) { if (new_src.ssa) _mesa_set_add(new_src.ssa->uses, _mesa_hash_pointer(instr), instr); } else { if (new_src.reg.reg) _mesa_set_add(new_src.reg.reg->uses, _mesa_hash_pointer(instr), instr); } } void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def, unsigned num_components, const char *name) { void *mem_ctx = ralloc_parent(instr); def->name = name; def->parent_instr = instr; def->uses = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal); def->if_uses = _mesa_set_create(mem_ctx, _mesa_key_pointer_equal); def->num_components = num_components; if (instr->block) { nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); def->index = impl->ssa_alloc++; } else { def->index = UINT_MAX; } } struct ssa_def_rewrite_state { void *mem_ctx; nir_ssa_def *old; nir_src new_src; }; static bool ssa_def_rewrite_uses_src(nir_src *src, void *void_state) { struct ssa_def_rewrite_state *state = void_state; if (src->is_ssa && src->ssa == state->old) *src = nir_src_copy(state->new_src, state->mem_ctx); return true; } void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx) { struct ssa_def_rewrite_state state; state.mem_ctx = mem_ctx; state.old = def; state.new_src = new_src; assert(!new_src.is_ssa || def != new_src.ssa); struct set *new_uses, *new_if_uses; if (new_src.is_ssa) { new_uses = new_src.ssa->uses; new_if_uses = new_src.ssa->if_uses; } else { new_uses = new_src.reg.reg->uses; new_if_uses = new_src.reg.reg->if_uses; } struct set_entry *entry; set_foreach(def->uses, entry) { nir_instr *instr = (nir_instr *)entry->key; _mesa_set_remove(def->uses, entry); nir_foreach_src(instr, ssa_def_rewrite_uses_src, &state); _mesa_set_add(new_uses, _mesa_hash_pointer(instr), instr); } set_foreach(def->if_uses, entry) { nir_if *if_use = (nir_if *)entry->key; _mesa_set_remove(def->if_uses, entry); if_use->condition = nir_src_copy(new_src, mem_ctx); _mesa_set_add(new_if_uses, _mesa_hash_pointer(if_use), if_use); } } static bool foreach_cf_node(nir_cf_node *node, nir_foreach_block_cb cb, bool reverse, void *state); static inline bool foreach_if(nir_if *if_stmt, nir_foreach_block_cb cb, bool reverse, void *state) { if (reverse) { foreach_list_typed_safe_reverse(nir_cf_node, node, node, &if_stmt->else_list) { if (!foreach_cf_node(node, cb, reverse, state)) return false; } foreach_list_typed_safe_reverse(nir_cf_node, node, node, &if_stmt->then_list) { if (!foreach_cf_node(node, cb, reverse, state)) return false; } } else { foreach_list_typed_safe(nir_cf_node, node, node, &if_stmt->then_list) { if (!foreach_cf_node(node, cb, reverse, state)) return false; } foreach_list_typed_safe(nir_cf_node, node, node, &if_stmt->else_list) { if (!foreach_cf_node(node, cb, reverse, state)) return false; } } return true; } static inline bool foreach_loop(nir_loop *loop, nir_foreach_block_cb cb, bool reverse, void *state) { if (reverse) { foreach_list_typed_safe_reverse(nir_cf_node, node, node, &loop->body) { if (!foreach_cf_node(node, cb, reverse, state)) return false; } } else { foreach_list_typed_safe(nir_cf_node, node, node, &loop->body) { if (!foreach_cf_node(node, cb, reverse, state)) return false; } } return true; } static bool foreach_cf_node(nir_cf_node *node, nir_foreach_block_cb cb, bool reverse, void *state) { switch (node->type) { case nir_cf_node_block: return cb(nir_cf_node_as_block(node), state); case nir_cf_node_if: return foreach_if(nir_cf_node_as_if(node), cb, reverse, state); case nir_cf_node_loop: return foreach_loop(nir_cf_node_as_loop(node), cb, reverse, state); break; default: unreachable("Invalid CFG node type"); break; } return false; } bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb, void *state) { foreach_list_typed_safe(nir_cf_node, node, node, &impl->body) { if (!foreach_cf_node(node, cb, false, state)) return false; } return cb(impl->end_block, state); } bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb, void *state) { if (!cb(impl->end_block, state)) return false; foreach_list_typed_safe_reverse(nir_cf_node, node, node, &impl->body) { if (!foreach_cf_node(node, cb, true, state)) return false; } return true; } nir_if * nir_block_get_following_if(nir_block *block) { if (exec_node_is_tail_sentinel(&block->cf_node.node)) return NULL; if (nir_cf_node_is_last(&block->cf_node)) return NULL; nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); if (next_node->type != nir_cf_node_if) return NULL; return nir_cf_node_as_if(next_node); } static bool index_block(nir_block *block, void *state) { unsigned *index = (unsigned *) state; block->index = (*index)++; return true; } void nir_index_blocks(nir_function_impl *impl) { unsigned index = 0; if (impl->valid_metadata & nir_metadata_block_index) return; nir_foreach_block(impl, index_block, &index); impl->num_blocks = index; } static void index_ssa_def(nir_ssa_def *def, unsigned *index) { def->index = (*index)++; } static bool index_ssa_def_cb(nir_dest *dest, void *state) { unsigned *index = (unsigned *) state; if (dest->is_ssa) index_ssa_def(&dest->ssa, index); return true; } static void index_ssa_undef(nir_ssa_undef_instr *instr, unsigned *index) { index_ssa_def(&instr->def, index); } static bool index_ssa_block(nir_block *block, void *state) { unsigned *index = (unsigned *) state; nir_foreach_instr(block, instr) { if (instr->type == nir_instr_type_ssa_undef) index_ssa_undef(nir_instr_as_ssa_undef(instr), index); else nir_foreach_dest(instr, index_ssa_def_cb, state); } return true; } void nir_index_ssa_defs(nir_function_impl *impl) { unsigned index = 0; nir_foreach_block(impl, index_ssa_block, &index); impl->ssa_alloc = index; }