/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #include "glsl_to_nir.h" #include "ir_visitor.h" #include "ir_hierarchical_visitor.h" #include "ir.h" /* * pass to lower GLSL IR to NIR * * This will lower variable dereferences to loads/stores of corresponding * variables in NIR - the variables will be converted to registers in a later * pass. */ namespace { class nir_visitor : public ir_visitor { public: nir_visitor(nir_shader *shader, bool supports_ints); ~nir_visitor(); virtual void visit(ir_variable *); virtual void visit(ir_function *); virtual void visit(ir_function_signature *); virtual void visit(ir_loop *); virtual void visit(ir_if *); virtual void visit(ir_discard *); virtual void visit(ir_loop_jump *); virtual void visit(ir_return *); virtual void visit(ir_call *); virtual void visit(ir_assignment *); virtual void visit(ir_emit_vertex *); virtual void visit(ir_end_primitive *); virtual void visit(ir_expression *); virtual void visit(ir_swizzle *); virtual void visit(ir_texture *); virtual void visit(ir_constant *); virtual void visit(ir_dereference_variable *); virtual void visit(ir_dereference_record *); virtual void visit(ir_dereference_array *); void create_function(ir_function *ir); private: void create_overload(ir_function_signature *ir, nir_function *function); void add_instr(nir_instr *instr, unsigned num_components); nir_src evaluate_rvalue(ir_rvalue *ir); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_src *srcs); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_src src1); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_src src1, nir_src src2); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_src src1, nir_src src2, nir_src src3); bool supports_ints; nir_shader *shader; nir_function_impl *impl; exec_list *cf_node_list; nir_instr *result; /* result of the expression tree last visited */ /* the head of the dereference chain we're creating */ nir_deref_var *deref_head; /* the tail of the dereference chain we're creating */ nir_deref *deref_tail; nir_variable *var; /* variable created by ir_variable visitor */ /* whether the IR we're operating on is per-function or global */ bool is_global; /* map of ir_variable -> nir_variable */ struct hash_table *var_table; /* map of ir_function_signature -> nir_function_overload */ struct hash_table *overload_table; }; /* * This visitor runs before the main visitor, calling create_function() for * each function so that the main visitor can resolve forward references in * calls. */ class nir_function_visitor : public ir_hierarchical_visitor { public: nir_function_visitor(nir_visitor *v) : visitor(v) { } virtual ir_visitor_status visit_enter(ir_function *); private: nir_visitor *visitor; }; }; /* end of anonymous namespace */ nir_shader * glsl_to_nir(exec_list *ir, _mesa_glsl_parse_state *state, bool native_integers) { nir_shader *shader = nir_shader_create(NULL); if (state) { shader->num_user_structures = state->num_user_structures; shader->user_structures = ralloc_array(shader, glsl_type *, shader->num_user_structures); memcpy(shader->user_structures, state->user_structures, shader->num_user_structures * sizeof(glsl_type *)); } else { shader->num_user_structures = 0; shader->user_structures = NULL; } nir_visitor v1(shader, native_integers); nir_function_visitor v2(&v1); v2.run(ir); visit_exec_list(ir, &v1); return shader; } nir_visitor::nir_visitor(nir_shader *shader, bool supports_ints) { this->supports_ints = supports_ints; this->shader = shader; this->is_global = true; this->var_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); this->overload_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); } nir_visitor::~nir_visitor() { _mesa_hash_table_destroy(this->var_table, NULL); _mesa_hash_table_destroy(this->overload_table, NULL); } static nir_constant * constant_copy(ir_constant *ir, void *mem_ctx) { if (ir == NULL) return NULL; nir_constant *ret = ralloc(mem_ctx, nir_constant); unsigned total_elems = ir->type->components(); unsigned i; switch (ir->type->base_type) { case GLSL_TYPE_UINT: for (i = 0; i < total_elems; i++) ret->value.u[i] = ir->value.u[i]; break; case GLSL_TYPE_INT: for (i = 0; i < total_elems; i++) ret->value.i[i] = ir->value.i[i]; break; case GLSL_TYPE_FLOAT: for (i = 0; i < total_elems; i++) ret->value.f[i] = ir->value.f[i]; break; case GLSL_TYPE_BOOL: for (i = 0; i < total_elems; i++) ret->value.b[i] = ir->value.b[i]; break; case GLSL_TYPE_STRUCT: ret->elements = ralloc_array(mem_ctx, nir_constant *, ir->type->length); i = 0; foreach_in_list(ir_constant, field, &ir->components) { ret->elements[i] = constant_copy(field, mem_ctx); i++; } break; case GLSL_TYPE_ARRAY: ret->elements = ralloc_array(mem_ctx, nir_constant *, ir->type->length); for (i = 0; i < ir->type->length; i++) ret->elements[i] = constant_copy(ir->array_elements[i], mem_ctx); break; default: assert(0); break; } return ret; } void nir_visitor::visit(ir_variable *ir) { nir_variable *var = ralloc(shader, nir_variable); var->type = ir->type; var->name = ralloc_strdup(var, ir->name); if (ir->is_interface_instance() && ir->get_max_ifc_array_access() != NULL) { unsigned size = ir->get_interface_type()->length; var->max_ifc_array_access = ralloc_array(var, unsigned, size); memcpy(var->max_ifc_array_access, ir->get_max_ifc_array_access(), size * sizeof(unsigned)); } else { var->max_ifc_array_access = NULL; } var->data.read_only = ir->data.read_only; var->data.centroid = ir->data.centroid; var->data.sample = ir->data.sample; var->data.invariant = ir->data.invariant; switch(ir->data.mode) { case ir_var_auto: case ir_var_temporary: if (is_global) var->data.mode = nir_var_global; else var->data.mode = nir_var_local; break; case ir_var_function_in: case ir_var_function_out: case ir_var_function_inout: case ir_var_const_in: var->data.mode = nir_var_local; break; case ir_var_shader_in: var->data.mode = nir_var_shader_in; break; case ir_var_shader_out: var->data.mode = nir_var_shader_out; break; case ir_var_uniform: var->data.mode = nir_var_uniform; break; case ir_var_system_value: var->data.mode = nir_var_system_value; break; default: assert(0); break; } var->data.interpolation = ir->data.interpolation; var->data.origin_upper_left = ir->data.origin_upper_left; var->data.pixel_center_integer = ir->data.pixel_center_integer; var->data.explicit_location = ir->data.explicit_location; var->data.explicit_index = ir->data.explicit_index; var->data.explicit_binding = ir->data.explicit_binding; var->data.has_initializer = ir->data.has_initializer; var->data.is_unmatched_generic_inout = ir->data.is_unmatched_generic_inout; var->data.location_frac = ir->data.location_frac; var->data.from_named_ifc_block_array = ir->data.from_named_ifc_block_array; var->data.from_named_ifc_block_nonarray = ir->data.from_named_ifc_block_nonarray; switch (ir->data.depth_layout) { case ir_depth_layout_none: var->data.depth_layout = nir_depth_layout_none; break; case ir_depth_layout_any: var->data.depth_layout = nir_depth_layout_any; break; case ir_depth_layout_greater: var->data.depth_layout = nir_depth_layout_greater; break; case ir_depth_layout_less: var->data.depth_layout = nir_depth_layout_less; break; case ir_depth_layout_unchanged: var->data.depth_layout = nir_depth_layout_unchanged; break; default: assert(0); break; } var->data.location = ir->data.location; var->data.index = ir->data.index; var->data.binding = ir->data.binding; /* XXX Get rid of buffer_index */ var->data.atomic.buffer_index = ir->data.binding; var->data.atomic.offset = ir->data.atomic.offset; var->data.image.read_only = ir->data.image_read_only; var->data.image.write_only = ir->data.image_write_only; var->data.image.coherent = ir->data.image_coherent; var->data.image._volatile = ir->data.image_volatile; var->data.image.restrict_flag = ir->data.image_restrict; var->data.image.format = ir->data.image_format; var->data.max_array_access = ir->data.max_array_access; var->num_state_slots = ir->get_num_state_slots(); if (var->num_state_slots > 0) { var->state_slots = ralloc_array(var, nir_state_slot, var->num_state_slots); ir_state_slot *state_slots = ir->get_state_slots(); for (unsigned i = 0; i < var->num_state_slots; i++) { for (unsigned j = 0; j < 5; j++) var->state_slots[i].tokens[j] = state_slots[i].tokens[j]; var->state_slots[i].swizzle = state_slots[i].swizzle; } } else { var->state_slots = NULL; } var->constant_value = constant_copy(ir->constant_value, var); var->constant_initializer = constant_copy(ir->constant_initializer, var); var->interface_type = ir->get_interface_type(); switch (var->data.mode) { case nir_var_local: exec_list_push_tail(&impl->locals, &var->node); break; case nir_var_global: exec_list_push_tail(&shader->globals, &var->node); break; case nir_var_shader_in: _mesa_hash_table_insert(shader->inputs, var->name, var); break; case nir_var_shader_out: _mesa_hash_table_insert(shader->outputs, var->name, var); break; case nir_var_uniform: _mesa_hash_table_insert(shader->uniforms, var->name, var); break; case nir_var_system_value: exec_list_push_tail(&shader->system_values, &var->node); break; default: assert(0); break; } _mesa_hash_table_insert(var_table, ir, var); this->var = var; } ir_visitor_status nir_function_visitor::visit_enter(ir_function *ir) { visitor->create_function(ir); return visit_continue_with_parent; } void nir_visitor::create_function(ir_function *ir) { nir_function *func = nir_function_create(this->shader, ir->name); foreach_in_list(ir_function_signature, sig, &ir->signatures) { create_overload(sig, func); } } void nir_visitor::create_overload(ir_function_signature *ir, nir_function *function) { if (ir->is_intrinsic) return; nir_function_overload *overload = nir_function_overload_create(function); unsigned num_params = ir->parameters.length(); overload->num_params = num_params; overload->params = ralloc_array(shader, nir_parameter, num_params); unsigned i = 0; foreach_in_list(ir_variable, param, &ir->parameters) { switch (param->data.mode) { case ir_var_function_in: overload->params[i].param_type = nir_parameter_in; break; case ir_var_function_out: overload->params[i].param_type = nir_parameter_out; break; case ir_var_function_inout: overload->params[i].param_type = nir_parameter_inout; break; default: assert(0); break; } overload->params[i].type = param->type; i++; } overload->return_type = ir->return_type; _mesa_hash_table_insert(this->overload_table, ir, overload); } void nir_visitor::visit(ir_function *ir) { foreach_in_list(ir_function_signature, sig, &ir->signatures) sig->accept(this); } void nir_visitor::visit(ir_function_signature *ir) { if (ir->is_intrinsic) return; struct hash_entry *entry = _mesa_hash_table_search(this->overload_table, ir); assert(entry); nir_function_overload *overload = (nir_function_overload *) entry->data; if (ir->is_defined) { nir_function_impl *impl = nir_function_impl_create(overload); this->impl = impl; unsigned num_params = overload->num_params; impl->num_params = num_params; impl->params = ralloc_array(this->shader, nir_variable *, num_params); unsigned i = 0; foreach_in_list(ir_variable, param, &ir->parameters) { param->accept(this); impl->params[i] = this->var; i++; } if (overload->return_type == glsl_type::void_type) { impl->return_var = NULL; } else { impl->return_var = ralloc(this->shader, nir_variable); impl->return_var->name = ralloc_strdup(impl->return_var, "return_var"); impl->return_var->type = overload->return_type; } this->is_global = false; this->cf_node_list = &impl->body; visit_exec_list(&ir->body, this); this->is_global = true; } else { overload->impl = NULL; } } void nir_visitor::visit(ir_loop *ir) { exec_list *old_list = this->cf_node_list; nir_loop *loop = nir_loop_create(this->shader); nir_cf_node_insert_end(old_list, &loop->cf_node); this->cf_node_list = &loop->body; visit_exec_list(&ir->body_instructions, this); this->cf_node_list = old_list; } void nir_visitor::visit(ir_if *ir) { nir_src condition = evaluate_rvalue(ir->condition); exec_list *old_list = this->cf_node_list; nir_if *if_stmt = nir_if_create(this->shader); if_stmt->condition = condition; nir_cf_node_insert_end(old_list, &if_stmt->cf_node); this->cf_node_list = &if_stmt->then_list; visit_exec_list(&ir->then_instructions, this); this->cf_node_list = &if_stmt->else_list; visit_exec_list(&ir->else_instructions, this); this->cf_node_list = old_list; } void nir_visitor::visit(ir_discard *ir) { /* * discards aren't treated as control flow, because before we lower them * they can appear anywhere in the shader and the stuff after them may still * be executed (yay, crazy GLSL rules!). However, after lowering, all the * discards will be immediately followed by a return. */ nir_intrinsic_instr *discard = nir_intrinsic_instr_create(this->shader, nir_intrinsic_discard); nir_instr_insert_after_cf_list(this->cf_node_list, &discard->instr); } void nir_visitor::visit(ir_emit_vertex *ir) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_emit_vertex); instr->const_index[0] = ir->stream_id(); nir_instr_insert_after_cf_list(this->cf_node_list, &instr->instr); } void nir_visitor::visit(ir_end_primitive *ir) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_end_primitive); instr->const_index[0] = ir->stream_id(); nir_instr_insert_after_cf_list(this->cf_node_list, &instr->instr); } void nir_visitor::visit(ir_loop_jump *ir) { nir_jump_type type; switch (ir->mode) { case ir_loop_jump::jump_break: type = nir_jump_break; break; case ir_loop_jump::jump_continue: type = nir_jump_continue; break; default: assert(0); break; } nir_jump_instr *instr = nir_jump_instr_create(this->shader, type); nir_instr_insert_after_cf_list(this->cf_node_list, &instr->instr); } void nir_visitor::visit(ir_return *ir) { if (ir->value != NULL) { ir->value->accept(this); nir_intrinsic_instr *copy = nir_intrinsic_instr_create(this->shader, nir_intrinsic_copy_var); copy->variables[0] = nir_deref_var_create(this->shader, this->impl->return_var); copy->variables[1] = this->deref_head; } nir_jump_instr *instr = nir_jump_instr_create(this->shader, nir_jump_return); nir_instr_insert_after_cf_list(this->cf_node_list, &instr->instr); } void nir_visitor::visit(ir_call *ir) { if (ir->callee->is_intrinsic) { nir_intrinsic_op op; if (strcmp(ir->callee_name(), "__intrinsic_atomic_read") == 0) { op = nir_intrinsic_atomic_counter_read_var; } else if (strcmp(ir->callee_name(), "__intrinsic_atomic_increment") == 0) { op = nir_intrinsic_atomic_counter_inc_var; } else if (strcmp(ir->callee_name(), "__intrinsic_atomic_predecrement") == 0) { op = nir_intrinsic_atomic_counter_dec_var; } else { assert(0); } nir_intrinsic_instr *instr = nir_intrinsic_instr_create(shader, op); ir_dereference *param = (ir_dereference *) ir->actual_parameters.get_head(); param->accept(this); instr->variables[0] = this->deref_head; instr->dest.is_ssa = true; nir_ssa_def_init(&instr->instr, &instr->dest.ssa, 1, NULL); nir_instr_insert_after_cf_list(this->cf_node_list, &instr->instr); nir_intrinsic_instr *store_instr = nir_intrinsic_instr_create(shader, nir_intrinsic_store_var); store_instr->num_components = 1; ir->return_deref->accept(this); store_instr->variables[0] = this->deref_head; store_instr->src[0].is_ssa = true; store_instr->src[0].ssa = &instr->dest.ssa; nir_instr_insert_after_cf_list(this->cf_node_list, &store_instr->instr); return; } struct hash_entry *entry = _mesa_hash_table_search(this->overload_table, ir->callee); assert(entry); nir_function_overload *callee = (nir_function_overload *) entry->data; nir_call_instr *instr = nir_call_instr_create(this->shader, callee); unsigned i = 0; foreach_in_list(ir_dereference, param, &ir->actual_parameters) { param->accept(this); instr->params[i] = this->deref_head; i++; } ir->return_deref->accept(this); instr->return_deref = this->deref_head; nir_instr_insert_after_cf_list(this->cf_node_list, &instr->instr); } void nir_visitor::visit(ir_assignment *ir) { unsigned num_components = ir->lhs->type->vector_elements; if ((ir->rhs->as_dereference() || ir->rhs->as_constant()) && (ir->write_mask == (1 << num_components) - 1 || ir->write_mask == 0)) { /* We're doing a plain-as-can-be copy, so emit a copy_var */ nir_intrinsic_instr *copy = nir_intrinsic_instr_create(this->shader, nir_intrinsic_copy_var); ir->lhs->accept(this); copy->variables[0] = this->deref_head; ir->rhs->accept(this); copy->variables[1] = this->deref_head; if (ir->condition) { nir_if *if_stmt = nir_if_create(this->shader); if_stmt->condition = evaluate_rvalue(ir->condition); nir_cf_node_insert_end(this->cf_node_list, &if_stmt->cf_node); nir_instr_insert_after_cf_list(&if_stmt->then_list, ©->instr); } else { nir_instr_insert_after_cf_list(this->cf_node_list, ©->instr); } return; } assert(ir->rhs->type->is_scalar() || ir->rhs->type->is_vector()); ir->lhs->accept(this); nir_deref_var *lhs_deref = this->deref_head; nir_src src = evaluate_rvalue(ir->rhs); if (ir->write_mask != (1 << num_components) - 1 && ir->write_mask != 0) { /* * We have no good way to update only part of a variable, so just load * the LHS and do a vec operation to combine the old with the new, and * then store it * back into the LHS. Copy propagation should get rid of the mess. */ nir_intrinsic_instr *load = nir_intrinsic_instr_create(this->shader, nir_intrinsic_load_var); load->num_components = ir->lhs->type->vector_elements; load->dest.is_ssa = true; nir_ssa_def_init(&load->instr, &load->dest.ssa, num_components, NULL); load->variables[0] = lhs_deref; nir_instr_insert_after_cf_list(this->cf_node_list, &load->instr); nir_op vec_op; switch (ir->lhs->type->vector_elements) { case 1: vec_op = nir_op_imov; break; case 2: vec_op = nir_op_vec2; break; case 3: vec_op = nir_op_vec3; break; case 4: vec_op = nir_op_vec4; break; default: unreachable("Invalid number of components"); break; } nir_alu_instr *vec = nir_alu_instr_create(this->shader, vec_op); vec->dest.dest.is_ssa = true; nir_ssa_def_init(&vec->instr, &vec->dest.dest.ssa, num_components, NULL); vec->dest.write_mask = (1 << num_components) - 1; unsigned component = 0; for (unsigned i = 0; i < ir->lhs->type->vector_elements; i++) { if (ir->write_mask & (1 << i)) { vec->src[i].src = src; /* GLSL IR will give us the input to the write-masked assignment * in a single packed vector. So, for example, if the * writemask is xzw, then we have to swizzle x -> x, y -> z, * and z -> w and get the y component from the load. */ vec->src[i].swizzle[0] = component++; } else { vec->src[i].src.is_ssa = true; vec->src[i].src.ssa = &load->dest.ssa; vec->src[i].swizzle[0] = i; } } nir_instr_insert_after_cf_list(this->cf_node_list, &vec->instr); src.is_ssa = true; src.ssa = &vec->dest.dest.ssa; } nir_intrinsic_instr *store = nir_intrinsic_instr_create(this->shader, nir_intrinsic_store_var); store->num_components = ir->lhs->type->vector_elements; nir_deref *store_deref = nir_copy_deref(this->shader, &lhs_deref->deref); store->variables[0] = nir_deref_as_var(store_deref); store->src[0] = src; if (ir->condition) { nir_if *if_stmt = nir_if_create(this->shader); if_stmt->condition = evaluate_rvalue(ir->condition); nir_cf_node_insert_end(this->cf_node_list, &if_stmt->cf_node); nir_instr_insert_after_cf_list(&if_stmt->then_list, &store->instr); } else { nir_instr_insert_after_cf_list(this->cf_node_list, &store->instr); } } /* * Given an instruction, returns a pointer to its destination or NULL if there * is no destination. * * Note that this only handles instructions we generate at this level. */ static nir_dest * get_instr_dest(nir_instr *instr) { nir_alu_instr *alu_instr; nir_intrinsic_instr *intrinsic_instr; nir_tex_instr *tex_instr; switch (instr->type) { case nir_instr_type_alu: alu_instr = nir_instr_as_alu(instr); return &alu_instr->dest.dest; case nir_instr_type_intrinsic: intrinsic_instr = nir_instr_as_intrinsic(instr); if (nir_intrinsic_infos[intrinsic_instr->intrinsic].has_dest) return &intrinsic_instr->dest; else return NULL; case nir_instr_type_tex: tex_instr = nir_instr_as_tex(instr); return &tex_instr->dest; default: assert(0); break; } return NULL; } void nir_visitor::add_instr(nir_instr *instr, unsigned num_components) { nir_dest *dest = get_instr_dest(instr); dest->is_ssa = true; nir_ssa_def_init(instr, &dest->ssa, num_components, NULL); nir_instr_insert_after_cf_list(this->cf_node_list, instr); this->result = instr; } nir_src nir_visitor::evaluate_rvalue(ir_rvalue* ir) { ir->accept(this); if (ir->as_dereference() || ir->as_constant()) { /* * A dereference is being used on the right hand side, which means we * must emit a variable load. */ nir_intrinsic_instr *load_instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_load_var); load_instr->num_components = ir->type->vector_elements; load_instr->variables[0] = this->deref_head; add_instr(&load_instr->instr, ir->type->vector_elements); } nir_dest *dest = get_instr_dest(this->result); assert(dest->is_ssa); nir_src src; src.is_ssa = true; src.ssa = &dest->ssa; return src; } nir_alu_instr * nir_visitor::emit(nir_op op, unsigned dest_size, nir_src *srcs) { nir_alu_instr *instr = nir_alu_instr_create(this->shader, op); for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) instr->src[i].src = srcs[i]; instr->dest.write_mask = (1 << dest_size) - 1; add_instr(&instr->instr, dest_size); return instr; } nir_alu_instr * nir_visitor::emit(nir_op op, unsigned dest_size, nir_src src1) { assert(nir_op_infos[op].num_inputs == 1); return emit(op, dest_size, &src1); } nir_alu_instr * nir_visitor::emit(nir_op op, unsigned dest_size, nir_src src1, nir_src src2) { assert(nir_op_infos[op].num_inputs == 2); nir_src srcs[] = { src1, src2 }; return emit(op, dest_size, srcs); } nir_alu_instr * nir_visitor::emit(nir_op op, unsigned dest_size, nir_src src1, nir_src src2, nir_src src3) { assert(nir_op_infos[op].num_inputs == 3); nir_src srcs[] = { src1, src2, src3 }; return emit(op, dest_size, srcs); } void nir_visitor::visit(ir_expression *ir) { /* Some special cases */ switch (ir->operation) { case ir_binop_ubo_load: { ir_constant *const_index = ir->operands[1]->as_constant(); nir_intrinsic_op op; if (const_index) { op = nir_intrinsic_load_ubo; } else { op = nir_intrinsic_load_ubo_indirect; } nir_intrinsic_instr *load = nir_intrinsic_instr_create(this->shader, op); load->num_components = ir->type->vector_elements; load->const_index[0] = const_index ? const_index->value.u[0] : 0; /* base offset */ load->const_index[1] = 1; /* number of vec4's */ load->src[0] = evaluate_rvalue(ir->operands[0]); if (!const_index) load->src[1] = evaluate_rvalue(ir->operands[1]); add_instr(&load->instr, ir->type->vector_elements); /* * In UBO's, a true boolean value is any non-zero value, but we consider * a true boolean to be ~0. Fix this up with a != 0 comparison. */ if (ir->type->base_type == GLSL_TYPE_BOOL) { nir_load_const_instr *const_zero = nir_load_const_instr_create(shader, 1); const_zero->value.u[0] = 0; nir_instr_insert_after_cf_list(this->cf_node_list, &const_zero->instr); nir_alu_instr *compare = nir_alu_instr_create(shader, nir_op_ine); compare->src[0].src.is_ssa = true; compare->src[0].src.ssa = &load->dest.ssa; compare->src[1].src.is_ssa = true; compare->src[1].src.ssa = &const_zero->def; for (unsigned i = 0; i < ir->type->vector_elements; i++) compare->src[1].swizzle[i] = 0; compare->dest.write_mask = (1 << ir->type->vector_elements) - 1; add_instr(&compare->instr, ir->type->vector_elements); } return; } case ir_unop_interpolate_at_centroid: case ir_binop_interpolate_at_offset: case ir_binop_interpolate_at_sample: { ir_dereference *deref = ir->operands[0]->as_dereference(); ir_swizzle *swizzle = NULL; if (!deref) { /* the api does not allow a swizzle here, but the varying packing code * may have pushed one into here. */ swizzle = ir->operands[0]->as_swizzle(); assert(swizzle); deref = swizzle->val->as_dereference(); assert(deref); } deref->accept(this); nir_intrinsic_op op; if (this->deref_head->var->data.mode == nir_var_shader_in) { switch (ir->operation) { case ir_unop_interpolate_at_centroid: op = nir_intrinsic_interp_var_at_centroid; break; case ir_binop_interpolate_at_offset: op = nir_intrinsic_interp_var_at_offset; break; case ir_binop_interpolate_at_sample: op = nir_intrinsic_interp_var_at_sample; break; default: unreachable("Invalid interpolation intrinsic"); } } else { /* This case can happen if the vertex shader does not write the * given varying. In this case, the linker will lower it to a * global variable. Since interpolating a variable makes no * sense, we'll just turn it into a load which will probably * eventually end up as an SSA definition. */ assert(this->deref_head->var->data.mode == nir_var_global); op = nir_intrinsic_load_var; } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(shader, op); intrin->num_components = deref->type->vector_elements; intrin->variables[0] = this->deref_head; if (intrin->intrinsic == nir_intrinsic_interp_var_at_offset || intrin->intrinsic == nir_intrinsic_interp_var_at_sample) intrin->src[0] = evaluate_rvalue(ir->operands[1]); add_instr(&intrin->instr, deref->type->vector_elements); if (swizzle) { nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov); mov->dest.write_mask = (1 << swizzle->type->vector_elements) - 1; mov->src[0].src.is_ssa = true; mov->src[0].src.ssa = &intrin->dest.ssa; mov->src[0].swizzle[0] = swizzle->mask.x; mov->src[0].swizzle[1] = swizzle->mask.y; mov->src[0].swizzle[2] = swizzle->mask.z; mov->src[0].swizzle[3] = swizzle->mask.w; for (unsigned i = deref->type->vector_elements; i < 4; i++) mov->src[0].swizzle[i] = 0; add_instr(&mov->instr, swizzle->type->vector_elements); } return; } default: break; } nir_src srcs[4]; for (unsigned i = 0; i < ir->get_num_operands(); i++) srcs[i] = evaluate_rvalue(ir->operands[i]); glsl_base_type types[4]; for (unsigned i = 0; i < ir->get_num_operands(); i++) if (supports_ints) types[i] = ir->operands[i]->type->base_type; else types[i] = GLSL_TYPE_FLOAT; glsl_base_type out_type; if (supports_ints) out_type = ir->type->base_type; else out_type = GLSL_TYPE_FLOAT; unsigned dest_size = ir->type->vector_elements; nir_alu_instr *instr; nir_op op; switch (ir->operation) { case ir_unop_bit_not: emit(nir_op_inot, dest_size, srcs); break; case ir_unop_logic_not: emit(supports_ints ? nir_op_inot : nir_op_fnot, dest_size, srcs); break; case ir_unop_neg: instr = emit(types[0] == GLSL_TYPE_FLOAT ? nir_op_fneg : nir_op_ineg, dest_size, srcs); break; case ir_unop_abs: instr = emit(types[0] == GLSL_TYPE_FLOAT ? nir_op_fabs : nir_op_iabs, dest_size, srcs); break; case ir_unop_saturate: assert(types[0] == GLSL_TYPE_FLOAT); instr = emit(nir_op_fsat, dest_size, srcs); break; case ir_unop_sign: emit(types[0] == GLSL_TYPE_FLOAT ? nir_op_fsign : nir_op_isign, dest_size, srcs); break; case ir_unop_rcp: emit(nir_op_frcp, dest_size, srcs); break; case ir_unop_rsq: emit(nir_op_frsq, dest_size, srcs); break; case ir_unop_sqrt: emit(nir_op_fsqrt, dest_size, srcs); break; case ir_unop_exp: emit(nir_op_fexp, dest_size, srcs); break; case ir_unop_log: emit(nir_op_flog, dest_size, srcs); break; case ir_unop_exp2: emit(nir_op_fexp2, dest_size, srcs); break; case ir_unop_log2: emit(nir_op_flog2, dest_size, srcs); break; case ir_unop_i2f: emit(supports_ints ? nir_op_i2f : nir_op_fmov, dest_size, srcs); break; case ir_unop_u2f: emit(supports_ints ? nir_op_u2f : nir_op_fmov, dest_size, srcs); break; case ir_unop_b2f: emit(supports_ints ? nir_op_b2f : nir_op_fmov, dest_size, srcs); break; case ir_unop_f2i: emit(nir_op_f2i, dest_size, srcs); break; case ir_unop_f2u: emit(nir_op_f2u, dest_size, srcs); break; case ir_unop_f2b: emit(nir_op_f2b, dest_size, srcs); break; case ir_unop_i2b: emit(nir_op_i2b, dest_size, srcs); break; case ir_unop_b2i: emit(nir_op_b2i, dest_size, srcs); break; case ir_unop_i2u: case ir_unop_u2i: case ir_unop_bitcast_i2f: case ir_unop_bitcast_f2i: case ir_unop_bitcast_u2f: case ir_unop_bitcast_f2u: /* no-op */ emit(nir_op_imov, dest_size, srcs); break; case ir_unop_any: switch (ir->operands[0]->type->vector_elements) { case 2: emit(supports_ints ? nir_op_bany2 : nir_op_fany2, dest_size, srcs); break; case 3: emit(supports_ints ? nir_op_bany3 : nir_op_fany3, dest_size, srcs); break; case 4: emit(supports_ints ? nir_op_bany4 : nir_op_fany4, dest_size, srcs); break; default: assert(0); break; } break; case ir_unop_trunc: emit(nir_op_ftrunc, dest_size, srcs); break; case ir_unop_ceil: emit(nir_op_fceil, dest_size, srcs); break; case ir_unop_floor: emit(nir_op_ffloor, dest_size, srcs); break; case ir_unop_fract: emit(nir_op_ffract, dest_size, srcs); break; case ir_unop_round_even: emit(nir_op_fround_even, dest_size, srcs); break; case ir_unop_sin: emit(nir_op_fsin, dest_size, srcs); break; case ir_unop_cos: emit(nir_op_fcos, dest_size, srcs); break; case ir_unop_sin_reduced: emit(nir_op_fsin_reduced, dest_size, srcs); break; case ir_unop_cos_reduced: emit(nir_op_fcos_reduced, dest_size, srcs); break; case ir_unop_dFdx: emit(nir_op_fddx, dest_size, srcs); break; case ir_unop_dFdy: emit(nir_op_fddy, dest_size, srcs); break; case ir_unop_dFdx_fine: emit(nir_op_fddx_fine, dest_size, srcs); break; case ir_unop_dFdy_fine: emit(nir_op_fddy_fine, dest_size, srcs); break; case ir_unop_dFdx_coarse: emit(nir_op_fddx_coarse, dest_size, srcs); break; case ir_unop_dFdy_coarse: emit(nir_op_fddy_coarse, dest_size, srcs); break; case ir_unop_pack_snorm_2x16: emit(nir_op_pack_snorm_2x16, dest_size, srcs); break; case ir_unop_pack_snorm_4x8: emit(nir_op_pack_snorm_4x8, dest_size, srcs); break; case ir_unop_pack_unorm_2x16: emit(nir_op_pack_unorm_2x16, dest_size, srcs); break; case ir_unop_pack_unorm_4x8: emit(nir_op_pack_unorm_4x8, dest_size, srcs); break; case ir_unop_pack_half_2x16: emit(nir_op_pack_half_2x16, dest_size, srcs); break; case ir_unop_unpack_snorm_2x16: emit(nir_op_unpack_snorm_2x16, dest_size, srcs); break; case ir_unop_unpack_snorm_4x8: emit(nir_op_unpack_snorm_4x8, dest_size, srcs); break; case ir_unop_unpack_unorm_2x16: emit(nir_op_unpack_unorm_2x16, dest_size, srcs); break; case ir_unop_unpack_unorm_4x8: emit(nir_op_unpack_unorm_4x8, dest_size, srcs); break; case ir_unop_unpack_half_2x16: emit(nir_op_unpack_half_2x16, dest_size, srcs); break; case ir_unop_unpack_half_2x16_split_x: emit(nir_op_unpack_half_2x16_split_x, dest_size, srcs); break; case ir_unop_unpack_half_2x16_split_y: emit(nir_op_unpack_half_2x16_split_y, dest_size, srcs); break; case ir_unop_bitfield_reverse: emit(nir_op_bitfield_reverse, dest_size, srcs); break; case ir_unop_bit_count: emit(nir_op_bit_count, dest_size, srcs); break; case ir_unop_find_msb: switch (types[0]) { case GLSL_TYPE_UINT: emit(nir_op_ufind_msb, dest_size, srcs); break; case GLSL_TYPE_INT: emit(nir_op_ifind_msb, dest_size, srcs); break; default: unreachable("Invalid type for findMSB()"); } break; case ir_unop_find_lsb: emit(nir_op_find_lsb, dest_size, srcs); break; case ir_unop_noise: switch (ir->type->vector_elements) { case 1: switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_fnoise1_1, dest_size, srcs); break; case 2: emit(nir_op_fnoise1_2, dest_size, srcs); break; case 3: emit(nir_op_fnoise1_3, dest_size, srcs); break; case 4: emit(nir_op_fnoise1_4, dest_size, srcs); break; default: assert(0); break; } break; case 2: switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_fnoise2_1, dest_size, srcs); break; case 2: emit(nir_op_fnoise2_2, dest_size, srcs); break; case 3: emit(nir_op_fnoise2_3, dest_size, srcs); break; case 4: emit(nir_op_fnoise2_4, dest_size, srcs); break; default: assert(0); break; } break; case 3: switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_fnoise3_1, dest_size, srcs); break; case 2: emit(nir_op_fnoise3_2, dest_size, srcs); break; case 3: emit(nir_op_fnoise3_3, dest_size, srcs); break; case 4: emit(nir_op_fnoise3_4, dest_size, srcs); break; default: assert(0); break; } break; case 4: switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_fnoise4_1, dest_size, srcs); break; case 2: emit(nir_op_fnoise4_2, dest_size, srcs); break; case 3: emit(nir_op_fnoise4_3, dest_size, srcs); break; case 4: emit(nir_op_fnoise4_4, dest_size, srcs); break; default: assert(0); break; } break; default: assert(0); break; } break; case ir_binop_add: case ir_binop_sub: case ir_binop_mul: case ir_binop_div: case ir_binop_mod: case ir_binop_min: case ir_binop_max: case ir_binop_pow: case ir_binop_bit_and: case ir_binop_bit_or: case ir_binop_bit_xor: case ir_binop_lshift: case ir_binop_rshift: switch (ir->operation) { case ir_binop_add: if (out_type == GLSL_TYPE_FLOAT) op = nir_op_fadd; else op = nir_op_iadd; break; case ir_binop_sub: if (out_type == GLSL_TYPE_FLOAT) op = nir_op_fsub; else op = nir_op_isub; break; case ir_binop_mul: if (out_type == GLSL_TYPE_FLOAT) op = nir_op_fmul; else op = nir_op_imul; break; case ir_binop_div: if (out_type == GLSL_TYPE_FLOAT) op = nir_op_fdiv; else if (out_type == GLSL_TYPE_INT) op = nir_op_idiv; else op = nir_op_udiv; break; case ir_binop_mod: if (out_type == GLSL_TYPE_FLOAT) op = nir_op_fmod; else op = nir_op_umod; break; case ir_binop_min: if (out_type == GLSL_TYPE_FLOAT) op = nir_op_fmin; else if (out_type == GLSL_TYPE_INT) op = nir_op_imin; else op = nir_op_umin; break; case ir_binop_max: if (out_type == GLSL_TYPE_FLOAT) op = nir_op_fmax; else if (out_type == GLSL_TYPE_INT) op = nir_op_imax; else op = nir_op_umax; break; case ir_binop_bit_and: op = nir_op_iand; break; case ir_binop_bit_or: op = nir_op_ior; break; case ir_binop_bit_xor: op = nir_op_ixor; break; case ir_binop_lshift: op = nir_op_ishl; break; case ir_binop_rshift: if (out_type == GLSL_TYPE_INT) op = nir_op_ishr; else op = nir_op_ushr; break; case ir_binop_pow: op = nir_op_fpow; break; default: assert(0); break; } instr = emit(op, dest_size, srcs); if (ir->operands[0]->type->vector_elements != 1 && ir->operands[1]->type->vector_elements == 1) { for (unsigned i = 0; i < ir->operands[0]->type->vector_elements; i++) { instr->src[1].swizzle[i] = 0; } } if (ir->operands[1]->type->vector_elements != 1 && ir->operands[0]->type->vector_elements == 1) { for (unsigned i = 0; i < ir->operands[1]->type->vector_elements; i++) { instr->src[0].swizzle[i] = 0; } } break; case ir_binop_imul_high: emit(out_type == GLSL_TYPE_UINT ? nir_op_umul_high : nir_op_imul_high, dest_size, srcs); break; case ir_binop_carry: emit(nir_op_uadd_carry, dest_size, srcs); break; case ir_binop_borrow: emit(nir_op_usub_borrow, dest_size, srcs); break; case ir_binop_less: if (supports_ints) { if (types[0] == GLSL_TYPE_FLOAT) emit(nir_op_flt, dest_size, srcs); else if (types[0] == GLSL_TYPE_INT) emit(nir_op_ilt, dest_size, srcs); else emit(nir_op_ult, dest_size, srcs); } else { emit(nir_op_slt, dest_size, srcs); } break; case ir_binop_greater: if (supports_ints) { if (types[0] == GLSL_TYPE_FLOAT) emit(nir_op_flt, dest_size, srcs[1], srcs[0]); else if (types[0] == GLSL_TYPE_INT) emit(nir_op_ilt, dest_size, srcs[1], srcs[0]); else emit(nir_op_ult, dest_size, srcs[1], srcs[0]); } else { emit(nir_op_slt, dest_size, srcs[1], srcs[0]); } break; case ir_binop_lequal: if (supports_ints) { if (types[0] == GLSL_TYPE_FLOAT) emit(nir_op_fge, dest_size, srcs[1], srcs[0]); else if (types[0] == GLSL_TYPE_INT) emit(nir_op_ige, dest_size, srcs[1], srcs[0]); else emit(nir_op_uge, dest_size, srcs[1], srcs[0]); } else { emit(nir_op_slt, dest_size, srcs[1], srcs[0]); } break; case ir_binop_gequal: if (supports_ints) { if (types[0] == GLSL_TYPE_FLOAT) emit(nir_op_fge, dest_size, srcs); else if (types[0] == GLSL_TYPE_INT) emit(nir_op_ige, dest_size, srcs); else emit(nir_op_uge, dest_size, srcs); } else { emit(nir_op_slt, dest_size, srcs); } break; case ir_binop_equal: if (supports_ints) { if (types[0] == GLSL_TYPE_FLOAT) emit(nir_op_feq, dest_size, srcs); else emit(nir_op_ieq, dest_size, srcs); } else { emit(nir_op_seq, dest_size, srcs); } break; case ir_binop_nequal: if (supports_ints) { if (types[0] == GLSL_TYPE_FLOAT) emit(nir_op_fne, dest_size, srcs); else emit(nir_op_ine, dest_size, srcs); } else { emit(nir_op_sne, dest_size, srcs); } break; case ir_binop_all_equal: if (supports_ints) { if (types[0] == GLSL_TYPE_FLOAT) { switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_feq, dest_size, srcs); break; case 2: emit(nir_op_ball_fequal2, dest_size, srcs); break; case 3: emit(nir_op_ball_fequal3, dest_size, srcs); break; case 4: emit(nir_op_ball_fequal4, dest_size, srcs); break; default: assert(0); break; } } else { switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_ieq, dest_size, srcs); break; case 2: emit(nir_op_ball_iequal2, dest_size, srcs); break; case 3: emit(nir_op_ball_iequal3, dest_size, srcs); break; case 4: emit(nir_op_ball_iequal4, dest_size, srcs); break; default: assert(0); break; } } } else { switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_seq, dest_size, srcs); break; case 2: emit(nir_op_fall_equal2, dest_size, srcs); break; case 3: emit(nir_op_fall_equal3, dest_size, srcs); break; case 4: emit(nir_op_fall_equal4, dest_size, srcs); break; default: assert(0); break; } } break; case ir_binop_any_nequal: if (supports_ints) { if (types[0] == GLSL_TYPE_FLOAT) { switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_fne, dest_size, srcs); break; case 2: emit(nir_op_bany_fnequal2, dest_size, srcs); break; case 3: emit(nir_op_bany_fnequal3, dest_size, srcs); break; case 4: emit(nir_op_bany_fnequal4, dest_size, srcs); break; default: assert(0); break; } } else { switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_ine, dest_size, srcs); break; case 2: emit(nir_op_bany_inequal2, dest_size, srcs); break; case 3: emit(nir_op_bany_inequal3, dest_size, srcs); break; case 4: emit(nir_op_bany_inequal4, dest_size, srcs); break; default: assert(0); break; } } } else { switch (ir->operands[0]->type->vector_elements) { case 1: emit(nir_op_sne, dest_size, srcs); break; case 2: emit(nir_op_fany_nequal2, dest_size, srcs); break; case 3: emit(nir_op_fany_nequal3, dest_size, srcs); break; case 4: emit(nir_op_fany_nequal4, dest_size, srcs); break; default: assert(0); break; } } break; case ir_binop_logic_and: if (supports_ints) emit(nir_op_iand, dest_size, srcs); else emit(nir_op_fand, dest_size, srcs); break; case ir_binop_logic_or: if (supports_ints) emit(nir_op_ior, dest_size, srcs); else emit(nir_op_for, dest_size, srcs); break; case ir_binop_logic_xor: if (supports_ints) emit(nir_op_ixor, dest_size, srcs); else emit(nir_op_fxor, dest_size, srcs); break; case ir_binop_dot: switch (ir->operands[0]->type->vector_elements) { case 2: emit(nir_op_fdot2, dest_size, srcs); break; case 3: emit(nir_op_fdot3, dest_size, srcs); break; case 4: emit(nir_op_fdot4, dest_size, srcs); break; default: assert(0); break; } break; case ir_binop_pack_half_2x16_split: emit(nir_op_pack_half_2x16_split, dest_size, srcs); break; case ir_binop_bfm: emit(nir_op_bfm, dest_size, srcs); break; case ir_binop_ldexp: emit(nir_op_ldexp, dest_size, srcs); break; case ir_triop_fma: emit(nir_op_ffma, dest_size, srcs); break; case ir_triop_lrp: instr = emit(nir_op_flrp, dest_size, srcs); if (ir->operands[0]->type->vector_elements != 1 && ir->operands[2]->type->vector_elements == 1) { for (unsigned i = 0; i < ir->operands[0]->type->vector_elements; i++) { instr->src[2].swizzle[i] = 0; } } break; case ir_triop_csel: if (supports_ints) emit(nir_op_bcsel, dest_size, srcs); else emit(nir_op_fcsel, dest_size, srcs); break; case ir_triop_bfi: instr = emit(nir_op_bfi, dest_size, srcs); for (unsigned i = 0; i < ir->operands[1]->type->vector_elements; i++) { instr->src[0].swizzle[i] = 0; } break; case ir_triop_bitfield_extract: instr = emit(out_type == GLSL_TYPE_INT ? nir_op_ibitfield_extract : nir_op_ubitfield_extract, dest_size, srcs); for (unsigned i = 0; i < ir->operands[0]->type->vector_elements; i++) { instr->src[1].swizzle[i] = 0; instr->src[2].swizzle[i] = 0; } break; case ir_quadop_bitfield_insert: instr = emit(nir_op_bitfield_insert, dest_size, srcs); for (unsigned i = 0; i < ir->operands[0]->type->vector_elements; i++) { instr->src[2].swizzle[i] = 0; instr->src[3].swizzle[i] = 0; } break; case ir_quadop_vector: switch (ir->type->vector_elements) { case 2: emit(nir_op_vec2, dest_size, srcs); break; case 3: emit(nir_op_vec3, dest_size, srcs); break; case 4: emit(nir_op_vec4, dest_size, srcs); break; default: assert(0); break; } break; default: assert(0); break; } } void nir_visitor::visit(ir_swizzle *ir) { nir_alu_instr *instr = emit(supports_ints ? nir_op_imov : nir_op_fmov, ir->type->vector_elements, evaluate_rvalue(ir->val)); unsigned swizzle[4] = { ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w }; for (unsigned i = 0; i < ir->type->vector_elements; i++) instr->src[0].swizzle[i] = swizzle[i]; } void nir_visitor::visit(ir_texture *ir) { unsigned num_srcs; nir_texop op; switch (ir->op) { case ir_tex: op = nir_texop_tex; num_srcs = 1; /* coordinate */ break; case ir_txb: case ir_txl: op = (ir->op == ir_txb) ? nir_texop_txb : nir_texop_txl; num_srcs = 2; /* coordinate, bias/lod */ break; case ir_txd: op = nir_texop_txd; /* coordinate, dPdx, dPdy */ num_srcs = 3; break; case ir_txf: op = nir_texop_txf; if (ir->lod_info.lod != NULL) num_srcs = 2; /* coordinate, lod */ else num_srcs = 1; /* coordinate */ break; case ir_txf_ms: op = nir_texop_txf_ms; num_srcs = 2; /* coordinate, sample_index */ break; case ir_txs: op = nir_texop_txs; if (ir->lod_info.lod != NULL) num_srcs = 1; /* lod */ else num_srcs = 0; break; case ir_lod: op = nir_texop_lod; num_srcs = 1; /* coordinate */ break; case ir_tg4: op = nir_texop_tg4; num_srcs = 1; /* coordinate */ break; case ir_query_levels: op = nir_texop_query_levels; num_srcs = 0; break; default: assert(0); break; } if (ir->projector != NULL) num_srcs++; if (ir->shadow_comparitor != NULL) num_srcs++; if (ir->offset != NULL && ir->offset->as_constant() == NULL) num_srcs++; nir_tex_instr *instr = nir_tex_instr_create(this->shader, num_srcs); instr->op = op; instr->sampler_dim = (glsl_sampler_dim) ir->sampler->type->sampler_dimensionality; instr->is_array = ir->sampler->type->sampler_array; instr->is_shadow = ir->sampler->type->sampler_shadow; if (instr->is_shadow) instr->is_new_style_shadow = (ir->type->vector_elements == 1); switch (ir->type->base_type) { case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break; case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break; case GLSL_TYPE_UINT: instr->dest_type = nir_type_unsigned; break; default: assert(0); } ir->sampler->accept(this); instr->sampler = this->deref_head; unsigned src_number = 0; if (ir->coordinate != NULL) { instr->coord_components = ir->coordinate->type->vector_elements; instr->src[src_number] = evaluate_rvalue(ir->coordinate); instr->src_type[src_number] = nir_tex_src_coord; src_number++; } if (ir->projector != NULL) { instr->src[src_number] = evaluate_rvalue(ir->projector); instr->src_type[src_number] = nir_tex_src_projector; src_number++; } if (ir->shadow_comparitor != NULL) { instr->src[src_number] = evaluate_rvalue(ir->shadow_comparitor); instr->src_type[src_number] = nir_tex_src_comparitor; src_number++; } if (ir->offset != NULL) { /* we don't support multiple offsets yet */ assert(ir->offset->type->is_vector() || ir->offset->type->is_scalar()); ir_constant *const_offset = ir->offset->as_constant(); if (const_offset != NULL) { for (unsigned i = 0; i < const_offset->type->vector_elements; i++) instr->const_offset[i] = const_offset->value.i[i]; } else { instr->src[src_number] = evaluate_rvalue(ir->offset); instr->src_type[src_number] = nir_tex_src_offset; src_number++; } } switch (ir->op) { case ir_txb: instr->src[src_number] = evaluate_rvalue(ir->lod_info.bias); instr->src_type[src_number] = nir_tex_src_bias; src_number++; break; case ir_txl: case ir_txf: case ir_txs: if (ir->lod_info.lod != NULL) { instr->src[src_number] = evaluate_rvalue(ir->lod_info.lod); instr->src_type[src_number] = nir_tex_src_lod; src_number++; } break; case ir_txd: instr->src[src_number] = evaluate_rvalue(ir->lod_info.grad.dPdx); instr->src_type[src_number] = nir_tex_src_ddx; src_number++; instr->src[src_number] = evaluate_rvalue(ir->lod_info.grad.dPdy); instr->src_type[src_number] = nir_tex_src_ddy; src_number++; break; case ir_txf_ms: instr->src[src_number] = evaluate_rvalue(ir->lod_info.sample_index); instr->src_type[src_number] = nir_tex_src_ms_index; src_number++; break; case ir_tg4: instr->component = ir->lod_info.component->as_constant()->value.u[0]; break; default: break; } assert(src_number == num_srcs); add_instr(&instr->instr, nir_tex_instr_dest_size(instr)); } void nir_visitor::visit(ir_constant *ir) { /* * We don't know if this variable is an an array or struct that gets * dereferenced, so do the safe thing an make it a variable and return a * dereference. */ nir_variable *var = ralloc(this->shader, nir_variable); var->name = ralloc_strdup(var, "const_temp"); var->type = ir->type; var->data.mode = nir_var_local; var->data.read_only = true; var->constant_value = constant_copy(ir, var); var->constant_initializer = constant_copy(ir, var); exec_list_push_tail(&this->impl->locals, &var->node); this->deref_head = nir_deref_var_create(this->shader, var); this->deref_tail = &this->deref_head->deref; } void nir_visitor::visit(ir_dereference_variable *ir) { struct hash_entry *entry = _mesa_hash_table_search(this->var_table, ir->var); assert(entry); nir_variable *var = (nir_variable *) entry->data; nir_deref_var *deref = nir_deref_var_create(this->shader, var); this->deref_head = deref; this->deref_tail = &deref->deref; } void nir_visitor::visit(ir_dereference_record *ir) { ir->record->accept(this); int field_index = this->deref_tail->type->field_index(ir->field); assert(field_index >= 0); nir_deref_struct *deref = nir_deref_struct_create(this->shader, field_index); deref->deref.type = ir->type; this->deref_tail->child = &deref->deref; this->deref_tail = &deref->deref; } void nir_visitor::visit(ir_dereference_array *ir) { nir_deref_array *deref = nir_deref_array_create(this->shader); deref->deref.type = ir->type; ir_constant *const_index = ir->array_index->as_constant(); if (const_index != NULL) { deref->deref_array_type = nir_deref_array_type_direct; deref->base_offset = const_index->value.u[0]; } else { deref->deref_array_type = nir_deref_array_type_indirect; deref->indirect = evaluate_rvalue(ir->array_index); } ir->array->accept(this); this->deref_tail->child = &deref->deref; this->deref_tail = &deref->deref; }